
LATEX TikZposter

Iterative Hessian Sketch in Input Sparsity Time

Graham Cormode & Charlie Dickens
University of Warwick

Iterative Hessian Sketch in Input Sparsity Time

Graham Cormode & Charlie Dickens
University of Warwick

Summary

Large-scale ML systems require scalable algorithms to approximately solve convex constrained
least squares (CCLS) problem.

Iterative Hessian Sketch (IHS) is a randomized approximate Newton-type method to approx-
imate solutions of these problems.

We prove that Sparse Johnson Lindenstrauss Transforms (SJLT) can be used in IHS and
inherit the performance guarantees.

Our empirical evaluation shows that in practice the SJLT methods perform very well.

Surprisingly, we find that the weaker CountSketch performs better than the theory predicts
in this setup.

Our approach can summarize data roughly 100x faster for sparse data, and, surprisingly, 10x
faster on dense data.

The SJLTs are most beneficial when data is large (n� d) and sparse.

Problem Setup

Problem: Input: data A ∈ Rn×d, target vector b ∈ Rn and convex constraints C ⊆ Rd.

We assume that b = Ax∗ + ω with ωi ∼ N(0, σ2), n � d, and would like to obtain the
solution to the CCLS:

xopt = argminx∈C f (x), f (x) = 1
2‖Ax− b‖22. (1)

Obtaining xopt in (1) takes O(nd2) time to generate the Hessian matrix ∇2f (x) = ATA.

Instead of solving (1) exactly, we approximate xopt prediction (semi)norm ‖x‖A = 1√
n
‖Ax‖2

through a sequence of Newton-type iterates.

Iterative Hessian Sketch uses random projections to approximate ATA for iterates.

Estimates xt+1 gradually descend towards xopt via steps defined by (2) using random projection
Sj ∈ Rm×n with m� n.

xt+1 = argmin
x∈C

1
2‖St+1A(x− xt)‖22 − 〈AT (b− Axt), x− xt〉. (2)

Theorem. [1] Given A, b, C which define a CCLS problem, the IHS approach for t iterations
returns an estimate x̂ which approximates xopt according to: ‖x̂− xopt‖A ≤ εt‖xopt‖A.
We show that iterations can be completed in input sparsity time.

Background and Baselines

Definition. A matrix S ∈ Rm×n is a (1± ε)-subspace embedding for the column space of
a matrix A ∈ Rn×d if for all vectors x ∈ Rd, ‖SAx‖22 ∈ [(1− ε)‖Ax‖22, (1 + ε)‖Ax‖22].
Various random projections including the Gaussian and Subsampled Hadamard (SRHT) trans-
forms can define subspace embeddings. Our proposal is to adopt sparse embeddings:

CountSketch: Initialise S = 0m,n and for every column i of S choose a row h(i) uniformly
at random. Set Sh(i),i to either +1 or −1 with equal probability.

Sparse Johnson-Lindenstrauss Transform (SJLT): The sparse embedding S with col-
umn sparsity (number of nonzeros per column) parameter s is constructed by row-wise con-
catenating s independent CountSketch transforms, each of dimension m/s× n.

Sketch Method Embedding Dimension (m) Projection Time
Gaussian O

(
dε−2 log 1

δ

)
O(nd2)

SRHT O
(
dε−2 log 1

δ

)
O(nd log n)

CountSketch O
(
d2/δε2

)
O(nnz(A))

SJLT O
(
dε−2 log 1

δ

)
O(s · nnz(A))

Tab. 1: Time/Space Complexity for Subspace Embedding

Baselines. We measure the time to sketch n 7→ m for projection dimension m = γd.

CountSketch SJLT SRHT Gaussian
10−3

10−2

10−1

100

S
ke

tc
h

in
g

T
im

e

w8a

γ =1

γ =2

γ =4

γ =8

γ =10

Sketch time for CountSketch at the same projection dimension is favourable, but is the cost
of this an increased error?

CountSketch SJLT SRHT Gaussian

0.1

0.2

S
ke

tc
h

in
g

E
rr

or

When n � d the error performance of CountSketch is better than the theory predicts at
m = γd.

Experimental Evaluation

Experimental Setup. We fix λ = 5.0 and use this to define an instance of LASSO
regression xopt = argminx∈Rd

1
2‖Ax− b‖22 + λ‖x‖1.

The SJLT was initialised with column sparsities s = 1 (CountSketch) and s = 4. We
compare to SRHT and Gaussian transforms. Sketches with projection dimension m = γd
are denoted sketch(γ)

Experimental Findings. On large sparse data, SJLTs outperform the error reduction of
the dense counterparts

0.05 0.25 0.50 0.75 1.00

Time / seconds

−16

−14

−12

−10

−8

−6

−4

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

) Specular

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

Error for sparse methods decays significantly more quickly in wall-clock time to xopt than
Gaussian or SRHT

The SJLT(·) performs similarly to CountSketch(5) in terms of error decay but the marginally
increased sketch time results in slightly less overall progress.

CountSketch(5) is a weaker embedding than CountSketch(10) so needs significantly more
iterations in a given time to reach comparable error.

0.05 0.25 0.50 0.75 1.00

Time / seconds

0

20

40

60

80

N
u

m
b

er
of

it
er

at
io

n
s

Specular

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

In summary, many cheap coarse embeddings enable convergence much quicker than expensive
embeddings.

Conclusions and Future Work

Despite being a weaker sketch in theory, CountSketch tends to give fastest convergence.

SJLT needs slightly more work per iteration to build the sketch yet the saving in the number
of iterations to converge is not quite enough to compensate versus the weaker CountSketch.

How do we reduce the need for access to the data? Ideally want a single pass over the data,
perhaps with weaker error guarantee.

Code & Full paper: https://github.com/c-dickens/sketching_optimisation

Includes technical details, lower bound for sketch-and-solve model suboptimality, speedup
evaluation, comparison of sparsity parameters for SJLT, validation on more datasets.

Workshop version: https://arxiv.org/abs/1910.14166

References

[1] Mert Pilanci and Martin J. Wainwright.“Iterative Hessian sketch: Fast and Accurate solution approximation
for constrained least-squares”. In: The Journal of Machine Learning Research 17.1 (2016), pp. 1842–1879.

[2] David P. Woodruff. “Sketching as a tool for numerical linear algebra”. In: Foundations and Trends R© in
Theoretical Computer Science 10.1–2 (2014), pp. 1–157.

Acknowledgments

GC and CD acknowledge support from the European Research Council grant ERC-2014-CoG
647557 & The Alan Turing Institute under EPSRC grant EP/N510129/1.


