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Abstract The problem of building an `0-sampler is to sample near-uniformly from
the support set of a dynamic multiset. This problem has a variety of applications
within data analysis, computational geometry and graph algorithms. In this paper, we
abstract a set of steps for building an `0-sampler, based on sampling, recovery and
selection. We analyze the implementation of an `0-sampler within this framework,
and show how prior constructions of `0-samplers can all be expressed in terms of
these steps. Our experimental contribution is to provide a first detailed study of the
accuracy and computational cost of `0-samplers.
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1 Introduction

In recent years, there has been an explosion of interest in sketch algorithms: compact
data structures that compress large amounts of data to constant size while capturing
key properties of the data. For example, sketches realizing the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss 1984) allow the Euclidean distance between high
dimensional vectors to be approximated accurately via much lower-dimensional pro-
jections (Indyk and Motwani 1998; Achlioptas 2001; Dasgupta and Gupta 1999).
Many constructions in the new area of compressed sensing can also be expressed as
sketches (Gilbert et al 2007). Since most sketches can be updated incrementally and
merged together, they can be used in streaming and distributed settings. Due to this
flexibility, sketches have found use in a wide range of applications, such as network
monitoring (Cormode et al 2004), log analysis (Pike et al 2005) and approximate
query processing (Cormode et al 2012).

From these practical motivations, and since there are often several competing
sketch constructions for the same problem, it is important to unify and compare the
efficacy of different solutions. Prior work has evaluated the performance of sketches
for recovering frequent items (Manerikar and Palpanas 2009; Cormode and Had-
jieleftheriou 2008), and for tracking the cardinality of sets of items (Metwally et al
2008; Beyer et al 2009).

In this work, we focus on sketches for a fundamental sampling problem, known
as `0-sampling. Over a large data set that assigns weights to items, the goal of an
`0-sampler is to draw (approximately) uniformly from the set of items with non-zero
weight. This is challenging, since while an item may appear many times within the
raw data, it may have an aggregate weight of zero; meanwhile, another item may
appear only once with a non-zero weight. The sketch must be designed so that only
the aggregate weight influences the sampling process, not the number of occurrences
of the item.

This sampling distribution turns out to have a number of applications. Drawing
such a sample allows one to characterize many properties of the underlying data, such
as the distribution of occurrence frequencies, and other natural functions of these fre-
quencies. Such queries over the “inverse distribution” (which gives the fraction of
items whose count is i) are important within a variety of network and database ap-
plications (Cormode et al 2005). `0-sampling is also used over geometric data, to
generate ε-nets and ε-approximations to approximate the occupancy of ranges; and
to approximate the weight of (geometric) minimum spanning trees (Frahling et al
2005). Most recently, it has been shown that `0-sampling allows the construction of
graph sketches, which in turn provide the first sketch algorithms for computing con-
nected components, k-connectivity, bipartiteness and minimum spanning trees over
graphs (Ahn et al 2012).

In response to these motivations, several different constructions of `0-samplers
have been proposed. Simple solutions, such as sampling a subset of items from the
input stream, are not sufficient, as the sampled items may end up with zero weight.
Instead, more complex algorithms have been employed to ensure that information
is retained on items with non-zero weight. Early constructions made use of uni-
versal hash functions (Cormode et al 2005; Frahling et al 2005). Stronger results
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were shown using higher-independence hash functions (Monemizadeh and Woodruff
2010), and most recently assuming fully-independent hash functions (Jowhari et al
2011). Comparing these approaches, we observe that there is a common outline to
them all. A hashing procedure assigns items to levels with a geometric distribution,
so that each item is consistently assigned to the same level(s) whenever it appears in
the data. Then at each level, a “sparse recovery” data structure summarizes the items
and weights. If the number of items with non-zero weight at a level is small enough,
then the full set can be recovered. A sample is drawn by choosing an appropriate
level, attempting to recover the set of items at that level, and selecting one as the
sampled item.

Although similar in outline, the constructions differ in the details of the process
and in their description. In this work, we provide a single unified framework for
`0-sampling and its analysis, and demonstrate how the prior constructions fit into
this framework based on a small number of choices: primarily, the strength of hash
functions used, and the nature of the recovery data structures adopted. This charac-
terization allows us to better understand the choices in the prior constructions. It also
allows us to present a detailed empirical comparison of different parameter settings,
and their influence on the performance of the sampling procedure, in terms of speed
and uniformity. Despite their many applications, there has been no prior experimen-
tal comparison of `0-sampling algorithms and their costs. Our experiments show that
these algorithms can be implemented effectively, and sample accurately from the de-
sired distribution with low costs.

Outline. First, we present the formal definition of `0-sampling in Section 1.1. In Sec-
tion 2 we give a canonical `0-sampler algorithm, and analyze the performances that
can be achieved assuming a perfect s-sparse recovery algorithm. We then describe
how to construct a randomized exact s-sparse recovery algorithm, and hence realize
an `0-sampler. We finally discuss how this framework incorporates the results in prior
work (Frahling et al 2005; Jowhari et al 2011; Monemizadeh and Woodruff 2010).
We present our experimental comparison of methods in Section 3.

1.1 The `0-sampling problem

We give a formal definition of `p-samplers over data defining a vector.

Definition 1 (`p-distribution) Let a ∈ Rn be a non-zero vector. For p > 0 we call
the `p-distribution corresponding to vector a the distribution on [n] that takes i with
probability |ai|p

‖a‖p
p

where ‖a‖p = (∑n
i=1 |ai|p)1/p is the `p-norm of a. For p = 0, the

`0-distribution corresponding to a is the uniform distribution over the non-zero coor-
dinates of a, which are denoted as suppa.

A sketch algorithm is an `0-sampler if it can take as input a stream of updates
to the coordinates of a non-zero vector a, and output a non-zero coordinate (i,ai) of
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foreach j ∈ [m] :
if ‖a( j)‖0 ≤ s : a′( j)← a( j)
else : a′( j)← 0

Recovery

recovery failure
δr ∈ [0,1/2]

a(1)

a(2)

...

a(m)

a′(1)

a′(2)

...

a′(m)

foreach i ∈ [n], j ∈ [m] :
if i ∈ S j : a( j)i← ai
else : a( j)i← 0

Sampling

a ∈ Rn
choose j ∈ [m]
if a′( j) = 0 : FAIL
choose i ∈ suppa′( j)

Selection

(i,ai)

Fig. 1 Overall `0-sampling process, m = O(logn).

a 1. The algorithm may fail with small probability δ and, conditioned on no failure,
outputs the item i ∈ suppa (and corresponding weight ai) with probability

(1± ε)
1
‖a‖0

±δ (1)

for a parameter ε . The quantity ‖a‖0 := |suppa| is often called the `0-norm (although
it is not strictly a norm) and represents the number of non-zero coordinates of a.

2 The `0-sampling process

We observe that existing `0-sampling algorithms can be described in terms of a three-
step process, namely SAMPLING, RECOVERY and SELECTION. This is illustrated
schematically in Figure 1. We outline these steps below, and progressively fill in
more details of how they can be implemented through the course of the paper.

1. SAMPLING. The purpose of the sampling step is to define a set of subvectors of the
input a, so that one of them is “sparse enough” to be able to recover accurately
from the stored sketch. Given vector a, the sampling process defines m vectors
a(1), . . . ,a(m) ∈ Rn from a. For each j ∈ [m], the vector a( j) contains a subset
S j of the coordinates of the input vector a while the others are set to zero—that
is, suppa( j) ⊆ suppa. These vectors are not materialized, but are summarized
implicitly by the next step.

2. RECOVERY. The goal of the recovery step is to try to recover each of the sampled
vectors: one of these should succeed. The recovery piece creates m data structures
based on a parameter s. For each j ∈ [m], if a( j) is s-sparse then this structure
allows us to recover a( j) with probability 1− δr. We call this “exact s-sparse
recovery”.

3. SELECTION. When the `0-sampler is used to draw a sample, a level j ∈ [m] is
chosen so that the vector a( j) should be s-sparse (but non-empty). If a non-zero
vector a′( j) at this level is successfully recovered, then an entry of this vector
(i,a′( j)i) is selected and returned as the sampled item.

1 More generally, we also seek solutions so that, given sketches of vectors a and b, we can form a
sketch of (a+b) and sample from the `0-distribution on (a+b). All the algorithms that we discuss have
this property.
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Putting these pieces together, the process suceeds if the selection step chooses a
level for recovery at which the sampled vector is sufficiently sparse (not too dense,
and not zero). If the vector from this level is recovered correctly, then an item can
be sampled from it. The intuition for this process is that the (space) cost of sparse
recovery algorithms grows with the sparsity s of the vector that is to be recovered,
hence we want to use this only for a small value of the parameter s.

As mentioned above, existing `0-samplers (Frahling et al 2005; Jowhari et al
2011; Monemizadeh and Woodruff 2010) fit this pattern, but vary in details. Specifi-
cally, they differ in how the subsets S j are chosen in the SAMPLING step, and in the
specification of the s-sparse recovery data structure.

2.1 `0-sampling with k-wise independent hashing

In this section, we describe and analyze an instantiation of the above framework
which synthesizes the prior results in this area. We then show how this captures ex-
isting algorithms for this problem as special cases.

Let Fk be a k-wise independent family of hash functions, with k = O(s), and let
h : [n]→ [n3] be randomly selected from Fk. The `0-sampling algorithm is defined
by:

1. SAMPLING. If n32− j ≥ h(i), then set a( j)i = ai, else set a( j)i = 0. We get a( j)i =
ai with uniform probability p j = 2− j, and m = O(logn).

2. RECOVERY. We describe and analyze how to perform the s-sparse recovery in
Section 2.3.

3. SELECTION. The selection process identifies a level j that has a non-zero vector
a( j) and attempts to recover a vector from this level, as a′( j). If successful, the
non-zero coordinate (i,a′( j)i) obtaining the smallest value of h(i) is returned as
the sampled item.

Note that although this process is described over the whole vector a, it also ap-
plies when the vector is described incrementally as a sequence of updates, since we
can apply the process to each update in turn, and propagate the changes to the data
structures. Moreover, the process meets our definition of a sketch since, given the
data structures for two input vectors a and b based on the same hash function h, we
can compute the summary for (a+b) by merging each of the corresponding recovery
data structures.

To aid in the analysis, we use the notation N j = ‖a( j)‖0 and N = ‖a‖0. The
random variable N j can be thought of as the sum of N Bernoulli random variables
xi ∈ {0,1}, where xi represents the event a( j)i = ai, ai ∈ suppa. The expectation of
N j is E[N j].

2.2 Analysis of the `0-sampler

We show that this `0-sampler achieves high success probability and small error on
the `0-distribution, without requiring full randomness of Fk. For the purpose of this
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first part of the analysis, let Ps be a perfect s-sparse recovery algorithm: that is, an
algorithm which can recover any vector x with ‖x‖0 ≤ s, and otherwise outputs FAIL.
Let S denote the above selection step algorithm using Ps.

Lemma 1 (probability of successful recovery) Given a k-wise independent family
Fk, with k ≥ s/2 and s = O(log1/δt), the `0-sampler successfully recovers an item
with probability at least 1−δt .

Proof Let a( j) be the vector extracted by the sampling step and submitted to the
recovery step. If 1 ≤ ‖a( j)‖0 ≤ s: (i) Ps recovers the vector a′( j) = a( j) with prob-
ability 1, because a( j) is s-sparse and so Ps will succeed; (ii) S outputs a non-zero
coordinate (i,ai), because a′( j) is non-zero and S can choose a′( j).

The probability of the event 1≤ ‖a( j)‖0 ≤ s can therefore lower-bound the prob-
ability of success of the `0-sampler, Pr[outputS ∈ suppa]. Consider in particular the
level j where we expect to see a number of items mapped that is a constant fraction
of s, so that

s
4
≤ E[N j]≤

s
2

For this vector a( j), we can compute the probability of the event 1≤ ‖a( j)‖0 ≤ s,
from the probability that N j is close to its expectation E[N j] = N p j:

Pr[|N j−E[N j]|< E[N j]]

≤ Pr[1≤ N j ≤ 2E[N j]]

≤ Pr[1≤ N j ≤ s]

We invoke (Schmidt et al 1993, Theorem 2.5), which gives a Chernoff bound-like
result under limited independence. If X is the sum of k-wise independent random
variables, each of which is confined to the interval [0,1], then for r ≥ 1 and k =
drE[X ]e:

Pr[|X−E[X ]| ≥ rE[X ]]≤ exp(−E[X ]r/3)

Thus, since we have E[N j]≥ s
4 , we obtain

Pr[|N j−E[N j]| ≥ E[N j]]≤ exp(−s/12)≤ δt

if s≥ 12ln 1
δt

Setting s = 12log1/δt we ensure that we can recover at this level j with high
probability (and possibly also recover at higher levels j also). Hence, we obtain the
claimed result on the success probability of the `0-sampler:

Pr[outputS ∈ suppa]≥ Pr[1≤ N j ≤ s]≥ 1−δt

ut

Lemma 2 (output distribution of `0-sampler) Let 1−δ be the success probability
of the `0-sampler (from Lemma 1). Then the sampler outputs the item i ∈ suppa with
probability (1± exp(−s)) 1

N ±δ
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Proof We make use of the fact if h is chosen to be O(log1/ε)-wise independent
and has large enough range, then the i which obtains the smallest value of h(i) is
chosen with probability (1± ε)/N. This follows since h is approximately min-wise
independent (Indyk 1999). Since h is O(s)-wise independent, each i should be chosen
with probability (1± exp(−s))/N.

However, we have to account for the fact that some instances fail, due to hav-
ing too many items chosen to level j. By the above argument, this happens with
probability at most 1− δ . Consequently, the probability of picking i is affected by
at most an additive δ amount. Thus, we obtain that i is output with probability
(1± exp(−s)) 1

N ±δ . ut

Note that in our setting, the single parameter s controls both the relative error term
and the additive error term, so to obtain a guarantee of the form (1±ε) 1

N ±δ , we set
s = O(max(log1/ε, log1/δ )).

Recovery level selection. The above analysis indicates that there is likely to be a
level j at which recovery can succeed, and that sampling from this level approximates
the desired distribution. In an implementation, there are two approaches to choosing
the level for recovery. The first is to run an approximate `0 estimation algorithm in
parallel with the `0-sampler, and use the estimate of N to choose the level (Kane
et al 2010). This is well-principled, but adds an overhead to the process. We refer
to this as “fixed-level recovery”. An alternative is to aggressively attempt to recover
vectors, and sample from the first level that succeeds. We refer to this as “greedy-level
recovery”. We compare these alternatives empirically in Section 3.

2.3 Sparse Recovery

The problem of ‘sparse recovery’ arises in a number of contexts, including com-
pressed sensing. The central problem is to design schemes that can operate on an
input vector, so that from a small amount of stored information a good, sparse repre-
sentation of the input vector can be extracted as output. The general s-sparse recovery
problem is to design a sketch, such that for any vector a we can efficiently recover
an s-sparse vector a′ satisfying ‖a− a′‖p ≤ C mins-sparse a′ ‖a−a′‖q for some norm
parameters p and q and an approximation factor C =C(s). Essentially, a′ provides a
good approximation of a. We consider the exact version of this problem, defined for
truly s-sparse vectors (i.e., having at most s non-zero components). Here, the goal is
to output a′ ∈Rn or FAIL, such that for any s-sparse vector a the output is a′ = a with
high probability, otherwise the output is FAIL. For more information and background,
see the work of Price (Price 2011).

In this section, we discuss how to implement an efficient exact s-sparse recovery
algorithm. Many approaches have been made to this question, due to its connection
to problems in coding theory and compressed sensing. Ganguly (2007) provides a
solution to the exact s-sparse recovery problem for non-negative vectors a ∈ (Z+)n.
The space required is close to linear in s. Monemizadeh and Woodruff (2010) de-
scribe a sketch-based solution which provides small failure probability for a ∈ Rn,
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but requires substantial space (polynomial in s). Here, we give an exact s-sparse re-
covery algorithm for a ∈ Zn, built using multiple instances of a 1-sparse recovery
structure. The approach echoes similar techniques used for sparse recovery (Ganguly
2007; Price 2011) and “straggler identification” (Eppstein and Goodrich 2007), and
is presented here for completeness.

2.3.1 Perfect 1-sparse recovery

A natural approach to building a 1-sparse recovery algorithm is to keep track of the
sum of weights φ , and a weighted sum of item identifiers ι , as:

ι = ∑i∈suppa ai · i and φ = ∑i∈suppa ai

Given an update (i,∆ai) to the coordinates of the input vector a, the counters are
updated accordingly: ι = ι +∆ai · i and φ = φ +∆ai. It is easy to verify that, if the
input vector a is indeed 1-sparse, i = ι/φ and ai = φ . However, additional tests are
required to determine if a is truly 1-sparse. A simple test proposed by Ganguly (2007)
is to additionally compute τ = ∑i∈suppa ai · i2, and check that ι2 = φτ . The test will
always pass when a is 1-sparse, and it is straightforward to show that it will not pass
when a is not 1-sparse, provided all entries of a are non-negative. However, when a
may contain negative entries, the test may give a false positive.

We now propose a variant test which works over arbitrary integer vectors. Let p
be a suitably large prime, and choose a random z ∈ Zp. We compute the fingerprint
τ = ∑i∈suppa ai · zi mod p, and test if τ = φ · zι/φ mod p.

Lemma 3 If a is 1-sparse, then the fingerprint test always gives a positive answer. If
a is s-sparse, s > 1, then the fingerprint test gives a negative answer with probability
at least 1−n/p.

Proof If a is 1-sparse, the input vector contains a single non-zero coordinate (i,ai).

Therefore ι = ai · i and φ = ai. We get φ · zι/φ = ai · z
ai·i
ai = ai · zi, therefore τ = φ · zι/φ

mod p, as required.
For the other case, it is easy to verify that the fingerprint test gives a positive

result in two cases: (i) a is 1-sparse; (ii) z is a root in Zp of the polynomial p(z) =
∑i∈suppa ai · zi−φ · zι/φ .

The “failure” probability of the test is given by the probability of (ii). Since p(z)
has degree n, p(z) has at most n roots in Zp. As z is chosen independently of i, ι ,φ ,
the probability that z is one of these roots is at most n/p, and the claimed result
follows. ut

The space required by this 1-sparse recovery algorithm is O(logn+ logu+ log p)
bits, where [−u,+u] is the range of the frequencies of a. In the following we assume
O(logn+ logu+ log p) = O(logn).
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Fig. 2 Exact s-sparse recovery with perfect 1-sparse recovery.

2.3.2 Exact s-sparse recovery algorithm

We now describe how to build an s-sparse recovery algorithm using 1-sparse recovery
as a primitive. Let G2 be a family of pairwise independent hash functions, and let
fr : [n]→ [2s], r ∈ [logs/δr], be randomly selected from G2. We denote by P1 the
1-sparse recovery algorithm shown above in Section 2.3.1, while Rs is our exact
s-sparse recovery algorithm. Similar to Ganguly (2007), we use a two-dimensional
array, with logs/δr rows and 2s columns, where each cell contains an instance of P1,
as illustrated in Figure 2.

Given an update (i,∆ai) to the coordinates of input vector a, (i,∆ai) is submitted
to logs/δr independent instances ofP1, each of them having position 〈row,column〉=
〈r, fr(i)〉. To perform the recovery, the algorithm interrogates each of the instances of
P1, and extracts the unique item stored there, if there is one. The total collection of
recovered items and weights are returned as the recovered vector a′.

Lemma 4 The exact s-sparse recovery algorithm recovers an s-sparse vector a, with
probability at least 1−δr.

Proof We start with the analysis of the probability Pr[reci] that Rs recovers a par-
ticular coordinate (i,ai) of a, then we extend the result to the (s-sparse) vector a.
To this end, let Cr,i be the sum of (at most) s− 1 random variables cl ∈ {0,1}, each
of them representing the event fr(i) = fr(l). We have Pr[cl = 1] = 1/(2s). Writing
Ci = ∑l 6=i,l∈suppa cl , we have that Pr[Cr,i ≥ 1] ≤ E[Cr,i] <

1
2 . The probability that we

do not recover i in any row is therefore 1
2

logs/δr = δr/s. Summed over the s non-zero
coordinates, we recover them all with probability at least 1−δr. ut

We comment that there is the possibility of a false positive if one of the P1 struc-
tures erroneously reports a singleton item. This probability is polynomially small in
n based on the choice of the prime p = poly(n), so we discount it. We also remark
that in the case that a has more than s entries, the procedure may recover a subset
of these. We can either accept this outcome, or detect it by keeping an additional
fingerprint of a in its entirety, and comparing this to the fingerprint of the recovered
vector. The size of this data structureRs is O(s log(s/δr)) instances of P1, i.e. a total
of O(s logn log(s/δr)) bits2.

2 We note that tighter bounds are possible via a similar construction and a more involved analysis:
adapting the approach of Eppstein and Goodrich (2007) improves the log term from log(s/δr) to log1/δr ,
and the analysis of Price (2011) further improves it to logs 1/δr .
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This sparse recovery structure meets our definition of a sketch: we can combine
the structures of two vectors to obtain a recovery structure for their sum (assuming
that they are built using the same parameters and hash functions). This is because the
innermost P1 structures are linear functions of their input: we can sum up each of the
variables in P1 to obtain the summary for the sum of the inputs.

2.4 Main Result

Replacing the perfect s-sparse recovery procedure assumed in Section 2.2 with the
above procedure affects the output distribution by at most an additive δr. Hence,
combining Lemmas 1, 2, and 4, we obtain:

Theorem 1 Given a k-wise independent familyFk, with k≥ s/2 and s=O(log1/ε+
log1/δ ), the `0-sampler succeeds with probability at least 1−δ and, conditioned on
successful recovery, outputs the item i ∈ suppa with probability (1± ε) 1

N ±δ .

The space complexity of the `0-sampler is O(s log2(n) log(s/δ )) bits, if we set
δr = δt = δ/2: the space is dominated by the O(logn) instances of the s-sparse re-
covery algorithms. If we set ε = δ = poly(1/n), then the additive error term can
absorb the relative error term, and we obtain:

Corollary 1 There is an `0-sampler using space O(log4 n) bits that succeeds with
probability at least 1− n−c and, conditioned on successful recovery, outputs item i
with probability 1

N ±n−c for constant c.

From the lower bounds perspective, Jowhari et al (2011) have shown that Ω(log2 n)
bits of space are needed to solve this problem with constant probability of failure and
constant distortion.

2.5 Comparison with previous results

We now compare the `0-sampler analyzed thus far to those described in prior work,
and show that this construction captures existing `0-samplers as special cases. To this
end, we first describe the prior algorithms in terms of the three-step process of SAM-
PLING, RECOVERY and SELECTION presented in Section 2. In fact, these algorithms
can be thought of as `0-samplers with k-wise independent hashing, differing in the
strength of the hash functions used and the nature of the recovery data structures
adopted. We then outline how our analyses apply to prior results assuming full and
limited independence of Fk and can be extended to include pairwise independence.

2.5.1 Full independence

The analysis of the `0-sampler due to Jowhari et al (2011) assumes full independence
ofFk. In fact, the sampling process defines m= blognc vectors each containing a sub-
set S j of the coordinates of the input vector, which is chosen uniformly at random3.

3 Jowhari et al (2011) first present their algorithm assuming a random oracle, and then they remove this
assumption through the use of the pseudo-random generator of Nisan (Nisan 1990).
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The recovery piece is implemented with a perfect s-sparse recovery data structure,
and the selection of the level for recovery is greedy: the algorithm returns a uniform
random non-zero coordinate from the first successful recovery that gives a non-zero
s-sparse vector, if it exists, otherwise the algorithm fails.

Jowhari et al (2011) prove that their `0-sampler succeeds with probability at least
1−δ and, conditioned on no failure, outputs the item i ∈ suppa with almost uniform
probability. The total space cost is O(logn) levels, each of which uses an s-sparse
recovery algorithm for s = O(log1/δ ). Assuming full independence means that ε

can be assumed to be 0, and so the error arises from the failure probability.

2.5.2 Limited independence

The analysis of the `0-sampler due to Monemizadeh and Woodruff (2010) assumes
c logn/ε-wise independence of Fk, with c > 1, to get ε-min-wise independence over
N elements (Indyk 1999). The recovery step is implemented with an exact s-sparse
recovery algorithm, with δr = n−c. Monemizadeh and Woodruff (2010) prove that
their `0-sampler succeeds with probability at least 1− n−c and, conditioned on no
failure, outputs the item i ∈ suppa with probability (1± ε) 1

N ±n−c. The space com-
plexity is stated as poly(1/ε logn) bits. In fact, the dependence on ε appears to be
at most poly(log1/ε). Essentially the same result is shown in Theorem 1, where the
dependency on log1/ε and logn is made explicit.

A very recent approach that uses limited independence is described by Barkay
et al (2012). This also fits within the framework we provide. The authors use Θ(log1/δ )-
wise independence ofFk, and the recovery step is implemented with an exact s-sparse
recovery algorithm, with δr = δ and s = Ω(log1/δ ). Barkay et al (2012) use this
sampler to return a larger sample of size s with probability at least 1−δ . They show
that each subset of k items in supp a has equal probability to be in the sample. Barkay
et al (2012) also discuss reducing the space of the s-sparse recovery step, by tolerat-
ing approximate recovery which fails to recover a fraction of the items. This reduces
the number of rows in the sparse recovery structure to a constant.

Sampling multiple items. Equivalently, the approach by Barkay et al (2012) can be
seen as saying that a good sample of size O(s) can be drawn if we return the full set
of items recovered, instead of just one. This can be more space and time efficient than
repeating the sampling process independently to draw one item at a time. The anal-
ysis of Lemma 2 does not apply for larger samples of size s, however it is natural to
ask whether these samples can be drawn out from a uniform distribution. This is con-
firmed by the analysis provided by Barkay et al (2012), which shows that recovering
a k-wise independent set of s items, with k = Ω(log1/δ ) and s = Ω(1/ε2 log1/δ ),
suffices to achieve an additive ε-approximation to the inverse distribution with prob-
ability at least 1−δ .

2.5.3 Pairwise independence

Frahling et al (2005) describe an `0-sampler using pairwise independence of Fk. As
above, items are mapped to levels with geometrically decreasing probabilities 2− j.
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Then at each level, items are further hashed to 2/ε buckets, and a 1-sparse recovery
structure is maintained for only the first of these buckets. This secondary hashing is
equivalent to mapping to a higher level j+ log1/ε . Recovery is attempted at a high
level where the expected number of items is approximately ε . The process succeeds
if a unique item is recovered, with at least constant probability. A similar approach is
described by Cormode et al (2005), where items are mapped to levels with geometri-
cally decreasing probabilities, determined by a strong universal hash function.

The analyses of Lemmas 1 and 2 do not apply directly for fixed k = 2, so we
outline the differences. This `0-sampler achieves success probability proportional to
ε , and conditioned on this event, the probability of choosing any item is (1± ε)/N.

Consider the level j = dlog(N/ε)e. The probability that the sampler captures any
fixed item in the recovery structure at level j is 2−( j+1), and the probability that no
other item is also mapped there is at least ε/2, by the Markov inequality, as this is the
expected number of items at this level. The probability of success of the `0 sampler,
i.e. the probability that any item is returned by the sampler, is then at least ε/4, by
summing over the ε2 j ≥ N > ε2 j−1 different items with non-zero frequency. Note
that this success probability is quite low: to ensure δt probability of failure, we need
to take O(1/ε log1/δt) repetitions of this sampler.

To show the uniformity of the sampling process, we cannot rely on min-wise
hashing, since we use only pairwise independent hash functions. However, Frahling
et al (2005) show that the probability of sampling each item is approximately the
same, up to a (1+ε) factor. This is sufficient to argue that i is output with probability
(1±ε) 1

N ±δ . Combining this with the P1 procedure for 1-sparse recovery, the space
complexity of the resulting `0-sampler is O(1/ε log2 n log1/δ ) bits. For high accu-
racy (small ε), the space is dominated by the O(1/ε) repetitions required to obtain
any sample with constant probability.

3 Experimental Evaluation

In this section we present an experimental analysis of the `0-sampling process de-
scribed so far. The experimental objectives are several: (1) to analyze the output
distribution, (2) to study the probability of successful recovery of an `0-sampling
algorithm, (3) to quantify the running time and space requirements of the used data
structures, and (4) to tune the parameters in practical scenarios. First, we give some
details on our implementation, benchmarks, and methodology.

3.1 Framework implementation.

We implemented the `0-sampling process in a C framework that allows us to compare
different parameter settings and implementation choices. We adopt a standard random
number generator that can be seeded, invoked whenever random values are needed.

The implementation of `0-sampling algorithm with k-wise independence is parametrized
by the value of k (thus effectively capturing the algorithms described by Monem-
izadeh and Woodruff (2010) and Jowhari et al (2011)), while its variant with pairwise
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independence is parametrized by the number r of independent repetitions executed to
draw a sample (capturing the algorithms described by Frahling et al (2005) and Cor-
mode et al (2005)). We now give some details on our implementation of the three
steps of the `0-sampling process.

1. SAMPLING. We used k 128-bit integers to represent h ∈ Fk as a polynomial hash
function over a large prime field. With this representation, both the space required
and the computation time are linear in k.

2. RECOVERY. We implement the sparse recovery mechanism described in Sec-
tion 2.3. We found in our experiments that using 3 or 4 rows was sufficient to
guarantee recovery with high probability. With this representation, the space re-
quired is linear in k, and we can update the sketch in constant time with a constant
number of direct memory accesses.

3. SELECTION. For each setting of the `0-sampling process, we compare two dif-
ferent implementations of the recovery level selection step, as mentioned in Sec-
tion 2.2. Fixed-level recovery uses (exact) knowledge of N, where we probe the
level at which recovery is most likely to succeed4. Greedy-level recovery attempts
to recover a vector at each level in turn, until the procedure is successful (or all
levels fail to return a vector).

From the above discussion, it follows that the space required by the `0-sampling
algorithm with k-wise independence consists of the space used for a k-sparse recovery
data structure at each level, plus the k integers to describe the hash function. Similarly,
the space required by a single repetition of the `0-sampler with pairwise independence
is given by the space used for the 1-sparse recovery data structures, plus the constant
space required to represent the hash function.

3.2 Benchmarks.

Tests were performed on sets of (fixed) vectors with 32 bit item identifiers (that is,
n = 232). We restrict our focus to two instances, both containing N = 103 non-zero
items. In the first, the items were allocated uniformly across the whole domain (the
uniform input), while in the second they were distributed according to an exponential
distribution (the exponential input). Additional experiments in a prior presentation of
this work showed that similar results are achieved with denser vectors (Cormode and
Firmani 2013). The vectors are represented as streams containing N updates, one for
each non-zero entry: the format or ordering of the input does not affect the accuracy
of the recovery, due to the linear nature of the `0-sampling algorithms.

We study both the error on the output distribution and failure rate of the `0-
sampler, as the parameters k or the number of repetitions r (for the sampler using
pairwise independence) vary. Our tests consist of: (1) 10 different instances of the `0-
sampler with k-wise independence, corresponding to values of k in the range [3,12];
and (2) 10 different instances of the `0-sampler with pairwise independence, corre-
sponding to 10 different values of r in the range [5,50]. If we fix the space usage of

4 This level is dlog(2N/k)e for the `0-sampler with k-wise independence, and dlogN/εe for the variant
with pairwise independence
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the two approaches, then we find that there is roughly a factor of 5 between the two:
k = 3 corresponds to the space used by r = 15 (which is approximately 7.5KB), k = 4
corresponds to r = 20 (≈ 10KB), and so on.

We performed 106 independent executions of the `0-samplers, over different ran-
dom choices of the hash functions, to test each setting. This is enough to see the
overall trend in both error on the output distribution and failure rate. The error on
the output distribution depends on how many repetitions are made, and there will be
some variation in this distribution simply due to the bounded number of drawings.
In particular, to analyze the distribution of samples drawn from a vector containing
N non-zero items, we need the number of drawings to be at least of size N to expect
to see any item even once. To understand how well the different samplers are doing,
we compare to an “ideal” sampler, which samples items via a strong random num-
ber generator based on the true `0-distribution. We call this process “Balls-in-Bins”
(BiB).

Platform. Running times were measured on a 2.8 GHz Intel Core i7 with 3 GB of
main memory, running Debian 6.0.4, Linux Kernel 2.6.32, 32 bit.

3.3 Accuracy of `0-sampler

The results described in Section 2 show that the `0-sampler can achieve high success
probability and small error on the `0-distribution, without requiring full randomness
ofFk. In many of the motivating scenarios in Section 1, the goal is to obtain an output
distribution that is as close to uniform as possible.

After a large number of repetitions, we expect that the set of samples S contains
approximately the same number of occurrences of each item. Of course, there will be
some variation from the mean, but the number f (i) of occurrences of item i should be
close to the expected number f ∗(i) according to the uniform `0-distribution. We want
to measure the accuracy of `0-sampling, by looking at the proximity of the obtained
distribution to the uniform distribution. To this end, we use the metrics below:

– Standard deviation. We measure the standard deviation of the observed sam-
pling distribution, normalized by the target probability f ∗ = |S|

N .

– Maximum deviation. Analogously, we define the maximum deviation as maxi
| f (i)− f ∗|

f ∗ .

We plot the evolution of these statistics as functions of the space used or the
number of drawings. We also compare the accuracy of each setting of the `0-sampler
to the corresponding accuracy of the uniform balls-in-bins process.

Accuracy as the space increases. In Figures 3 and 4 we show how the accuracy
changes after one million drawings for different settings. In particular, we plot the
standard deviation in Figure 3 and the maximum deviation of the obtained distribution
in Figure 4.

Figure 3(a) shows the standard deviation of the sampler using k-wise indepen-
dence for different settings of k, while Figure 3(b) shows the results for the pairwise
independence sampler as the number of repetitions r is varied. The corresponding
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(a) Standard deviation for k-wise independence

(b) Standard deviation for pairwise independence

Fig. 3 Standard deviation of `0-sampler as space increases on uniform input.

results for maximum deviation are shown in Figures 4(a) and 4(b). We compare these
accuracy measures for performing fixed-level recovery (FLR) and greedy-level recov-
ery (GLR), and contrast to the corresponding measure for the BiB process. We use
gray shading on the plot to indicate the region occupied by the experimental results.

As predicted by the analysis, the results show that we get better accuracy as either
k or r increases. The theory predicts that choosing k proportional to (at least) log1/ε

is needed in order to achieve ε-relative error. However, the constants of proportion-
ality do not emerge clearly from the analysis. Moreover, we hope that in practice
a moderate (constant) k will suffice, since the cost of evaluating the hash functions
scales linearly with k, which determines the main overhead of the process. We observe
that, indeed, moderate values of k are sufficient on average to achieve comparable ac-
curacy to the fully random sampling process, BiB.

For the shown values of k and r, the resulting standard deviation indicates that the
occurrences in the set of samples S tend to be very close to those given by BiB. In
addition, over one million repetitions, each setting achieves approximately the same
maximum deviation as the ideal sampling process, BiB. That suggests that the sam-
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Fig. 4 Maximum deviation of `0-sampler as space increases, on uniform input.

pling process is almost indistinguishable from a uniform sampling. The experiment
on exponential input (not shown) has a similar outcome: increasing space yields bet-
ter accuracy.

Accuracy as the number of drawings increases. In Figures 5(a) and 5(b), we ana-
lyze the accuracy as the number of drawings increases for the `0-samplers with least
space usage.

Figure 5(a) shows the standard deviation for the different samplers on the uni-
form input, as the number of independent drawings increases. Figure 5(b) shows the
corresponding results for the exponential vector. In both cases, we show the results
for the different level selection steps, FLR and GLR, and contrast to the BiB process.
The results show that in fact greedy-level recovery provides greater accuracy than its
fixed-level recovery counterpart—comparable to that of the BiB process. This indi-
cates that greedy-level recovery is a good implementation choice, particularly since
it does not require estimation of the number of distinct elements. Over uniform input,
pairwise independence and 3-wise do not differ greatly (under GLR), but pairwise
independence appears to slightly outperform the 3-wise independent sampler.
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(a) Standard deviation for uniform input

(b) Standard deviation for exponential input

Fig. 5 Accuracy of `0-sampler, for uniform and exponential inputs

3.4 Failure rate of `0-sampler

The results in Section 2 show that the single parameter s (and hence k) for the `0-
sampler with k-wise independence, and r for its variant with pairwise independence,
can control both the error on the output distribution and the failure probability. Ac-
cording to the experiments shown in the previous section, high accuracy can be
achieved with moderate values of k and r. However, when the goal is to draw any
item from suppa, it is important that the number of failures of the `0-sampler is also
small.

We recall that if the sampling process maps either too few (0) or too many (more
than s) non-zero items to the level j chosen by the selection step, then the `0-sampler
will fail. The second source of failure is if the s-sparse recovery algorithm is unable
to recover the vector, which can be made smaller by adjusting the space allocated
to this algorithm. We observed that the failure rate is mainly due to the first source,
as noted previously (Cormode and Firmani 2013). Nevertheless, the sparse recovery
does have some impact on this rate.
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(a) Failure rate for k-wise independence

(b) Failure rate for pairwise independence

Fig. 6 Failure percentage of `0-sampler as space increases, for the uniform vector.

We computed the percentage of failed drawings as both the space used and the
number of drawings increase. Our general finding was that most failures are due to
too many or too few items mapped to level j, rather than failure of the recovery step.
We next show in more detail the percentage of failed drawings of each setting of the
`0-sampler as the space increases, for different versions of the level selection step.

Failure rate as the space increases. In Figure 6 we show how the percentage of
failed drawings changes, over one million repetitions, for different settings. In Fig-
ure 6(a) we show how the percentage of failed drawings of the `0-sampler with k-wise
independence changes for different values of k, for both versions of the recovery se-
lection step. We observe that the error decays quickly as k is increased, as theory
predicts, except for some random variations. When we recover at a fixed-level based
on N, it suffices to use small values of k, for instance k = 8, to ensure that the failure
percentage is smaller than 1%, independent of the number of drawings. We indicate
with a gray band the range of failures observed when we attempt fixed-level recov-
ery with an approximation of the level j = dlog(2N/k)e, up to a factor of two. This
shows that an accurate estimate of N is important: the failure rate increases quite
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notably when recovering at the “wrong” fixed-level. Meanwhile, under greedy-level
recovery, this method rarely fails to draw a sample.

In Figure 6(b) we show the percentage of failed drawings for the pairwise inde-
pendence case with increasing number of repetitions. Here, we also show the impact
of performing recovery at the “wrong” fixed level. We recover based on an estimate
N′ of N, such as N′ = N/2 and N′ = 2N, corresponding to levels j−1 and j+1. The
outcome of the experiment suggests that the percentage of failed drawings becomes
rapidly smaller than 5% as we increase the number of repetitions, displaying approxi-
mately the same behavior as for k = 4. An adequate success rate can be achieved even
if N is not known exactly, but is estimated up to a factor 2, although this is clearly
weaker than when N is known accurately.

Experiments on the exponential input showed the same trend, that is, increasing
space yields lower failure rate.

3.5 Efficiency of `0-sampling

In the following we consider the impact of the choice of hash function on the update
and recovery time. We discuss alternate choices of hash functions, and measure the
total time to update our data structure upon the read of a single item, given as the
average over the whole stream; we also measure the time to recover an item, given
as the average over one million drawings. Motivated by some applications, such as
graph sketching Ahn et al (2012), where the only goal is to draw some item from the
support set suppa. We also discuss which of the settings discussed so far works best
when accuracy does not matter, only recovery probability.

Alternate Hash Functions. Throughout, we have been using k-wise independent
hash functions within the `0-samplers, based on randomly chosen polynomials of
degree k. We discuss some other choices that are possible. Recently, the model of
tabulation hashing has been advocated (Patrascu and Thorup 2011). Here, the key to
be hashed is broken into a small number of characters, so that each character is hashed
independently via a table of randomly chosen values, and these values combined to
give the final hash value. Although this approach has only limited independence, it
can be shown to nevertheless provide approximate min-wise independence, as needed
by our samplers.

We performed some experiments using this hash function, based on splitting keys
into four characters. Experiments confirm that putting in tabulation hashing into our
samplers gives similar accuracy to k = 5. Tabulation hashing can be used for the hash
function in the pairwise algorithm, or the one expecting a k-wise independent hash
function, without yielding a significant change in accuracy.

We show the running time cost of using this hashing scheme in the subsequent
plots. We denote with “A TH” the variant of the `0-sampler algorithm A using this
hashing scheme.

Running time as the space increases. As shown in Figure 7(a), in general, the time
to perform each update is very small. Here, we match up k and r values for corre-
sponding amounts of space used: k = 3 corresponds to r = 15, and so on. The main
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(a) Update time

(b) Recovery time

Fig. 7 Running time of `0-sampler as space increases.

effort using k-wise independence is in the evaluation of the selected hash function
h ∈ Fk. The update time grows linearly as k increases, proving the importance of an
implementation based on the limited independence of Fk. Figure 7(a), together with
the analysis of accuracy and failure, suggests that there is a trade-off between the reli-
ability of the `0-sampler and its efficiency. The update time of the tabulation hashing
(TH) variant is constant as a function of k, and is faster beyond k = 6. In the pairwise
case, using a simple pairwise hash function is faster than tabulation hashing.

Figure 7(b) shows the corresponding time to perform recovery. In the pairwise
independence case it is very fast to recover, since only a single P1 structure has to be
probed in each repetition. The greedy-level recovery is naturally slower than fixed-
level recovery, since more levels have to be inspected until a vector is recovered. Note
that the recovery time does not depend on the hash function used.

Arbitrary sampling. If only the failure rate of the `0-sampler is important, we want
to minimize the space required by the `0-sampler while drawing some sampled item
from the input.
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As shown in Section 3.4, for a given failure rate, the `0-sampler with pairwise
independence requires less space than its variant with k-wise independence, and en-
sures quicker recovery, especially when greedy-level recovery is used.

However, when update time is important, using the variant with k-wise indepen-
dence may yield faster computation. If the desired failure rate is small, for exam-
ple smaller than 1%, the `0-sampler with pair-wise independence may become too
slow with respect to the k-wise variant that achieves similar failure rate over our data
(k = 8). Hence in this regime, the usage of the `0-sampler with k-wise independence
can result in better performance.

4 Concluding Remarks

The problem of drawing a sample from the `0-distribution has multiple applica-
tions over stream processing, computational geometry and graph processing. We have
shown how existing algorithms fit into the framework of sampling, recovery and se-
lection. Our experimental study shows that this framework can be instantiated effec-
tively. Based on low-independence hash functions, we are able to draw samples close
to uniform, and process millions of items per second. The space overhead is moder-
ate, indicating that the algorithms are practical when a small number of samples are
needed from a large amount of data. However, it is natural to ask whether the sam-
plers can be made more space efficient, either by further engineering the subroutines
and parameters, or by a fundamentally new approach to `0-sampling.
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Jowhari H, Sağlam M, Tardos G (2011) Tight bounds for lp samplers, finding duplicates in streams, and

related problems. In: ACM Principles of Database Systems, pp 49–58
Kane DM, Nelson J, Woodruff DP (2010) An optimal algorithm for the distinct elements problem. In:

ACM Principles of Database Systems, pp 41–52
Manerikar N, Palpanas T (2009) Frequent items in streaming data: An experimental evaluation of the

state-of-the-art. Data Knowl Eng 68(4):415–430
Metwally A, Agrawal D, El Abbadi A (2008) Why go logarithmic if we can go linear?: Towards effective

distinct counting of search traffic. In: EDBT, pp 618–629
Monemizadeh M, Woodruff DP (2010) 1-pass relative-error lp-sampling with applications. In: ACM-

SIAM Symposium on Discrete Algorithms, pp 1143–1160
Nisan N (1990) Pseudorandom generators for space-bounded computations. In: ACM Symposium on The-

ory of computing, pp 204–212
Patrascu M, Thorup M (2011) The power of simple tabulation hashing. In: ACM Symposium on Theory

of Computing, pp 1–10
Pike R, Dorward S, Griesemer R, Quinlan S (2005) Interpreting the data: Parallel analysis with sawzall.

Dynamic Grids and Worldwide Computing 13(4):277–298
Price E (2011) Efficient sketches for the set query problem. In: ACM-SIAM Symposium on Discrete

Algorithms, pp 41–56
Schmidt JP, Siegel A, Srinivasan A (1993) Chernoff-Hoeffding bounds for applications with limited inde-

pendence. In: ACM-SIAM Symposium on Discrete Algorithms, pp 331–340


