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Abstract
The problem of building an `0-sampler is to sample near-
uniformly from the support set of a dynamic multiset. This
problem has a variety of applications within data analysis,
computational geometry and graph algorithms. In this paper,
we abstract a set of steps for building an `0-sampler, based
on sampling, recovery and selection. We analyze the imple-
mentation of an `0-sampler within this framework, and show
how prior constructions of `0-samplers can all be expressed
in terms of these steps. Our experimental contribution is to
provide a first detailed study of the accuracy and computa-
tional cost of `0-samplers.

1 Introduction
In recent years, there has been an explosion of interest
in sketch algorithms: compact data structures that com-
press large amounts of data to constant size while captur-
ing key properties of the data. For example, sketches real-
izing the Johnson-Lindenstrauss lemma [15] allow the Eu-
clidean distance between high dimensional vectors to be ap-
proximated accurately via much lower-dimensional projec-
tions [13, 1, 8]. Many constructions in the new area of com-
pressed sensing can also be expressed as sketches [12]. Since
most sketches can be updated incrementally and merged to-
gether, they can be used in streaming and distributed settings.
Due to this flexibility, sketches have found use in a wide
range of applications, such as network monitoring [4], log
analysis [21] and approximate query processing [6].

From these practical motivations, and since there are
often several competing sketch constructions for the same
problem, it is important to unify and compare the efficacy
of different solutions. Prior work has evaluated the per-
formance of sketches for recovering frequent items [18, 7],
and for tracking the cardinality of sets of items [19, 3]. In
this work, we focus on sketches for a fundamental sampling
problem, known as `0-sampling. Over a large data set that as-
signs weights to items, the goal of an `0-sampler is to draw
(approximately) uniformly from the set of items with non-
zero weight. This is challenging, since while an item may
appear many times within the raw data, it may have an ag-
gregate weight of zero; meanwhile, another item may appear
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only once with a non-zero weight. The sketch must be de-
signed so that only the aggregate weight influences the sam-
pling process, not the number of occurrences of the item.

This sampling distribution turns out to have a number
of applications. Drawing such a sample allows one to
characterize many properties of the underlying data, such
as the distribution of occurrence frequencies, and other
natural functions of these frequencies. Such queries over
the “inverse distribution” (which gives the fraction of items
whose count is i) are important within a variety of network
and database applications [5]. `0-sampling is also used over
geometric data, to generate ε-nets and ε-approximations to
approximate the occupancy of ranges; and to approximate
the weight of (geometric) minimum spanning trees [10].
Most recently, it has been shown that `0-sampling allows the
construction of graph sketches, which in turn provide the first
sketch algorithms for computing connected components, k-
connectivity, bipartiteness and minimum spanning trees over
graphs [2].

In response to these motivations, several different con-
structions of `0-samplers have been proposed. Early con-
structions made use of universal hash functions [5, 10].
Stronger results were shown using higher-independence
hash functions [20], and most recently assuming fully-
independent hash functions [16]. Comparing these ap-
proaches, we observe that there is a common outline to them
all. A hashing procedure assigns items to levels with a geo-
metric distribution, so that each item is consistently assigned
to the same level(s) whenever it appears in the data. Then
at each level, a “sparse recovery” data structure summarizes
the items and weights. If the number of items with non-zero
weight at a level is small enough, then the full set can be
recovered. A sample is drawn by choosing an appropriate
level, attempting to recover the set of items at that level, and
selecting one as the sampled item.

Although similar in outline, the constructions differ in
the details of the process and in their description. In this
work, we provide a single unified framework for `0-sampling
and its analysis, and demonstrate how the prior constructions
fit into this framework based on a small number of choices:
primarily, the strength of hash functions used, and the nature
of the recovery data structures adopted. This characteriza-
tion allows us to better understand the choices in the prior
constructions. It also allows us to present a detailed empiri-
cal comparison of different parameter settings, and their in-



fluence on the performance of the sampling procedure, in
terms of speed and uniformity. Despite their many appli-
cations, there has been no prior experimental comparison
of `0-sampling algorithms and their costs. Our experiments
show that these algorithms can be implemented effectively,
and sample accurately from the desired distribution with low
costs.
Outline. First, we present the formal definition of `0-
sampling in Section 1.1. In Section 2 we give a `0-
sampler algorithm, and analyze the performances that can
be achieved assuming a perfect s-sparse recovery algorithm.
We then describe how to construct a randomized exact s-
sparse recovery algorithm, and hence realize an `0-sampler.
We finally discuss how this framework incorporates the re-
sults in [10, 16, 20]. We present our experimental compari-
son of methods in Section 3.

1.1 The `0-sampling problem We give a formal defini-
tion of `p-samplers over data defining a vector.

DEFINITION 1. (`p-DISTRIBUTION) Let a ∈ Rn be a non-
zero vector. For p > 0 we call the `p-distribution corre-
sponding to vector a the distribution on [n] that takes i with
probability |ai|

p

‖a‖pp
where ‖a‖p = (

∑n
i=1 |ai|

p
)
1/p is the `p-

norm of a. For p = 0, the `0-distribution corresponding to a
is the uniform distribution over the non-zero coordinates of
a, which are denoted as supp a.

A sketch algorithm is an `0-sampler if it can take as
input a stream of updates to the coordinates of a non-
zero vector a, and output a non-zero coordinate (i, ai) of
a1. The algorithm may fail with small probability δ and,
conditioned on no failure, outputs the item i ∈ supp a (and
corresponding weight ai) with probability

(1.1) (1± ε) 1

‖a‖0
± δ

for a parameter ε. The quantity ‖a‖0 := | supp a| is often
called the `0-norm (although it is not strictly a norm) and
represents the number of non-zero coordinates of a.

2 The `0-sampling process
We observe that existing `0-sampling algorithms can be de-
scribed in terms of a three-step process, namely SAMPLING,
RECOVERY and SELECTION. This is illustrated schemati-
cally in Figure 1.

1. SAMPLING. Given vector a, the sampling process
defines m vectors a(1), . . . , a(m) ∈ Rn from a. For

1More generally, we also seek solutions so that, given sketches of vectors
a and b, we can form a sketch of (a+b) and sample from the `0-distribution
on (a+ b). All the algorithms that we discuss have this property.

each j ∈ [m], the vector a(j) contains a subset Sj of
the coordinates of the input vector awhile the others are
set to zero—that is, supp a(j) ⊆ supp a. These vectors
are not materialized, but are summarized implicitly by
the next step.

2. RECOVERY. The recovery piece creates m data struc-
tures based on a parameter s. For each j ∈ [m], if a(j)
is s-sparse then this structure allows us to recover a(j)
with probability 1 − δr. We call this “exact s-sparse
recovery”.

3. SELECTION. When the `0-sampler is used to draw a
sample, a level j ∈ [m] is chosen so that the vector
a(j) should be s-sparse (but non-empty). If a non-zero
vector a′(j) at this level is successfully recovered, then
an entry of this vector (i, a′(j)i) is selected and returned
as the sampled item.

As mentioned above, existing `0-samplers [10, 16, 20]
fit this pattern, but vary in details. Specifically, they differ in
how the subsets Sj are chosen in the SAMPLING step, and in
the specification of the s-sparse recovery data structure.

2.1 `0-sampling with k-wise independent hashing In
this section, we describe and analyze an instantiation of the
above framework which synthesizes the prior results in this
area. We then show how this captures existing algorithms for
this problem as special cases.

Let Fk be a k-wise independent family of hash func-
tions, with k = O(s), and let h : [n] → [n3] be randomly
selected from Fk. The `0-sampling algorithm is defined by:

1. SAMPLING. If n32−j ≥ h(i), then set a(j)i = ai,
else set a(j)i = 0. We get a(j)i = ai with uniform
probability pj = 2−j , and m = O(log n).

2. RECOVERY. We describe and analyze how to perform
the s-sparse recovery in Section 2.3.

3. SELECTION. The selection process identifies a level j
that has a non-zero vector a(j) and attempts to recover
a vector from this level, as a′(j). If successful, the non-
zero coordinate (i, a′(j)i) obtaining the smallest value
of h(i) is returned as the sampled item.

We use the notation Nj = ‖a(j)‖0 and N = ‖a‖0.
The random variable Nj can be thought of as the sum of N
Bernoulli random variables xi ∈ {0, 1}, where xi represents
the event a(j)i = ai, ai ∈ supp a. The expectation of Nj is
E[Nj ].

2.2 Analysis of the `0-sampler We show that this `0-
sampler achieves high success probability and small error on
the `0-distribution, without requiring full randomness of Fk.
For the purpose of this analysis, let Ps be a perfect s-sparse
recovery algorithm: that is, an algorithm which can recover
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Figure 1: Overall `0-sampling process, m = O(log n).

any vector xwith ‖x‖0 ≤ s, and otherwise outputs FAIL. Let
S denote the above selection step algorithm using Ps.

LEMMA 2.1. (PROBABILITY OF SUCCESSFUL RECOVERY)
Given a k-wise independent family Fk, with k ≥ s/2 and
s = O(log 1/δt), the `0-sampler successfully recovers an
item with probability at least 1− δt.

Proof. Let a(j) be the vector extracted by the sampling step
and submitted to the recovery step. If 1 ≤ ‖a(j)‖0 ≤ s:
(i) Ps recovers the vector a′(j) = a(j) with probability
1, because a(j) is s-sparse and so Ps will succeed; (ii) S
outputs a non-zero coordinate (i, ai), because a′(j) is non-
zero and S can choose a′(j).

The probability of the event 1 ≤ ‖a(j)‖0 ≤ s can
therefore lower-bound the probability of success of the `0-
sampler, Pr[outputS ∈ supp a]. Consider in particular the
level j such that

s

4
≤ E[Nj ] ≤

s

2

For this vector a(j), we can compute the probability of
the event 1 ≤ ‖a(j)‖0 ≤ s, from the probability that Nj is
close to its expectation E[Nj ] = Npj :

Pr[|Nj −E[Nj ]| < E[Nj ]]

≤ Pr[1 ≤ Nj ≤ 2E[Nj ]]

≤ Pr[1 ≤ Nj ≤ s]

We invoke [23, Theorem 2.5], which gives a Chernoff
bound-like result under limited independence. If X is the
sum of k-wise independent random variables, each of which
is confined to the interval [0, 1], then for r ≥ 1 and k =
drE[X]e:

Pr[|X −E[X]| ≥ rE[X]] ≤ exp(−E[X]r/3)

Thus, since we have E[Nj ] ≥ s
4 , we obtain

Pr[|Nj −E[Nj ]| ≥ E[Nj ]] ≤ exp(−s/12) ≤ δt
if s ≥ 12 ln 1

δt

Setting s = 12 log 1/δt we ensure that we can recover at
this level j with high probability (and possibly also recover
at higher levels j also). Hence, we obtain the claimed result
on the success probability of the `0-sampler:

Pr[outputS ∈ supp a] ≥ Pr[1 ≤ Nj ≤ s] ≥ 1− δt

�

LEMMA 2.2. (OUTPUT DISTRIBUTION OF `0-SAMPLER)
Let 1 − δ be the the success probability of the `0-sampler
(from Lemma 2.1). Then the sampler outputs the item
i ∈ supp a with probability (1± exp(−s)) 1

N ± δ

Proof. We make use of the fact if h is chosen to be
O(log 1/ε)-wise independent and has large enough range,
then the i which obtains the smallest value of h(i) is cho-
sen with probability (1 ± ε)/N . This follows since h is ap-
proximately min-wise independent [14]. Since h is O(s)-
wise independent, each i should be chosen with probability
(1± exp(−s))/N .

However, we have to account for the fact that some
instances fail, due to having too many items chosen to level
j. By the above argument, this happens with probability at
most 1 − δ. Consequently, the probability of picking i is
affected by at most an additive δ amount. Thus, we obtain
that i is output with probability (1± exp(−s)) 1

N ± δ. �

Note that in our setting, the single parameter s controls
both the relative error term and the additive error term, so
to obtain a guarantee of the form (1 ± ε) 1

N ± δ, we set
s = O(max(log 1/ε, log 1/δ)).
Recovery level selection. The above analysis indicates that
there is likely to be a level j at which recovery can succeed,



and that sampling from this level approximates the desired
distribution. In an implementation, there are two approaches
to choosing the level for recovery. The first is to run an
approximate `0 estimation algorithm in parallel with the `0-
sampler, and use the estimate of N to choose the level [17].
This is well-principled, but adds an overhead to the process.
The alternative is to aggressively attempt to recover vectors,
and sample from the first level that succeeds. We compare
these alternatives empirically in Section 3

2.3 Sparse Recovery In this section, we discuss how to
implement an efficient s-sparse recovery algorithm. Many
approaches have been made to this question, due to its
connection to problems in coding theory and compressed
sensing. In [11], Ganguly provides a solution to the exact
s-sparse recovery problem for non-negative vectors a ∈
(Z+)n. The space required is close to linear in s. In [20]
a sketch-based solution is described which provides small
failure probability for a ∈ Rn, but requires substantial space
(polynomial in s). Here, we give an exact s-sparse recovery
algorithm for a ∈ Zn, built using multiple instances of a
1-sparse recovery structure.

2.3.1 Perfect 1-sparse recovery A natural approach to
building a 1-sparse recovery algorithm is to keep track of
the sum of weights φ, and a weighted sum of item identifiers
ι, as:

ι =
∑
i∈supp a ai · i and φ =

∑
i∈supp a ai

Given an update (i,∆ai) to the coordinates of the input
vector a, the counters are updated accordingly: ι = ι+∆ai ·i
and φ = φ+∆ai. It is easy to verify that, if the input vector a
is indeed 1-sparse, i = ι/φ and ai = φ. However, additional
tests are required to determine if a is truly 1-sparse. A simple
test proposed by Ganguly [11] is to additionally compute
τ =

∑
i∈supp a ai · i2, and check that ι2 = φτ . The test will

always pass when a is 1-sparse, and it is straightforward to
show that it will not pass when a is not 1-sparse, provided all
entries of a are non-negative. However, when a may contain
negative entries, the test may give a false positive.

We now propose a variant test which works over arbi-
trary integer vectors. Let p be a suitably large prime, and
choose a random z ∈ Zp. We compute the fingerprint
τ =

∑
i∈supp a ai · zi mod p, and test if τ = φ · zι/φ

mod p.

LEMMA 2.3. If a is 1-sparse, then the fingerprint test al-
ways gives a positive answer. If a is s-sparse, s > 1, then
the fingerprint test gives a negative answer with probability
at least 1− n/p.

Proof. If a is 1-sparse, the input vector contains a single non-
zero coordinate (i, ai). Therefore ι = ai · i and φ = ai. We

get φ · zι/φ = ai · z
ai·i
ai = ai · zi, therefore τ = φ · zι/φ

mod p, as required.
For the other case, it is easy to verify that the fingerprint

test gives a positive result in two cases: (i) a is 1-sparse; (ii)
z is a root in Zp of the polynomial p(z) =

∑
i∈supp a ai ·zi−

φ · zι/φ.
The “failure” probability of the test is given by the

probability of (ii). Since p(z) has degree n, p(z) has at most
n roots in Zp. As z is chosen independently of of i, ι, φ, the
probability that z is one of these roots is at most n/p, and the
claimed result follows. �

The space required by this 1-sparse recovery algorithm
is O(log n + log u + log p) bits, where [−u,+u] is the
range of the frequencies of a. In the following we assume
O(log n+ log u+ log p) = O(log n).

2.3.2 Exact s-sparse recovery algorithm We now de-
scribe how to build an s-sparse recovery algorithm using 1-
sparse recovery as a primitive. Let G2 be a family of pair-
wise independent hash functions, and let fr : [n] → [2s],
r ∈ [log s/δr], be randomly selected from G2. We denote
by P1 the 1-sparse recovery algorithm shown above in Sec-
tion 2.3.1, while Rs is our exact s-sparse recovery algo-
rithm. Similar to [11], we use a two-dimensional array, with
log s/δr rows and 2s columns, where each cell contains an
instance of P1, as illustrated in Figure 2.

Given an update (i,∆ai) to the coordinates of input
vector a, (i,∆ai) is submitted to log s/δr independent in-
stances ofP1, each of them having position 〈row, column〉 =
〈r, fr(i)〉. To perform the recovery, the algorithm interro-
gates each of the instances of P1, and extracts the unique
item stored there, if there is one. The total collection of re-
covered items and weights are returned as the recovered vec-
tor a′.

LEMMA 2.4. The exact s-sparse recovery algorithm recov-
ers an s-sparse vector a, with probability at least 1 − δr.

Proof. We start with the analysis of the probability Pr[reci]
that Rs recovers a particular coordinate (i, ai) of a, then
we extend the result to the (s-sparse) vector a. To this end,
let Cr,i be the sum of (at most) s − 1 random variables
cl ∈ {0, 1}, each of them representing the event fr(i) =
fr(l). We have Pr[cl = 1] = 1/(2s). Writing Ci =∑
l 6=i,l∈supp a cl, we have that Pr[Cr,i ≥ 1] ≤ E[Cr,i] <

1
2 .

The probability that we do not recover i in any row is
therefore 1

2

log s/δr = δr/s. Summed over the s non-zero
coordinates, we recover them all with probability at least
1− δr. �

We comment that there is the possibility of a false
positive if one of the P1 structures erroneously reports a
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Figure 2: Exact s-sparse recovery with perfect 1-sparse recovery.

singleton item. This probability is polynomially small in
n based on the choice of the prime p = poly(n), so we
discount it. We also remark that in the case that a has more
than s entries, the procedure may recover a subset of these.
We can either accept this outcome, or detect it by keeping an
additional fingerprint of a in its entirety, and comparing this
to the fingerprint of the recovered vector. The size of this
data structure Rs is O(s log(s/δr)) instances of P1, i.e. a
total of O(s log n log(s/δr)) bits2.

2.4 Main Result and Comparison with previous results
Replacing the perfect s-sparse recovery procedure assumed
in Section 2.2 with the above procedure affects the output
distribution by at most an additive δr. Hence, combining
Lemmas 2.1, 2.2, and 2.4, we obtain:

THEOREM 2.1. Given a k-wise independent familyFk, with
k ≥ s/2 and s = O(log 1/ε + log 1/δ), the `0-sampler
succeeds with probability at least 1 − δ and, conditioned
on successful recovery, outputs the item i ∈ supp a with
probability (1± ε) 1

N ± δ.

The space complexity of the `0-sampler is
O(s log2 n log s/δ) bits, if we set δr = δt = δ/2: the
space is dominated by the O(log n) instances of the s-sparse
recovery algorithms. If we set ε = δ = poly(1/n), then the
additive error term can absorb the relative error term, and
we obtain:

COROLLARY 2.1. There is an `0-sampler using space
O(log4 n) bits that succeeds with probability at least 1−n−c
and, conditioned on successful recovery, outputs item i with
probability 1

N ± n−c for constant c.

We now compare this construction to those described in
prior work.

Full independence. The analysis of the `0-sampler in [16]
assumes full independence of Fk, and the recovery step
is implemented with a perfect s-sparse recovery algorithm.
Jowhari, Saglam and Tardos prove that the `0-sampler in [16]

2We note that tighter bounds are possible via a similar construction and a
more involved analysis: adapting the approach of Eppstein and Goodrich [9]
improves the log term from log(s/δr) to log 1/δr , and the analysis of
Price [22] further improves it to logs 1/δr .

succeeds with probability at least 1 − δ and, conditioned
on no failure, outputs the item i ∈ supp a with almost
uniform probability. The total space cost is O(log n) levels,
each of which uses an s-sparse recovery algorithm for s =
O(log 1/δ). Assuming full independence means that ε can
be assumed to be 0, and so the error arises from the failure
probability.

ε-min-wise independence. The analysis of the `0-sampler
in [20] assumes c log n/ε-wise independence ofFk, with c >
1, to get ε-min-wise independence over N elements [14].
The recovery step is implemented with an exact s-sparse
recovery algorithm, with δr = n−c.

Monemizadeh and Woodruff prove that the `0-sampler
in [20] succeeds with probability at least 1 − n−c and,
conditioned on no failure, outputs the item i ∈ supp a with
probability (1± ε) 1

N ± n−c. The space complexity is stated
as poly(1/ε log n) bits (in fact, the dependence on ε appears
to be at most poly(log 1/ε)). Essentially the same result is
shown in Theorem 2.1, where the dependency on log 1/ε and
log n is made explicit.

Pair-wise Independence. In [10], Frahling, Indyk and
Sohler describe an `0-sampler using pairwise independence
of F . As above, items are mapped to levels with geometri-
cally decreasing probabilities 2j . Then at each level, items
are further hashed to 1/ε buckets, and information about one
of these buckets is retained. However, this secondary hash-
ing can be thought of as equivalent to mapping to a higher
level j + log 1/ε, and attempting recovery at that level (a
similar approach is described in [5]). The process succeeds
if a unique item is recovered. The analysis of Lemma 2.1
does not apply directly for k = 2, but a modified analysis
suffices to show that the probability of recovering a unique
item at level 1

ε logN is ε, and conditioned on this event, the
probability of choosing any item is (1±ε)/N . It appears that
for high accuracy (small ε), the O(1/ε) repetitions required
to obtain any sample with constant probability may drive the
space cost of this approach higher than other approaches. We
refer to this variant approach as “FIS”, after the initials of the
authors.

3 Experimental Evaluation
In this section we present an experimental analysis of the `0-
sampling process described so far. The experimental objec-



tives are threefold: (1) to study the accuracy of `0-sampling
with k-wise independent hashing (2) to quantify the running
time and space requirements of the data structures, and (3)
to tune the parameter k in practical scenarios. First, we
give some details on our implementation, benchmarks, and
methodology.
Framework implementation. We implemented the `0-
sampler in a C framework that allows us to compare different
parameter settings and implementation choices. We set s =
2k, because our tests showed that setting smore than 2k does
not help in practice.

We conducted two sets of experiments based on our
assumptions about the s-sparse recovery data structure, used
to recover items at a particular level j:

• For the purpose of testing different settings of k and
the error due to the sampling step, we kept exact
information on all items mapped to each level. This lets
us simulate an “ideal” s-sparse recovery process which
guarantees δr = 0. However, we still consider a level
to have “failed” if more than s items are mapped to this
level by the sampling process. Here, we compare the
two versions of the recovery level selection step: one
assuming (exact) knowledge of N so we probe level
dlogN/ke; and the other which tries each level in turn
until an item can be sampled.

• Our final experiments implement the efficient s-sparse
recovery mechanism described in Section 2.3. With
this representation, the space required is linear in k,
and we can update the sketch in constant time with a
constant number of direct memory access. Although
the analysis indicates that log s/δr rows are sufficient
to guarantee recovery with high probability, we found
in our experiments that using 4 or 5 rows worked well
enough in practice.

We measure the memory cost assuming that no space
is used for “empty” levels (which have no items mapped to
them), and so only account for the occupied levels. We return
to this issue in Section 3.
Benchmarks. Tests were performed on sets of (fixed)
vectors with 32 bit item identifiers (that is, n = 232)
containing respectively 103, 104 and 105 non-zero items.
The vectors are drawn randomly, and represented as streams
containingN updates, one for each non-zero entry. We adopt
a standard random number generator that can be seeded,
invoked whenever random values are needed.

We measure the accuracy of the samplers based on
how close the sample distribution is to uniform, based on
multiple repetitions of the sampling process (over different
random choices of the hash functions). Note that there
will be some variation in this distribution simply due to the
bounded number of repetitions: for example, to analyze the

distribution of samples drawn from a vector containing N
non-zero items, we need the number of samples to be at least
of size N to have expectation of seeing any item once. In
our experiments, we used 5 · 105 independent repetitions of
the `0 samplers to test each setting. This is enough to see
the overall trend in accuracy. To understand how well the
different samplers are doing, we also compare to an “ideal”
sampler, which samples items via a strong random number
generator based on the true `0-distribution. We call this
process “Balls-in-Bins” (BiB).
Platform. Running times were measured on a 2.8 GHz Intel
Core i7 with 3 GB of main memory, running Debian 6.0.4,
Linux Kernel 2.6.32, 32 bit.

3.1 Accuracy of `0-sampler The results described in Sec-
tion 2.2 show that the `0-sampler can achieve high success
probability and small error on the `0-distribution, without
requiring full randomness of Fk. In many of the motivat-
ing scenarios in Section 1, the goal is to obtain an output
distribution that is as close to uniform as possible3.

After enough repetitions, we expect that the set of sam-
ples S contains approximately the same number of occur-
rences of each item and that, if an item i has been drawn
more (or less) often, still the number f(i) of its occur-
rences is close to the expected number according to the `0-
distribution. We measure the maximum relative error of the
obtained distribution as follows. Letting f∗ = |S|

N , we define
maxi

|f(i)−f∗|
f∗ to be the accuracy of the `0-sampler. We plot

the evolution of this statistic as N increases, as this should
converge to the desired distribution.

The theory predicts that choosing k proportional to
(at least) log 1/ε is needed in order to achieve ε-relative
error. However, the constants of proportionality do not
emerge clearly from the analysis. Moreover, we hope that
in practice a moderate (constant) k will suffice, since the
cost of evaluating the hash functions scales linearly with
k, which determines the main overhead of the process.
Hence we study the accuracy of the `0-sampler as k varies
(thus effectively capturing the algorithms described by [20]
and [16]). To this end, for each test vector, we compare
the accuracy of the `0-sampler, as the number of samples
increases against the corresponding accuracy of the uniform
balls-in-bins process. We also compare to the variant `0-
sampler proposed by Frahling, Indyk and Sohler [10] (“FIS”)
as discussed in Section 2.4 where we use 10 repetitions.
This is implemented using the same codebase as the other
samplers, but called with different parameter settings.

Sparse vectors. In Figure 3 we report the outcome of the
experiment on 103 non-zero items, for different settings.

3However, in some applications, such as graph sketching [2] it is only
important to draw some item from the support set supp a: the exact
distribution does not matter.
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Figure 3: Accuracy of `0-sampler with N = 103.

In Figure 3(a) we show how the accuracy for changes
for different values of k of the k-wise independent hash
functions for both versions of the level selection step (where
N is known exactly, and where we try recovery at all levels
until successful). Figure 3(b) shows the accuracy for the FIS
variant with increasing number of repetitions. Figure 3(c)
shows how the accuracy changes as the number of drawings
increases. In particular, in Figure 3(a) we

According to this experiment, we get better accuracy
as k increases, and the FIS variant achieves good accuracy
with a small number of repetitions. Finally, as shown in
the zoomed pane of in Figure 3(c), the experiment suggests
that rather small values of k, for instance 7, are sufficient on
average to achieve comparable accuracy to the fully random
sampling process (“BiB”, or balls in bins process).
Dense vectors. In Figure 4 we report the outcome of the
same experiment of Figure 3(c), executed on denser vectors,
containing respectively 104 and 105 non-zero items. Again,
as predicted by the analysis, the accuracy increases as we
increase the value of k. On the other hand, setting k = 7
is enough to observe that the error is close to 0.5 when

sampling from a set of 104 non-zero items, and slightly
bigger than 3 on the denser vector. On this data, the FIS
variant also performs well, although it is the slowest of the
methods compared on the plot, due to the number of parallel
repetitions.

For the larger vectors (N = 105), the overall accuracy
performance seems poorer: the relative error is around
3. However, this is mostly a function of the number of
repetitions being insufficient to induce the true sampling
distribution. We see that the accuracy obtained by the
ideal “BiB” process is quite similar to the best of the `0-
samplers, so we conclude that this variation is dominated by
the random variation in the number of selected items.

3.2 Success probability of `0-sampler The main result in
Section 2.4 shows that the single parameter s can control
both the error on the output distribution and the failure prob-
ability. According to the experiments discussed in the previ-
ous section, high accuracy can be achieved with rather small
values of the independence parameter k. However, when the
goal is to draw any item from supp a, it is important that the
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Figure 4: Accuracy as the number of drawings increases, with N up to 105.
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Figure 5: Failures as k increases, after 104 drawings.

number of failures of the `0-sampler is small. We recall that
if the sampling process maps either 0 or more than s non-
zero items to the level j chosen by the selection step, then
the `0-sampler fails with probability 1. The second source
of error is if the s-sparse recovery algorithm is unable to re-
cover the vector, which can be made smaller by adjusting
the space allocated to this algorithm. To this end, for each
test vector, we compare the percentage of failed drawings in
the “ideal” s-sparse recovery experimental setup, to what can
be done using the s-sparse recovery mechanism described in
Section 2.3.

Failure due to sampling step. In Figure 5 we show how
the percentage of failures after 104 drawings, changes for
different values of k. We also plot guidelines proportional
to exponentially decaying probabilities, to compare to the
analytical bound on the error (which is exponential, but with
weaker constants). We observe that the error does decay
quickly as k is increased. Moreover, we observed that it
suffices to use small values of k, for instance k = 7, to ensure
that the failure rate holds steady, independent of the number
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Figure 6: Failures of FIS, after 104 drawings.

of repetitions made.
Figure 6 shows how accuracy changes for the FIS vari-

ant as the number of repetitions increases. On the vector
containing 103 non-zero items, the error of the FIS variant
becomes rapidly smaller than 5%, as we increase accord-
ingly the number of repetitions. On the dense vectors, the
FIS variant with 10 repetitions rarely fails to draw a sample,
displaying approximately the same behavior as for k = 4,
i.e. failure rate of below 5% for N = 104, and around 10%
for N = 105.

Failure due to recovery step. Figure 5 also shows with
a dashed line how the outcome of the experiment changes
when our s-sparse recovery mechanism is used. We observe
that the percentage of failures increases a little due to this,
and that the gap decreases as we increase s. The theory
predicts that with a sketch of size 2s × log s/δr, the failure
probability of the s-sparse recovery algorithm is smaller than
δr. From our experiments, we found that in fact using a
constant number of rows (∼ 5) sufficed to have a good
probability of recovery. Since the cost of updating the
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sketch scales linearly with the number of rows, using a
small constant allows the execution of an update operation
in constant time.

3.3 Efficiency of `0-sampler In the following we analyze
the space requirements and running time of the `0-sampler.

Space usage. We evaluate the space required by the `0-
sampler as a function of k, for each test vector. Figure 7
plots the space used in KiB (1KiB= 210 bytes), to run a
single instance of the `0-sampler. We used k 32-bit integers
to represent h ∈ Fk, 10 32-bit integers for f1,...,5 ∈ G2
and 2 32-bit integers plus 2 64-bit integers to implement
each instance of P1. The size of a single level scales
linearly with s independently from the input stream, while
in the FIS variant each of the 10 repetitions is implemented
with 2 32-bit integers to represent h ∈ F2 and a single
instance of P1 per level. The space required for any of
the samplers depends on the number of “non-empty” levels,
which varies proportional to logN , the ultimate number of
distinct elements. If we know in advance good bounds on
the final `0 norm, this suggests we can maintain a smaller
number of levels.

Running time. Finally, we analyzed the impact of k on the
performance of both sampling and recovery steps. We mea-
sure the total time to process the whole input stream, given
as the average over 104 repetitions. As might be expected,
the time is dominated by the sampling step: Figure 8 shows
that the time required by the `0-sampler is barely affected by
the s-sparse recovery algorithm. The time required by the
FIS variant is constant, and is determined by the number of
repetitions used to draw each sample. With 10 repetitions,
the time cost is approximately equivalent to that for k = 11
in Figure 8.

The main effort using k-wise independence is in the
evaluation of the selected hash function h ∈ Fk. The overall
processing time grows linearly as k (which is proportional
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Figure 8: Processing time as k increases.

to s) increases, proving the usefulness of an implementation
based on the limited independence of Fk. Figure 8, together
with the analysis of accuracy and failure, suggests that there
is a tradeoff between the reliability of the `0-sampler and its
efficiency. When time is important, using s ≤ 12 and k ≤ 6
ensures fast computation. On the other hand, by selecting
bigger values for both s and k, the process becomes slower
than the FIS variant, while achieving similar failure rates and
accuracy over our data. Hence in this regime, the usage of
the FIS variant can result in better performance.

4 Concluding Remarks
The problem of drawing a sample from the `0-distribution
has multiple applications over stream processing, computa-
tional geometry and graph processing. We have shown how
existing algorithms fit into the framework of sampling, re-
covery and selection. Our experimental study shows that this
framework can be instantiated effectively. Based on low-
independence hash functions, we are able to draw samples
close to uniform, and process millions of items per second.
The space overhead is moderate, indicating that the algo-
rithms are practical when a small number of samples are
needed from a large amount of data. However, it is natural to
ask whether the samplers can be made more space efficient,
either by further engineering the subroutines and parameters,
or by a fundamentally new approach to `0-sampling.
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