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ABSTRACT
In this work, we aim to understand the mechanisms driving aca-
demic collaboration. We begin by building a model for how re-
searchers split their effort between multiple papers, and how col-
laboration affects the number of citations a paper receives, sup-
ported by observations from a large real-world publication and ci-
tation dataset, which we call the h-Reinvestment model. Using tools
from the field of Game Theory, we study researchers’ collaborative
behavior over time under this model, with the premise that each re-
searcher wants to maximize his or her academic success. We find
analytically that there is a strong incentive to collaborate rather than
work in isolation, and that studying collaborative behavior through
a game-theoretic lens is a promising approach to help us better un-
derstand the nature and dynamics of academic collaboration.

Categories and Subject Descriptors:
J.4 [Social and Behavioural Sciences]: Economics

General Terms: Algorithms, Economics, Theory

Keywords: game theory; collaboration; academia; h-index

1. INTRODUCTION
Researchers exhibit a wide range of work habits and behaviors.

Some work on many papers simultaneously, while others focus on
only a few at a time. Some engage in mentoring relationships,
while others choose to collaborate mostly with their peers, and still
others prefer to work independently. These behaviors may be mo-
tivated by a variety of factors such as institutional needs, academic
field, stage in career, funding situation, and affinity for teaching.
We pose the question: “If researchers were motivated by X , what
would the world of academic research look like?” In the current
work, we analyze collaborative behavior in a large scholarly dataset
and arrive at a model of academic collaboration, which we call the
h-Reinvestment model. We then formalize a game based on this
model, and study the outcome of the game when each researcher
tries to optimize a given objective function.
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Our first result is that two researchers perform asymptotically
better by collaborating than by publishing only independent work.
That is, collaboration is preferable to isolation (given our assump-
tions). Our second result is that when researchers are constrained to
following the same strategy every year, the best outcome is when
they arrange themselves into (stable) pairs to work together. Yet
when the researchers are allowed to change their strategies over
time, this scheme no longer represents a stable equilibrium. This
highlights an important limitation of the existing literature, most
of which is based on models where collaboration strategies remain
constant over time. Our model and approach provide a new frame-
work for further study, which can help us to better understand the
dynamics of collaborative systems. Our main contributions are:

• The h-Reinvestment model, an academic collaboration model sup-
ported by detailed analysis of publication data

• The Academic Collaboration game, where researchers collabo-
rate to maximize their academic success

• An analysis of collaboration strategies and game equilibria

1.1 Related Work
Some existing work studies the academic success of a researcher

over time. While introducing the h-index, Hirsch suggested a model
in which a researcher publishes a constant number of papers per
year, and each paper receives a constant number of additional ci-
tations per year, which results in linear growth of the h-index [6].
Guns and Rousseau suggested a peak-decay citation model, and
showed through simulations that by varying the parameters – or
choosing them stochastically – growth of the h-index can be linear,
concave, or S-shaped [5]. Kleinberg and Oren proposed a game-
theoretic model to analyze how researchers choose which open
problems to work on, and how credit gets attributed when multi-
ple researchers solve the same problem [8]. None of this previous
work models collaboration explicitly.

There has been effort in recent years to design bibliographic met-
rics that take collaboration into account [1, 7, 3]. All of these ap-
proaches model the academic environment as a static graph repre-
senting co-author relationships. However, in real life, a researcher’s
behavioral patterns may change over time. We suggest that more
sophisticated models are needed to understand the intricacies of
collaborative behavior. Cardillo et al. empirically study the corre-
lation between stability of local graph structure over time and the
willingness of individuals to compromise their own interests in fa-
vor of social cooperation, but stop short of suggesting a mechanism
that would explain such behavior [2].



Notation Description
cit(p) the total # of citations received by paper p
A(p) the set of authors of paper p
P (a) the set of papers authored by a
Py(a) the set of papers authored by a in year y
χ
y(a) the citation profile of researcher a in year y
hy(a) the h-index of researcher a in year y
Hy(a) the h-profile of researcher a in year y
H̃y(a) the h-augmenting profile of researcher a in year y

Table 1: Table of basic notation

2. METHODOLOGY
We introduce some terminology and notation, summarized in Ta-

ble 1. Using a game-theoretic framework, we then describe a game
of academic collaboration with which we can simulate researchers’
collaborative behavior over time.

2.1 Preliminaries
We define the citation profile of a set of papers P , denoted χ(P ),

to be the multi-set {cit(p) : p ∈ P}; and the citation profile of
a researcher a to be χ(a) = χ(P (a)). Then χy(a) denotes the
citation profile of researcher a in year y.

We define the h-index (generalizing Hirsch [6]) of a multi-set of
non-negative integers Z, denoted h(Z), to be the largest integer h
such that at least h elements of Z are greater than or equal to h:

h(Z) = max {h : |{z ∈ Z, z ≥ h}| ≥ h} .

For simplicity of notation, we let h(a) = h(P (a)) = h(χ(P (a))),
and let hy(a) denote the h-index of researcher a in year y.

We define the h-profile of a multi-set of non-negative integers Z,
denoted H(Z), to be the multi-set of integers in Z that are greater
than or equal to h(Z):

H(P ) = {z ∈ Z : z ≥ h(Z)}.

We similarly define H(a) = H(P (a)) = H(χ(P (a))), and let
Hy(a) denote the h-profile of researcher a in year y.

Sometimes we are only interested in the papers with strictly more
than h citations. We define the h-augmenting profile of a multi-set
of non-negative integers Z, denoted H̃(Z), to be the multi-set of
integers in Z that are strictly greater than h(Z):

H̃(P ) = {z ∈ Z : z > h(Z)}.

We similarly define H̃(a) = H̃(P (a)) = H̃(χ(P (a))), and let
H̃y(a) denote the h-augmenting profile of researcher a in year y.
Intuitively, the h-augmenting profile indicates progress towards in-
creasing the h-index.

Let Z and Z′ be multi-sets of non-negative integers. We say Z
is weakly h-preferable to Z′, denoted Z �h Z

′, if h(Z) ≥ h(Z′)
and (∀ z0 > h(Z)) |{z ∈ Z : z ≥ z0}| ≥ |{z ∈ Z′ : z ≥ z0}|.
We say Z is strongly h-preferable to Z′, denoted Z �h Z′, if
in addition either h(Z) > h(Z′) or ∃ z0 > h(Z) for which the
inequality is strict. When P and P ′ are two sets of papers, we
write P �h P

′ to denote that χ(P ) �h
χ(P ′), and P �h P

′ to
denote that χ(P ) �h

χ(P ′).
Next, we propose a model of academic collaboration.

2.2 The h-Reinvestment Model
We investigate how researchers distribute their effort between

multiple papers, and the correspondence between a paper’s success
and the effort invested in it by its coauthors, by analyzing a large

Figure 1: The h-index of the author versus the median number of
citations received across all single-authored papers for which the
author published no other papers the same year.

corpus of Computer Science publications. We extract all publica-
tions, along with authors and number of citations received, from a
snapshot of the DBLP database, which contains approximately 1
million researchers and 2 million publications. The size and va-
riety of this data mean that it is possible to validate and calibrate
our model from this dataset. Empirical observations lead us to a
model where in each year y, each researcher a has some amount of
research potential Qy(a) to be invested in writing papers, which is
proportional to his or her academic success up to that point.

We first analyze the simple case of a paper published by a single
author who had no other publications that same year,1 and explore
the relationship between the number of citations a paper receives
and several attributes of the author: number of papers published
previously, total number of citations received previously, and cur-
rent h-index. We compute Spearman’s rank correlation coefficient
for each of the attributes,2 and find that the h-index has the highest
correlation with a value of 0.34, compared to paper count with a
value of 0.28 and citation sum with a value of 0.08. Therefore, in
subsequent analysis, we use the h-index as a proxy for the research
potential of an author.

In Figure 1, we take a closer look at the relationship between
the h-index of the author and the number of citations a paper re-
ceives. The plot shows the median number of citations received
on papers singly-authored by a researcher with h-index h for each
value of h. We use the median because there are a few extreme
outliers which skew the average to the right, and we are looking
for a model which represents a typical researcher. Comparison to
the best-fit line demonstrates visually that the two quantities have a
linear relationship up until an h-index of about 10, indicating that
the number of citations a single-authored paper receives is propor-
tional to the h-index of the author when he puts all of his effort into
the paper. For values of h > 10, the fluctuation may be a result of
high variance and too few data points.

Next, we look at the case of papers with multiple authors. To iso-
late this aspect of the model, we consider two-author papers where
neither of the authors published any other papers in the same year.
In Figure 2, we plot the sum of the h-indices of the authors versus
the median number of citations received across all such papers. We

1The assumption is that if a researcher published only one paper
in a given year, then all of her effort went into that paper. In re-
ality, she could have worked on projects that were not published
that year, but that is hard to evaluate empirically since unpublished
papers are not captured in the data.
2We choose this over the more common Pearson’s coefficient be-
cause it is more robust to non-linear relationships.



Figure 2: The sum of the h-indices of the coauthors versus the me-
dian number of citations received across all two-authored papers
where neither author published any other papers in the same year.
The dashed line is the number of citations predicted by our model.

Figure 3: The h-index of an author a who published two papers
p1 and p2 in the same year with coauthors b1 and b2 respectively,
neither of which published any other papers in the same year, versus
the median of (cit(p1)− h(b1)) + (cit(p2)− h(b2)).

again observe a linear relationship, supporting that the combined
research potential of multiple authors is additive when they put all
of their effort into the paper.

Finally, we investigate what happens when an author publishes
multiple papers in the same year by narrowing our focus to in-
stances where aside from the author of interest, none of the coau-
thors published any other papers in the same year. Using the previ-
ous result of research potential being additive across multiple coau-
thors, we plot the h-index of the author of interest against the value∑

p∈Py(a)

(
cit(p)−

∑
b∈A(p)\{a} h(b)

)
in Figure 3. The plot shows a linear relationship, suggesting that the
allocation of an author’s research potential across multiple papers
is also linear.

We formalize the h-Reinvestment model based on the observa-
tions above:

1. In year y, a researcher a has Qy(a) = hy(a) + 1 units of
research potential to be invested in writing papers.3

2. Each researcher distributes her research potential between
some number of papers to be published that year.

3. A paper p will receive citations equal to the sum of the re-
search potential invested by its coauthors.

3The purpose of the +1 is to signify that an author working inde-
pendently will continue to make progress.

2.3 The Academic Collaboration Game
We appeal to the field of Game Theory, and define a game based

on the h-Reinvestment model in Section 2.2. For simplicity of anal-
ysis, we model all citations as being received in the same year that
the paper is published. We also assume that there is a practical limit
on the number of coauthors that can meaningfully contribute to a
paper, and in the following analysis limit a paper to two coauthors.
Future work is to revisit the analysis under more general models.

A game is a way of modeling the decisions of a set of ratio-
nal players whose actions collectively determine an outcome. A
player’s goal is to achieve an outcome of maximal utility to that
player. We model collaboration in academia as a repeated game,
where the same base game is played multiple times, and in each
iteration players choose actions simultaneously.

We formalize a repeated game played by a set of researchers,
explicitly defining the actions available to each researcher in each
year, the outcomes determined by those actions, and the utility of
each possible outcome to each researcher. We refer to this as the
Academic Collaboration (AC) game:

• Players: Let A be a set of researchers, each a ∈ A initially
having published a set of papers resulting in citation profile χ0(a).

• Actions: In year y, each researcher a ∈ A has Qy(a) units of
research potential to allocate among individual and collaborative
papers. Formally, a constructs a finite sequence of non-negative
integers qa

y, and for each potential coauthor a′ ∈ A a sequence
qa,a′
y , such that∑

i

qa
y[i] +

∑
a′

∑
i

qa,a′
y [i] = Qy(a).

• Outcome: For each qa
y[i] > 0 and each qa,a′

y [i] + qa′,a
y [i] >

0, a paper is produced that receives citations equal to the total of
the research potential invested by its coauthors. A researcher a
becomes a coauthor on a paper p by investing a non-zero amount
of research potential in it.

• Utility: The function Utily(a) = hy(a) indicates the utility for
researcher a at the end of year y.

We will consider the AC game of infinite horizon, which means
that each player wants to maximize his utility in the limit, rather
than after some pre-specified number of years.4 The Game The-
ory literature considers several ways to compare player preferences
in infinite games. Our approach is most similar to the overtaking
criterion presented in [9].

The game state represents, at any point in the game, all informa-
tion that may help determine the available actions, corresponding
outcomes, and utilities of the players. In the AC game, we define
the game state to consist of the citation profiles of the researchers.

A strategy is a set of rules that govern which action a player will
take given her knowledge of the game state. In the current work,
we only consider deterministic strategies.

Let s be a set of strategies for a game, one per player; this is
referred to as a strategy profile. For the purpose of analysis, we
take two strategy profiles to be equivalent if they always result in
the same outcome. When considering multiple strategy profiles,
we denote by P s

y (a), χs
y(a), hs

y(a), Hs
y(a), H̃s

y(a), and Utilsy(a)
the papers, citation profile, h-index, h-profile, h-augmenting pro-
file, and utility, respectively, for player a after y iterations of the
4Although in reality a researcher lives for only a finite number of
years, infinite games are arguably a reasonable model of human
behavior when “players examine a long-term situation without as-
signing a specific status to the end of the world” [10].



(a) Sequence fn overtakes gn (b) Neither sequence fn nor gn
overtakes the other.

Figure 4: Overtaking and non-overtaking sequences

game when the players follow their respective strategies in s; and
byW s(A) the social welfare under s. We denote by sa the strategy
for player a ∈ A under strategy profile s, and by sā the strategies
for all players other than a; by sA′ the strategies for players in
A′ ⊆ A, and by sĀ′ the strategies for players not in A′.

Let fn and gn be two infinite real-valued sequences. We say that
fn overtakes gn if lim sup

n→∞
fn− gn > 0 and lim inf

n→∞
fn− gn ≥ 0.5

We note that there are three (mutually exclusive and exhaustive)
possibilities, illustrated in Figure 4:
• fn overtakes gn
• gn overtakes fn
• neither fn nor gn overtakes the other

Multiple notions of equilibrium have been proposed in the liter-
ature. Due to the collaborative nature of the AC game, we consider
a set of strategies to be in equilibrium if no two researchers would
prefer to deviate from their current strategies in order to collaborate
with one another. We formalize this by generalizing the notion of
stability presented in [4].

Given a strategy profile s for the players in an infinite game,
we say that the subset of players A′ ⊆ A is unstable under s if
there exist alternate strategies s′A′ for the players in A′ such that

(∀ a ∈ A′) Util
s
Ā′∪s

′
A′

n (a) overtakes Utilsn(a). We define a strat-
egy profile s∗ to be a k-stable equilibrium if there does not exist
an unstable set of size at most k. Subsequently, we use the term
equilibrium to refer to a 2-stable equilibrium.

3. EVALUATION
We use the model of the previous section to study the AC game.

3.1 Single-Player Game
First, we consider the AC game when there is only one player,

researcher a. In this case, a may only write single-author papers;
the question is how many papers to write and how to optimally
distribute her research potential among them.

We begin by analyzing how the utility function grows when a
puts all of her effort into writing a single paper each year.

PROPOSITION 1. Consider the single-player AC game of infi-
nite horizon. Let s∗ denote the strategy of investing all research
potential into a single paper each year. Then the limit behavior for
a’s utility under s∗ is lim supn→∞ Utils

∗
n (a) ∼

√
2n.

PROOF. If the claim holds for h0(a) = 0, then it also holds for
h0(a) > 0, so assume that h0(a) = 0. Following strategy s∗,
from the time a reaches an h-index of h′, it will take h′ + 1 years
5In [9], fn overtakes gn if lim inf

n→∞
fn − gn > 0. Our definition

additionally allows for the situation in Figure 4(a).

to accumulate h′ + 1 papers with h′ + 1 citations each. Thus a
requires a total of n =

∑h
i=1 i =

h(h+1)
2

years to achieve an h-
index of h. Conversely, as the number of years n goes to infinity, a
achieves a utility of

lim sup
n→∞

Utils
∗

n (a) = lim sup
n→∞

⌊
−1+

√
1+8n

2

⌋
∼
√
2n.

We now compare a’s success under the single-paper strategy rel-
ative to other possible ways of distributing her effort.

LEMMA 2. Consider the single-player AC game of infinite hori-
zon. Let s∗ denote the strategy profile where each year the player
a invests all research potential into a single paper. Then for all
strategy profiles s 6= s∗, hs∗

n (a) overtakes hs
n(a).

PROOF. Consider a strategy profile s 6= s∗. Let y∗ be the first
year in which the outcome is different under s∗ and s, so that

hy∗−1(a) = hs∗
y∗−1(a) = hs

y∗−1(a) and

H̃y∗−1(a) = H̃s∗
y∗−1(a) = H̃s

y∗−1(a).

Since s∗ produces a single paper that will receiveQy∗(a) = hy∗−1(a)+
1 citations, a’s strategy under s must split the research potential
between at least two papers, each thus receiving at most hy∗−1(a)

citations, resulting in Hs∗
y∗ (a) �h Hs

y∗(a). It follows by induc-
tion that Hs∗

y (a) �h H
s
y(a) for all y ≥ y∗, and furthermore, that

hs∗
y (a) > hs

y(a) for all years y ≥ y∗ in which hs∗(a) increases.
By definition, hs∗

n (a) overtakes hs
n(a).

THEOREM 3. Consider the single-player AC game of infinite
horizon. Let s∗ denote the strategy profile where each year the
player a invests all research potential into a single paper. Then s∗

is the only equilibrium.

PROOF. This follows directly from Lemma 2.

We have shown the strategy described above to be optimal for
the single-player AC game. However, a researcher may hope to
have a greater impact by collaborating with others. We explore this
possibility in the following sections.

3.2 Two-Player Game
We now consider the AC game with two players, a and a′. For

simplicity, we only analyze the case where H0(a) = H0(a
′), i.e.

initially both researchers have the same h-profile; the results can
be generalized for arbitrary initial citation profiles. Note that if all
papers produced through year y are joint between a and a′, then
hy(a) = hy(a

′), Hy(a) = Hy(a
′), and H̃y(a) = H̃y(a

′), in
which case we will denote them by hy , Hy , and H̃y , respectively.

We begin by considering two collaborative strategy profiles, and
analyze how the players’ utility grows under in each case: one
where both players pool all their effort into a single joint paper,
and another where they collaborate on two papers simultaneously.

PROPOSITION 4. Consider the two-player AC game of infinite
horizon, whereH0(a) = H0(a

′). Let s∗ denote the strategy profile
where each year the players invest their research potential into a
single joint paper. Then the limit behavior for each player’s utility
under s∗ is lim supn→∞ Utils

∗
n ≥ n/2.

PROOF. If the claim holds for h0 = 0, then it also holds for
h0 > 0, so assume that h0 = 0. We use recursion to give a bound
on ys

∗
h , the number of years needed to achieve an h-index of h

under s∗. We have that ys
∗

0 = 0, and ys
∗

h ≤ ys
∗
dh/2e−1 + h, since



after they have achieved h-index of dh/2e−1, each of the following
h years they will produce a paper with at least h citations each. We
get the following bound:

ys
∗

h ≤ ys
∗
dh/2e−1 + h ≤ ys

∗
bh/2c + h ≤ h+ h/2 + . . . ≤ 2h.

Conversely, h ≥ ys
∗

h /2, so as the number of years n goes to infin-
ity, each player achieves a utility of lim sup

n→∞
Utils

∗
n ≥ n/2.

PROPOSITION 5. Consider the two-player AC game of infinite
horizon, whereH0(a) = H0(a

′). Let s� denote the strategy profile
where each year the players split their research potential evenly
between two joint papers. Then the limit behavior for each player’s
utility under s� is lim supn→∞ Utils

∗
n ∼ 2

√
n.

PROOF. If the claim holds for h0 = 0, then it also holds for
arbitrary initial citation profiles, so assume that h0 = 0. Following
strategy s�, from the time the players each reach an h-index of h′,
it will take d(h′ + 1)/2e years to accumulate h′ + 1 papers with
h′ + 1 citations each. Thus a total of n =

∑h
i=1 di/2e ≥

h(h+1)
4

years are required to achieve an h-index of h. Conversely, as the
number of years n goes to infinity, each player achieves a utility of

lim sup
n→∞

Utils
�

n = lim sup
n→∞

⌊
−1+

√
1+16n
2

⌋
∼ 2
√
n.

We now examine how these two strategy profiles compare to
other possible strategies for the two-player game.

LEMMA 6. Consider the two-player AC game of infinite hori-
zon, where H0(a) = H0(a

′). Let s∗ denote the strategy profile
where each year the players invest their research potential into a
single joint paper, and let s� denote the strategy profile where each
year the players split their research potential evenly between two
joint papers. Let S{∗, �} denote the set of strategy profiles that
each year prescribe either s∗ or s�. Then for any strategy pro-
file s /∈ S{∗, �}, ∃ s′ ∈ S{∗, �} s.t. hs′

n overtakes both hs
n(a) and

hs
n(a
′).

PROOF. Consider a strategy profile s /∈ S{∗, �}. Consider the
strategy profile s′ which is identical to s for game states in which
s prescribes actions according to s∗ or s�, and behaves like s∗

otherwise. Let y′ be the first year in which s and s′ differ, so
that Hy′−1 = Hs′

y′−1 = Hs
y′−1. Let P s

y′ denote the set of pa-
pers produced by s in year y′, then we have

∑
p∈Ps

y′
cit(p) =

2(hy′−1 + 1). Since s differs from s� in year y′, there can be at
most one paper with ≥ hy′−1 + 1 citations; and since it differs
from s∗, no paper can have 2(hy′−1 + 1) citations; it follows that
Hs′

y′ �h H
s
y′(a) andHs′

y′ �h H
s
y′(a

′). It follows by induction that
Hs′

y �h H
s
y(a) and Hs′

y �h H
s
y(a
′) for all y ≥ y′, and further-

more, hs′
y > hs

y(a) and hs′
y > hs

y(a
′) for all years y ≥ y′ in which

hs′
y increases. By definition, hs′

n overtakes hs
n(a) and hs

n(a
′).

LEMMA 7. Consider the two-player AC game of infinite hori-
zon, where H0(a) = H0(a

′). Let s∗ denote the strategy profile
where each year the players invest their research potential into
a single joint paper. Then there does not exist a strategy profile
s 6= s∗ such that either hs

n(a) or hs
n(a
′) overtakes hs∗

n .

PROOF. Consider a strategy profile s 6= s∗. Let s� denote the
strategy profile where each year the players split their research po-
tential evenly between two joint papers, and let S{∗, �} denote the
set of strategy profiles that each year prescribe either s∗ or s�. If
s /∈ S{∗, �} then we are done by Lemma 6, so assume s ∈ S{∗, �}.

Let ys
∗

i denote the first year such that hs∗
yi ≥ i; let ysi denote the

first year such that hs
yi ≥ i; and let ki denote the number of years

ysi−1 ≤ y < ysi in which s differs from s∗. It follows by induc-
tion that ys

∗
i − ysi ≤ ki −

∑
j<i

kj . In particular, if ki <
∑
j<i

kj ,

then ys
∗

i < ysi , which implies that in year ys
∗

i we have hs∗ > hs.
Since the sequence z0 = 1, zi =

∑
j<i

zj grows exponentially yet

ki can grow at most linearly, this must happen an infinite num-
ber of times. Since h only takes integral values, we have that
lim inf
n→∞

hs
n − hs∗

n < 0, and so hs
n does not overtake hs∗

n .

THEOREM 8. Consider the two-player AC game of infinite hori-
zon, where H0(a) = H0(a

′). Let s∗ denote the strategy profile
where each year the players invest their research potential into a
single joint paper, and let s� denote the strategy profile where each
year the players split their research potential evenly between two
joint papers. Let S{∗, �} denote the set of strategy profiles that each
year prescribe either s∗ or s�. Then we have the following:
(a) All equilibria must be in S{∗, �}.
(b) The strategy profile s∗ is an equilibrium.
(c) Not all strategy profiles in S{∗, �} are equilibria.

PROOF. Claims (a) and (b) follow directly from Lemmas 6 and 7,
respectively. For claim (c), it is sufficient to show that s� is not
an equilibrium, which follows from Propositions 4 and 5 since the
players would rather play according to s∗.

The most striking consequence of this analysis is that working
together, the authors can achieve quadratically more utility than
working alone. This only holds if they put all their effort into one
joint paper; spreading their efforts across two (or more) joint papers
is asymptotically no better than solo work.

3.3 Multi-Player Game
We now look at the AC game with an arbitrary number of play-

ers, A. For simplicity, we only analyze the case where (∀ a ∈
A) H0(a) = H0, i.e. initially all researchers have the same h-
profile; the results can be generalized for arbitrary initial citation
profiles.

We consider two variants: the “static” AC game, where each
player follows the same collaboration strategy each year; and the
“dynamic” AC game, where new collaborations may be formed and
the distribution of research potential may change.

We represent the static game as a directed graph, each edge (a, a′)
labeled with a vector q̂a′,a

y such that
• (∀ a, a′ ∈ A, i ∈ N) q̂a,a′

y [i] ≤ 1; and

• (∀ a ∈ A)
∑
i∈N

q̂a
y[i] +

∑
a′ 6=a

∑
i∈N

q̂a,a′
y [i] = 1.

That is, the graph dictates what fraction of a player’s research po-
tential is invested in each collaboration every year.

THEOREM 9. Consider the static multi-player AC game of infi-
nite horizon, where we have that (∀ a ∈ A) H0(a) = H0. Let S∗

be the set of strategy profiles corresponding to perfect matchings
onA, where each year every pair of players in the matching invests
their research potential into a single joint paper.6 Then all of the
strategy profiles in S∗ are equilibria.

PROOF. Consider a strategy profile s∗ ∈ S∗. It is obvious that
no player can improve her utility if all other players’ strategies re-
main the same, since joint papers are not possible without cooper-
ation from both players. Consider any strategy profile s′ differing
6Note that this set is empty when |A| is odd.



from s∗ only in the strategies of players a1 and a2, so that under s′

both a1 and a2 invest a non-zero fraction of their research potential
into a joint paper. By an argument similar to that in the proof of
Lemma 7, it is not possible that both hs′

n (a1) overtakes hs∗
n (a1)

and hs′
n (a2) overtakes hs∗

n (a2), so by definition a1 and a2 do not
form an unstable set. Since this is true for all pairs of players, there
does not exist an unstable set of at most two players under s∗. Thus
s∗ is an equilibrium.

Next, we consider the same strategy profiles in the dynamic set-
ting, with a very different result.

THEOREM 10. Consider the dynamic multi-player AC game of
infinite horizon, where we have that (∀ a ∈ A) H0(a) = H0. Let
S∗ be the set of strategy profiles corresponding to perfect match-
ings on A, where each year every pair of players in the matching
invests their research potential into a single joint paper. Then for
|A| > 2, none of the strategy profiles in S∗ are equilibria.

PROOF. Consider a strategy profile s∗ ∈ S∗. Let a1 and a2

be two players who are not paired up in the matching, and let a′1
and a′2 be their matched pairs, respectively. We construct a strategy
profile s′ as follows: All players besides a1 and a2 follow their
respective strategies under s∗. In years 1 and 2, a1 and a2 follow
their strategies under s∗; in years 3 and 7, they invest one unit of
research potential in a joint paper with a′1 and a′2, respectively, and
the rest in a single joint paper between themselves; and in all other
years a1 and a2 invest all of their research potential in a single joint
paper between themselves. It can be shown that hs′

n (a1) overtakes
hs∗
n (a1) and hs′

n (a2) overtakes hs∗
n (a2). Therefore, s∗ is not an

equilibrium.

Although stable equilibria exist for the static multi-player AC
game, the question of whether there exists an equilibrium for the
dynamic version of the game is open. This discrepancy between the
static and dynamic models suggests that we should be hesitant in
drawing conclusions about real-world collaborative behavior from
the static models assumed in the existing literature.

It may also be interesting to analyze the price of anarchy and
stability of the AC game, which measure the extent to which re-
searchers acting in their own self-interest benefit the academic com-
munity as a whole.

4. DISCUSSION
In order to facilitate analysis, we made several unrealistic mod-

eling assumptions. For example, we assumed that all citations for a
paper are received immediately upon publication. Taking a differ-
ent citation model, such as constant additional citations per paper
per year as in [6], a peak-decay model as in [5], or that proposed in
[11] would complicate analysis but may be more plausible.

Our analysis only considered single- or two-authored papers. A
more general model could allow multiple coauthors per paper, with
conditions to prevent the degenerate solution of all researchers col-
laborating on a single giant paper. The model could also be ex-
tended to allow researchers to enter and retire from academia at
different times.

There is also an inherent limitation in modeling human relation-
ships and interactions. The underlying premise that people can be
modeled as rational agents is itself subject to debate. Even if we
take that to be a reasonable model, there are many more factors
at play in the real world of academia – e.g. geographic location,
personal relationships, institutional loyalties, and academic com-
petition – than can be captured by a simple mathematical model.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have presented a game-theoretic approach to

studying collaborative behavior in academia by modeling research-
ers as rational agents trying to maximize their academic success.
Several publication models have been proposed in the literature,
but to our knowledge, ours is the first with the flexibility to model
collaborative behaviors that may change over time in response to
actions of and interactions with others.

Many modifications and extensions to our model are possible.
For example, instead of all decisions being deterministic, one could
allow mixed strategies, where a player’s action in a year is selected
from a distribution over possible strategies. Also, our analysis was
performed under the premise that researchers want to maximize
their h-index. In previous work we introduced the Social h-index,
which aims to capture not only the direct impact of a researcher on
the research corpus, but also on his or her fellow researchers [3]. It
is natural to study the game where the object is to maximize such
variant measures.

The policies of our academic institutions, as well as the unspoken
rules and expectations of academia, inevitably shape the mentalities
and goals of individual researchers, encouraging certain behaviors
and discouraging others. An increased ability to understand the
effects of these motivating forces will help policy-makers and aca-
demic leaders to make informed decisions that will stimulate the
growth and progress of the academic community.
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