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1 Introduction

As discussed in other chapters, Differential Privacy (DP) provides a widely-accepted model of
privacy based on introducing carefully calibrated random noise to information revealed about
private data. In the standard presentation, the DP model assumes the existence of a trusted ag-
gregator: an entity who holds a collection of information about a population of individuals, and
applies differentially private mechanisms to information computed from this data collection. This
allows accurate statistics and models to be derived, but comes at a cost: we must be satisfied that
we can indeed trust this aggregator to handle the collected data responsibly. In practical applica-
tions, this data aggregator is likely to be a powerful entity, such as an internet service provider,
technology company, or government, who may collect the private information of millions of indi-
viduals. Hence the potential for misuse may be of some concern, even if we have no prior reason
to suspect the motives of the aggregator.

In response to this, a number of other models of privacy have been considered which aim
to reduce or eliminate the trust placed on the central entity. These can include decentralization
– dividing the data among multiple aggregators, so no single one sees the entire information –
or cryptographic techniques – which restrict the view of the aggregator of the raw data. In this
chapter, we survey an approach known as Local Differential Privacy, or LDP. The LDP approach
directly provides a differential privacy guarantee on the results of the computation, and entirely
eliminates the need for a trusted aggregator to hold the private data. However, the LDP approach
comes at some cost: more computational work is needed, and the results achieve a weaker tradeoff
between accuracy and privacy than in the traditional, “centralized” differential privacy model.

The essence of LDP is that each user who holds some private data is now an active participant
in the data release process. Instead of passively sending their data to the aggregator and retiring,
each user now runs a randomized procedure on their input. The requirement is that the distribu-
tion of the message(s) sent by each user individually should satisfy the DP guarantee. Formally,
let xi and x′i be two possible inputs that user i might hold, let R denote the (randomized) protocol
that user i will apply to generate their messages, and let ε be the desired privacy parameter. We
require that for all possible transcripts T of user i’s communication, we should have

Pr[R(xi) = T]
Pr[R(x′i) = T]

≤ exp(ε) (1)

Note that this definition is symmetrical in the roles of xi and x′i . This is exactly the standard
(pure) differential privacy definition, applied to the inputs of a single user i.

On first glance, attempting to obtain useful results under this restrictive definition may seem
doomed to failure. The noise introduced in differentially private mechanisms is calibrated so
as to effectively “mask out” the contribution of any single user. Specifically, we usually expect
the magnitude of any (numeric) noise added to a function of users’ data to be approximately
equivalent (in expectation) to the weight of any individual user’s data. So we would expect that
applying this to the contribution of just a single user would entirely hide the information they
are contributing, and prevent any subsequent use of it. Indeed, the first part of this intuition
is true: the noisy response of a user should indeed mask out their contribution, and so make it
impractical to learn anything about their individual information. However, if we aggregate the
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reports over a large enough population of users, we can still draw accurate conclusions about the
overall population behavior: the signal emerges from the noise. The explanation for this apparent
paradox is that since each user independently chooses how to add noise, the noise tends to cancel
out as we combine all the user reports, leaving the true answer masked by a smaller magnitude of
total noise.

1.1 A first LDP protocol

We illustrate this phenomenon with a simple example drawing on standard DP mechanisms from
the centralized case. Suppose we have a population of N = 1 million users, who each hold a secret
binary value (0 or 1), which encodes some private attribute – say, their opinion on a contentious
issue (pro or anti), or some other feature. We would like to learn what is the population-level
value of this statistic, i.e., what percentage of our population hold a ‘1’ value. The standard cen-
tralized DP approach is to add noise sampled from a Laplace distribution with parameter 1/ε. The
variance of this distribution is then 2/ε2, and so the expected magnitude of this noise is around
1/ε.

This approach can be adapted to the local setting by having each user add this quantity of noise
independently to their input. The resulting distribution would have variance 2N/ε2, and hence
absolute magnitude proportional to

√
N/ε. Concretely, consider our case with N = 1 million,

and ε = 1. Then the local case allows us to estimate the population fraction with additive error
around 0.001. This is certainly good enough to easily distinguish large values from small, and
comparable to the error due to sampling which people to ask. However, the corresponding error
in the centralized case is vastly smaller — closer to 10−6 in this case.

This small example serves to show that we can obtain sufficient accuracy in the local model
of differential privacy, albeit weaker than in the centralized case. To get good results for more
complex analysis tasks requires a large population of users participating (honestly) in the protocol,
and carefully tuned protocols to maximize the accuracy obtained.

The naive approach of taking an existing approach from the centralized approach does not
always work. Consider for example trying to produce a clustering of some input data points. If
each user holds a single point (representing their data), then a central DP algorithm is unlikely to
produce a very meaningful output for them. Moreover, it is unclear how to combine the results if
each user produces a noisy clustering of their single point. Instead, for this and other problems,
we would seek novel methods better suited to the local model.

The key properties that we aim to understand for different problems are the tradeoff between
accuracy and privacy, as a function of the privacy parameter ε, and the number of participating
users, N. Secondarily, we are also concerned about the other computational costs – the time and
space required by users to run their part of the protocol, and the time and space needed by the
aggregator to interpret all their messages. Lastly, we may also seek to minimize the size of the
messages sent by the users, and the number of rounds of interaction between users and the aggre-
gator.

1.2 A brief history of LDP

As will be discussed in subsequent sections, the antecedents of Local Differential Privacy date back
at least fifty years, to the work on Randomized Response in survey design (Warner, 1965). More
recently, a notion equivalent to local different privacy was introduced by Evfimievski, Gehrke
and Srikant (Evfimievski et al., 2003), around the same time that the foundations of differential
privacy were being laid (Dinur and Nissim, 2003). The connection between randomized response
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and differential privacy has been observed in texts on the differential privacy mode (Dwork and
Roth, 2014). However, the current interest in LDP can be traced to recent developments in theory
and practice. Duchi, Jordan and Wainwright coined the label of “local differential privacy”, and
studied problems of statistical inference under this model (Duchi et al., 2013). This led to much
subsequent interest in the theoretical underpinnings of LDP and its variants. Around the same
time, Google published a paper on its RAPPOR system, which is based on LDP (Erlingsson et al.,
2014), used to collect browsing statistics privately. Papers on deployments by Apple (Apple, 2017),
Microsoft (Ding et al., 2017) and Snap (Pihur et al., 2018) on related problems demonstrated a
strong interest in LDP as a practical model for private data collection.

1.3 Overview of the chapter

Following the interest in Local Differential Privacy from both theory and practice, in this chapter
we survey a sampling of the developments in LDP. Since its formal introduction less than a decade
ago (at time of writing), there have been many hundreds of papers published on the topic, and
this chapter provides a very partial view of this topic. We begin by introducing the foundational
notion of Randomized Response in Section 2, for revealing information about a binary choice. In
Section 3, we show how randomized response has been extended and enhanced to provide the
notion of a “Frequency Oracle”, which gathers information about the distribution of values held
by a collection of users. The Frequency Oracle is the basis for many of the applications of LDP.
Some of the basic statistical collection tasks, such as finding frequent items, and capturing the
cumulative distribution, are described in Section 4. We move on to more advanced data analysis
and modelling tasks in Section 5. Finally, we conclude by reflecting on the limitations on LDP
protocols, and describe some alternate related models which attempt to remedy these deficiencies
in Section 6.

2 Randomized Response

In this section, we return to the problem stated in the introduction of this chapter, to estimate the
proportion of individuals whose binary input is a 1 value. We will describe a simple approach
that provides an accurate answer, and show its analysis in some detail. This approach, known as
Randomized Response, is at the heart of many LDP algorithms that we will discuss subsequently
(albeit in less detail).

The approach from Section 1.1, of adding noise drawn from a Laplace distribution, certainly
works, but has some disadvantages. It produces potentially large real numerical values. Since the
inputs are binary, it is natural to ask whether we can restrict the messages from each user to the
same domain.

If we do so, then we can immediately derive the description of a protocol. For a user with
input value b ∈ {0, 1}, their only option is to report either b truthfully, or lie, and report 1 − b.
Suppose we set the probability of truthtelling to be p, and hence the probability of lying is 1 − p.
We can assume without loss of generality that p > 1

2 > 1− p. To ensure that the (local) differential
privacy property (1) holds, we require that the probability of seeing the same output in the two
cases that b = 0 and b = 1 satisfies p

1 − p
≤ exp(ε).

That is, the ratio between (correctly) observing a 1 on input 1, and (erroneously) seeing a 1
on input 0, should not exceed the bound of exp(ε). For utility, we would like p to be as large as
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possible, which means setting p
1−p = exp(ε). Rearranging, we obtain that p = exp(ε)

1+exp(ε) .
Suppose we apply this protocol over a large population where a ϕ fraction of users have input

1, and the rest have input 0. Then, for each user, the expected observed value o is given by

E[o] = pϕ + (1 − p)(1 − ϕ)

From this, we can form an unbiased estimate for the (unknown) parameter ϕ by rearranging:
we write

ϕ̂ =
o − (1 − p)

2p − 1

We can observe that the observed value o is equal to the input x with probability p, otherwise
they are different. In the former case, the error of ϕ̂ is p−1

2p−1 , and in the latter it is p
2p−1 . Hence, we

can also compute the variance of this (unbiased) estimator, as

Var[ϕ̂] = E[(ϕ − ϕ̂)2] =
p(p − 1)2 + (1 − p)p2

(2p − 1)2 =
p(1 − p)
(2p − 1)2

Using our setting of p = exp(ε)/(1 + exp(ε)), we obtain

Var[ϕ̂] =
exp(ε)

1 + exp(ε)
· 1

1 + exp(ε)
(1 + exp(ε))2

(exp(ε)− 1)2 =
exp(ε)

(exp(ε)− 1)2

We can approximate this quantity when ε is small, in which case exp(ε) ≈ 1+ ε and so Var[ϕ̂] ≈
1
ε2 .

Equipped with this understanding, we can observe that the average of N unbiased estimates
for a population of N users will have a variance proportional to N/ε2, and so an expected absolute
error proportional to

√
N/ε. This is comparable in scale to the cruder method based on adding

Laplace noise, but comes with a tighter understanding of the behavior (variance less by constant
factors), and reduced communication costs (the protocol sends noisy bits instead of noisy real
values).

The notion of randomized response was first introduced by Warner (1965), as a method of
providing plausible deniability for survey respondents answering potentially embarrassing ques-
tions. It was subsequently observed to provide differential privacy, and has been used as the
foundation for many other protocols achieving local differential privacy.

3 Frequency Oracles

The Randomized Response protocol in the previous section allows us to estimate the fraction of
population satisfying a certain property. Equivalently, it can be viewed as providing an estimate of
the parameter of a binomial distribution, when each user samples from the same global Bernoulli
distribution. More generally, we might want to estimate the distribution when each user has one
out of d possible categorical values. This problem has been widely studied in the context of local
differential privacy, and the techniques developed for this problem have been used in the solution
of other problems discussed subsequently.

Across a variety of different approaches, some similarities emerge: each user sends a message
noisily encoding information about their input, which can be aggregated to provide an estimate
of the number of occurrences of a particular category. That is, if each user i has an input value
xi ∈ [d], we seek to build an estimate for f (x) = |{i : xi = x}|. The estimate of f (x) will be
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a random variable, whose randomness derives from the random choices of the users in adding
noise to their input. We refer to the randomized algorithm that can produce an estimate f̂ (x) of
f (x) for any x ∈ [d] as a frequency oracle. The aim is to minimize the variance of the estimate, as
well as keeping the other computational costs low. In this section, we describe the operation of
several different frequency oracles, and summarize their properties.

3.1 Direct Encoding

A natural first attempt to build a frequency oracle is to generalize the notion of randomized re-
sponse to d possible values. As with (binary) randomized response, each user can report their
input truthfully with probability p, or pick each of the other possible inputs with probability (1 −
p)/(d − 1) each. Satisfying the LDP property (1) leads to choosing p = exp(ε)/(exp(ε) + d − 1).
Here, the expression for the variance of this estimator is a little more complex, so we focus on the
variance conditioned on reporting an erroneous value, which tends to dominate the cost. We write
this variance bound as Var∗, which is given by Var∗ = exp(ε)+d−2

(exp(ε)−1)2 . We can observe that this agrees
exactly with the variance for binary randomized response when setting d = 2. This analysis of
Direct Encoding, and the definition of Var∗, is due to Wang et al. (2017).

3.2 Unary encoding

An alternative generalization of randomized response is to use a unary encoding of the input, and
apply randomized response independently to each bit. That is, we express user i’s input as a d-bit
“one-hot” encoding, where we set the xi’th bit to be a 1, and the remaining bits to 0. We then flip
each bit independently, and report the noisy result. We can observe that in order to ensure the
differential privacy condition (1), we only need to consider that pairs of inputs can change in at
most two location: between two possible inputs, there is one location where a 1 is replaced by a 0,
and one where a 0 is replaced by a 1.

To improve the accuracy, we can observe that we can choose different probabilities for flipping
a 0 to a 1 than for flipping a 1 to a 0. We obtain better accuracy if the former is lower and the latter
is higher, since there are more 0s to preserve than 1s in this sparse encoding. Optimizing this
choice subject to the DP condition leads to picking the probability of flipping a 1 to 0 as 1

2 , while
0s are flipped to 1s with lower probability of 1

1+exp(ε) . This choices minimizes Var∗ = 4 exp(ε)
(exp(ε)−1)2 .

Observe that this improves over direct encoding for larger d, when d > 3 exp(ε) + 2, which is
typically the case for moderate values of ε and d. However, this comes at the cost of sending d
bit messages, which can become excessive for large values of d. The notion of “optimized” unary
encoding is due to Wang et al. (2017).

3.3 Hash encoding

When the domain size d gets moderately large, it can be useful to use hashing techniques to re-
duce the effective domain size, while still providing enough information to encode the frequency
distribution. The idea of hash encoding is for each user to (independently) pick a random hash
function, and to use a method such as direct encoding to privately encode the noisy value of the
hash of the user’s input. Given the noisy encoding and the description of each hash function, an
aggregator can build up an accurate picture of the overall population distribution. Analyzing this
procedure shows it suffices to use relatively simple hash functions (specifically, hash functions
that meet the condition of “pairwise independence”), onto a small domain of possibilities. Opti-
mizing the parameters leads to choosing the range of hash values to be exp(ε) + 1, so that the true
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hash value is reported with probability 1
2 , while the other choices are each selected with proba-

bility 1
1+exp(ε) — mirroring the probabilities from unary encoding. Following similar calculations,

we find Var∗ = 4 exp(ε)
(exp(ε)−1)2 . Now the messages sent are just log2(exp(ε) + 1) bits to encode the hash

value, plus O(log d) to specify the hash function. However, the work required by the aggregator
to build estimators from the N messages is quite large – O(Nd). This optimized local hashing
approach is also due to Wang et al. (2017).

3.4 Hadamard encoding

The approach of Hadamard encoding is quite similar to the hashing approach, where the hash
function is drawn based on a structured set of possibilities. This allows the decoding of messages
to be performed more quickly, while achieving similar accuracy. Specifically, we consider a hash
function which maps onto two possible values, −1 and +1. The j’th hash function is specified by
hj(x) = (−1)⟨j,x⟩, where ⟨j, x⟩ denotes the inner product of the binary representations of j and x.
The hash value can be encoded by standard binary randomized response over the two possibilities
of −1 and +1.

This special set of hash functions can be interpreted as encoding the Hadamard transform of
the input. The Hadamard transform is an instance of a Fourier transform, and possesses a fast
algorithm to transform and invert a vector of values. Consequently, the aggregator can use the
Fast Hadamard (inverse) transform to accumulate and compute the frequency estimates in time
proportional to O(N + d log d), assuming d is a power of 2. The message size is 1 bit to encode
the noisy value, plus log d bits to send the value of j that defines the hash function. The resulting
variance bound is (exp(ε)+1)2

(exp(ε)−1)2 . This is close to optimal when exp(ε) is close to 1. For larger values
of exp(ε), variations can be applied, such as sending multiple hash values, to reduce the variance
to O

(
exp(ε)

(exp(ε)−1)2

)
. The idea of using Hadamard encoding to build a frequency oracle appears in a

variety of places (Apple, 2017; Nguyên et al., 2016; Acharya et al., 2019).

3.5 Domain Size Reduction

The above approaches work well as d ranges up to moderate size – say, from single digits up to
thousands of possibilities. However, when d is huge, all the methods lessen in usefulness, due
to increased cost to maintain, and reduced accuracy. Such large domains arise in practice, for
example when capturing information about words typed by users, or websites visited, where the
set of possibilities easily ranges into the millions.

To cope with this high domain size, protocols can take advantage of dimensionality reduction
techniques. Essentially, the protocol specifies a randomly chosen projection of the input items into
a lower dimensional space, so that frequencies in the lower dimensional space can be used to pro-
vide frequency estimates for items in the original space. Such dimensionality reduction techniques
are often referred to as “sketches”. Common examples used in the LDP setting include the Bloom
Filter, Count sketch and Count-Min sketch (Cormode and Yi, 2020). Importantly, these techniques
are all sparsity preserving: if we apply them to a single input item, represented as a one-hot vector,
then the resulting sketch is also mostly zero, having only a few non-zero values, and adhering to
some additional structural restrictions. This means that we can apply the above frequency oracles
to a sketch representation of user inputs in an almost black-box fashion. The cost now depends
on the (smaller) d′ value representing the size of the sketch, instead of the much larger original
d value. Papers that pursued this approach provide further details of how to guarantee privacy
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and accuracy with the Bloom Filter (Erlingsson et al., 2014), Count-Min sketch (Apple, 2017) and
Count sketch (Bassily et al., 2020).

4 Heavy Hitters, Marginals and Range Queries

Once we have a frequency oracle, we can apply it to numerous other related statistics-gathering
problems. In this section, we describe how this can be done in the case of finding frequent items
from a large domain (heavy hitters), computing marginal distributions within multidimensional
data, and answering range queries and quantile queries.

4.1 Heavy Hitters

The “heavy hitters” within a distribution are those items whose frequency is large. This problem
is naturally closely tied to the use of frequency oracles. The difference is that a frequency oracle
allows us to test the frequency of a single item, whereas finding the heavy hitters potentially
requires ranging over a very large set of possibilities. In the LDP setting, a number of approaches
have been suggested to make this search procedure efficient and accurate.

The naive approach is simply to perform a frequency estimation query for every item in the
domain. The disadvantages of this are primarily the computational cost: heavy hitters are often
sought over a very large domain of possibilities. For example, the domain may consist of words
typed by users on mobile devices, or URLs visited. Considering the number of valid strings of
characters to consider, this can easily reach billions or trillions of possibilities. Enumerating all
such possibilities can be very time consuming indeed. Moreover, even though each query to a
frequency oracle may be quite accurate, over this many probes, there will be some errors, where
infrequent items are reported as having a high frequency. Thus, we would expect some amount
of false positives.

To reduce the number of queries, and hence false positives, we can seek ways to prune the
search space, using ideas from information theory and error-correcting codes. For instance, sup-
pose we knew that there were no heavy hitter items beginning with the letter ‘z’: then we could
save ourselves the effort of testing any sequence of characters starting ‘z’, and so cut off this part
of the search space. For our running example, we will consider inputs that are six letter words
over the Roman alphabet, e.g. “apples” or “banana”, where each user holds one such word, and
we want to find which words are most common.

Some of the first approaches proposed to find heavy hitters were based on breaking the input
strings into shorter substrings, and finding which substrings are frequent. In our running exam-
ple, we could consider all two letter substrings – say, “ba” (the first two characters of banana), or
“pl” (the middle two characters of apples). Each user can split their input word into its (disjoint)
substrings, and report each of these through a frequency oracle. So, apples is split into ap, pl and
es. Once the frequency oracle has been built from all the user submissions, a data analyst can try
to find the heavy hitters. They can query the frequency oracle for all heavy substrings: note that
posing 262 = 676 queries for all character pairs is much smaller than the 308 million strings of
length 6. This then gives a “jigsaw puzzle” to solve: how to recombine the heavy substrings into
the correct set of heavy words?

A first approach proposed is to use statistical inference over pairs of substrings (Fanti et al.,
2016), although this can potentially get fooled into outputting infrequent combinations. Subse-
quent approaches seek instead to perform a more reliable search over the space of possibilities.
The “sequence fragment puzzle” (SFP) approach tags each substring with more information (Ap-
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ple, 2017). It first concatenates each substring with a hash value of the whole string, to avoid
substrings of different strings getting mixed up with each other. It also tags each substring with
the location of the substring within the whole string, which is not private information. So in our
example, if the hash value of apples was 7, then pl would be reported via a frequency oracle as
(pl7, 3), i.e., the string pl occurs at index 3, and is concatenated with the hash value 7. If the string
apples were a heavy hitter, then the analyst would recover the tuples (ap7, 1), (pl7, 3), (es7, 5),
and so have enough information to recover the full string. Another frequency oracle can be kept
over the full strings to provide an additional check that the reconstructed strings are indeed heavy.

Instead of collecting all the pieces in one go and putting them back together, hierarchical ap-
proaches to solving the heavy hitters problem incrementally build up the strings of heavy items.
In this case, each user reports prefixes of their input (via a frequency oracle). In our example, the
prefixes of apples in multiples of two characters are ap, appl and apples. The data analyst can
first test all two character prefixes, and collect only those that appear heavy – e.g., aa to zz. They
can then test only those four character prefixes that extend a heavy prefix – so in our example, this
would test from apaa to apzz, to identify appl as heavy. The search proceeds until the full set of
heavy hitters has been found. Although this requires a little more work than the SFP approach,
since more candidates are considered, the accuracy is increased, as no hash functions are needed.
This idea and its variations has appeared under various names – TreeHistogram (Bassily et al.,
2020), Prefix Extending Method (Wang et al., 2019), and PrivTrie (Wang et al., 2018b). Across these
variants, some recommendations have emerged. For example, it is preferable for each user to only
report a single substring, rather than all substrings of their input, as this gives a better tradeoff
of accuracy against privacy guarantees. It is also natural to keep information about each prefix
length in a separate frequency oracle, to reduce noise.

Last, other approaches have been suggested in the theoretical literature which achieve slightly
better results at the expense of rather more complex constructions making use of error correcting
codes (Bun et al., 2018; Bassily and Smith, 2015; Bassily et al., 2020). However, these do not seem
to have seen use in practice. In practical deployments, the RAPPOR system has used the statistical
expectation-maximization approach (Fanti et al., 2016), while Apple’s implementation uses their
Sequence Fragment Puzzle algorithm (Apple, 2017).

4.2 Marginals

Given inputs represented as d-dimensional feature vectors, it is often desirable to learn statistics
about combinations of k features. For example, given inputs recording sex, height and weight of
individuals, the three 2-way marginals capture information about sex and height; sex and weight;
and height and weight, respectively. Naively, we could directly apply frequency oracles to solve
this, by having each user report information about their values for each k-way marginal. However,
as k and d grow, this quickly becomes unsuitable. For d = 10 and k = 3, there are (10

3 ) = 120
distinct 3-way marginals. Maintaining this many frequency oracles (one for each marginal) will
quickly lose accuracy. At the other extreme, we could simply maintain a single frequency oracle
to capture the full d-way distribution, then project the desired k-way marginal by “marginalizing”
the unwanted dimensions. This also incurs a lot of inaccuracy, as noise is added up.

Various approaches have been suggested to handle this approach. A first approach, drawing
on insights from the theory of representing functions, and techniques used in the centralized pri-
vacy setting, is to make further use of the Hadamard transform of the input, as described by Cor-
mode et al. (2018b). It is observed that any marginal distribution over binary data can be expressed
as a linear combination of only (d

k) Hadamard coefficients, which can be much smaller than the
2d coefficients needed to represent the full binary data. This allows each Hadamard coefficient to
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be found more accurately, since we can ignore those Hadamard coefficients not needed for any
k-way marginal.

The LoPub approach proposed by Ren et al. (2018) captures information about lower degree
marginals (say, k = 2), then uses various statistical approaches as postprocessing to build up a pic-
ture of the higher order marginals. This involves expectation maximization to infer the marginals,
and lasso regression to enforce sparsity in the resulting distributions.

An alternative approach is to select a subset of marginal distributions to materialize, so that
any desired marginal can be found by marginalizing a larger distribution. The “Consistent Adap-
tive Local Marginal” (CALM) approach presented by Zhang et al. (2018) defines how to pick such
a set of marginals to materialize of a fixed size, chosen to minimize the (squared) error incurred.
Additional postprocessing is applied to improve accuracy by removing inconsistencies among the
overlapping marginals.

4.3 Range Queries and Quantiles

Often, private data is drawn from an ordered domain — say, salary values, or exam scores. A
frequency oracle allows us to learn the distribution of individual values, but more often we would
also like to learn the cumulative distribution of values. This captures notions such as the median
value, or the fraction of user inputs that fall within a specified range. Broadly, we describe these
problems as range queries (what fraction of inputs fall between x and y?), and quantiles (for which
input value x does a q fraction of inputs fall below?). Both can be answered by reducing to prefix
queries, which ask what fraction of user inputs fall below a given value x.

There are two popular approaches to answering prefix queries that have been described in
the LDP setting. Hierarchical approaches impose a regular hierarchy over the (discrete) input
domain — such as a binary tree of height h. Then any prefix can be answered by summing up the
weights associated with at most h nodes of the (binary) tree. These weights can be found by having
each user report information about the items within the imposed binary tree, via a frequency
oracle. Tradeoffs can be achieved by varying the depth of the hierarchy, and its branching factor.
Transformation based approaches apply an appropriate (linear) transformation to the input — the
most relevant being the Haar wavelet transform. This transforms a user’s input into a (sparse) set
of Haar coefficient values, which can also be collected and aggregated via frequency oracles. The
data analyst can then answer prefix queries based on the noisy (but unbiased) wavelet coefficients.
Similar approaches have been evaluated in the centralized setting. Studies under the LDP model
found that the accuracy of both approaches is very similar in practice (Cormode et al., 2019), and
that the hierarchical approach can naturally extend to multi-dimensional range queries with good
accuracy (Wang et al., 2019).

5 Local Differential Privacy in Applications

Building on the above techniques for gathering statistics on arbitrary data distributions, there
has been much work on solving various modeling and machine learning tasks under the LDP
guarantee. In this section, we survey some of the approaches used, across a range of different
settings, such as location and network-based data.

5.1 Text and Language Modeling

There are many reasons to want to analyze text. For example, we may wish to understand the
evolving use of language. More pragmatically, operating system developers may wish to build
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better models to help mobile users type more accurately, by automatically correcting spelling er-
rors. Equally, there are strong reasons to consider the text typed by users on their devices to be
highly private, so it is not suitable to ship it in bulk to an analyst. Current deployments of LDP
have often focused on text and text-like data. For example, Apple’s implementation focuses on
building custom dictionaries based on currently popular words, and highlighting popular emoji
in lists. Meanwhile, Google’s collection has focused on popular URLs, which can be represented
as long text strings from a large domain.

An instructive example of how this modeling can be combined with LDP is due to Chang
and Thakurta (2018), in their work on autocompletion under local differential privacy. Absent of
privacy, language modelling relies on building large, high dimensional models. For example, we
might seek to predict the next word based on looking at the most recent k words typed, for some
moderate choice of k (say, 4-5). However, when we apply the constraints of privacy, we encounter
a challenge: the noise for privacy will typically dominate the low-frequencies associated with such
rare combinations.

Instead, Chang and Thakurta propose a simpler “tag and words” model. Each word in some
text is tagged with its part of speech (noun, verb, adverb etc.), and the tag for the next word is
predicted based on the tags of the two most recent words. Then, options for the next word are
predicted based on the predicted tag and the last word. This model can be instantiated in LDP by
building a frequency oracle of the distributions of tag triples, and word-tag-word triples. Impor-
tantly, the size of these distributions is kept relatively low, so the statistics required to instantiate
them have higher support, and the privacy noise is reduced. The lesson for LDP protocol design
is to prefer simpler models whose parameters can be learned with higher confidence.

5.2 Spatial Data

Information associated with people’s location can naturally be very sensitive. Protecting people’s
location is widely agreed to be a strict requirement of private data handling. A canonical (hypo-
thetical) example often referred to is a person attending a sexual health clinic: any data release
which reveals their attendance violates their privacy, and potentially threatens their status and
well-being. Nevertheless, revealing suitably private views of location and movement data of pop-
ulations is considered a valuable aim. It can inform planning for amenities and businesses, as well
as influencing political districting and government fund allocations.

A first attempt to handle spatial data is to impose a simple division of space, such as a grid, and
to reveal (noisy) counts of the occupancy of each cell. Such approaches have been proposed in the
centralized model of privacy, with moderate success. In this case, the aim is to find heavy regions,
and can be addressed using frequency oracles. In the local setting, the drawbacks of this approach
are that it can be hard to determine the appropriate granularity of the grid. Sparsely populated
rural areas may suit coarse cells (of the order of kilometres in size), but densely populated urban
areas require much finer representations to best describe them, perhaps only tens of metres in size.

To make progress on this problem, it may be appropriate to relax the privacy constraints. In
particular, while individuals may not wish their exact location to be revealed, it may be acceptable
to reveal the country that an individual is within. That is, we might be more likely to perturb
someone’s location within a smaller radius, but much less likely to impose a very large perturba-
tion.

The approach of private spatial data aggregation of Chen et al. (2016) defines such a relaxation
of local differential privacy, based on a hierarchy over locations. This can be based on public
geographic features, such as countries divided into states, which are further subdivided into cities
and quarters. Each user can then decide at what level they are comfortable to be placed in – for
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example, they may allow the true city to be revealed, but not exactly where in the city they are
located. Location distributions can then be revealed via an appropriately generalized frequency
oracle. The user’s location may be perturbed, but locations outside their specified “safe zone” are
constrained to be empty. The system as described can be further extended: users can also choose
a “personalized” privacy parameter ε i; the system can try to group users together to run fewer
invocations of a frequency oracle.

5.3 Graphs and Social Network Data

Data emerging from social interactions can naturally be subject to some privacy concerns. While
some online social networks expose a certain amount of information to the world, such as lists
of “friends” or “followers”, other information is more restricted. Most social network systems
do not reveal which users have been in close communication, or information about the frequency
and intensity of these interactions. Nevertheless, to sociologists and other students of human
behavior, learning accurate information about people’s actions within (online) social networks is
of great interest.

Most work on private graph data analysis takes the approach of (explicitly or implicitly) reveal-
ing information in the form of a mathematical model. That is, we consider the input to describe
a member of a family of graphs, and we aim to extract certain information about the graph in
order to instantiate a statistical graph model. The parameters of the model can be revealed under
a suitable model of privacy. Then analysis can be performed, either directly on these noisy pa-
rameters, or by sampling new graphs according the graph model, and studying their properties.
This approach has proved challenging to guarantee useful results even in the centralized model
of differential privacy, so only becomes more difficult in the local regime, where higher volumes
of noise are required.

A first question for this setting is how to define a suitable notion of privacy to graph data.
In particular, what is the appropriate notion of “neighboring inputs” to apply the DP definition
to? In the node privacy model, two graphs are considered to be neighboring if they differ in the
adjacency pattern of a single node — that is, the connections from one node in the graph can be
completely rewritten. In the edge privacy model, neighboring graphs differ only in the presence
or absence of a single edge. The edge privacy definition holds the edge relationship to be the
unit of privacy, while the node privacy model focuses on the node as the basic unit. Clearly, edge
privacy requires less perturbation of information to achieve, since one node may correspond to a
large number of edge links. Arguably, node privacy is the definition to aspire to, since in many
social network graphs, the node represents all the information of a single user. This puts it closest
to definitions of differential privacy, which seek to bound information based on the addition or
removal of an individual (person) from the dataset. Nevertheless, most work has addressed the
more tractable edge (LDP) case.

Given a social network graph, where each user has a list of other nodes that they are linked to
in the graph, there are two natural approaches to consider first as baselines. First, one might try
to reveal the full adjacency list of a user — perhaps, treated as a (relatively sparse) binary vector
indicating which links are present. This can be performed under LDP by applying randomized
response to each bit in the adjacency vector. However, it will of necessity introduce a very large
number of false neighbors for any node. Instead, we may seek a model to instantiate where the
parameters have more support, and hence give greater confidence. Second, we could provide
very simple information about each node, such as its degree. Under the model of edge privacy,
this can be done quite effectively: the average noise will be a small constant, compared to degrees
in social networks which are typically hundreds on average. This can be used to instantiate graph
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models which require only degree information. However, this can be unsatisfying, since node
degrees do not capture any useful information about how pairs of nodes interact with others, say.
Consequently, we find that the adjacency list approach is too detailed and subject to noise, while
the degree approach is too coarse and uninformative. Instead, we seek a graph model which falls
in between these two.

Qin et al. (2017) propose such an approach, which is learned iteratively under LDP. It aims to
build a description of the graph in terms of the pattern of connections between each node and
a set of possible partners. That is, we would like to define a small set of “clusters” of nodes,
and describe how many links each individual node has to each of the clusters. The two previous
approaches can be viewed as extremes within this setting: trying to reveal the adjacency list can be
seen as the case when each cluster is a single other node; revealing degrees corresponds to having
a single cluster containing all the nodes. Ideally, we would be given a suitable clustering of nodes
(e.g., each cluster could represent the continent on which people live). However, in general no
such clustering is available, and so it must be learned from scratch.

Qin et al. describe a way to build a clustering over a set of iterations. In the first iteration, each
node is randomly assigned to one of k clusters. Each user can then release a noisy histogram of
how their neighbors fall into these clustering. Each histogram is of size k, and is noised by adding
values sampled from a Laplace distribution to each entry, sufficient to provide edge privacy. The
next stage is to derive a new set of clusters. This is done by applying a clustering procedure to the
(noisy) histograms, to find a new set of k clusters. Each node is then assigned to the new cluster in
which its histogram is placed. The new cluster assignments are (implicitly) shared with neighbors,
and the procedure can be iterated for a fixed number of steps. The intent is that the final set of
clusters provide a representative set of different patterns of connection which help to describe the
nodes. Finally, once the final (noisy) representation is built, it can be released publicly, and used
as the basis of a sampling procedure to sample synthetic graphs with similar connection patterns.
Experiments on this approach show that the sampled graphs do well at preserving various graph
properties (clustering coefficient, mutual information, etc.) of the original input, while providing
an LDP guarantee.

5.4 Classification and Regression

Building accurate predictive models via classification (for predicting categoric values) and regres-
sion (for numeric values) is at the heart of the recent explosion of interest in machine learning.
In the private data setting, we can think of each user holding one (or a few) different training
examples, with the goal being to build an accurate model from these distributed examples. The
LDP requirement ensures that we should not be able to learn the private information of any user
(although, of course, the learned model may nevertheless allow us to make inferences about indi-
viduals and their data).

Minimizing a loss function. Although there are many and varied models and learning proce-
dures described in the literature, there are some similarities that allow a common approach to be
proposed. Specifically, the training of many ML models can be expressed as minimizing a loss
function over user examples, with features x (as a vector) and label y. The exact form of the loss
function depends on the model type being learned, and the regularization being applied, but in
many cases the loss is expressed as a sum over a loss from each example under the current model.
That is, we can write the objective as trying to minimize the function

∑
i

Loss(Θ, xi, yi) + λN∥Θ∥2
2
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where, i indexes the N examples (xi, yi); Θ are the model parameters to vary; λ is a regularization
parameter; and Loss is a function that gives the loss for each example under the current parame-
ters. Two cases that can be expressed under this framework are linear regression, where the loss
function is Loss(Θ, xi, yi) = (xT

i Θ − yi)
2; and support vector machines with hinge loss, where

Loss(Θ, xi, yi) = max(0, 1 − yixT
i Θ).

Although certain models may admit a specific or closed-form solution, a more general ap-
proach is to optimize the loss function via stochastic gradient descent. That is, starting from some
randomly chosen initial Θ, we choose a new Θ′ by evaluating the gradient of the loss function on
an appropriate subset of data points, and taking a step in the direction to reduce the loss function.
The key aspect that makes this suitable for the LDP model is that, since the total loss is a sum over
the loss of each data point, so also is the gradient of the loss function. Hence, we can start to build
a protocol in the LDP model: a user i will receive a current value of Θ (which is non-private), and
will reveal information about the gradient of the loss function with Θ and xi, yi.

Vector Release. To complete the description of the protocol, we need to determine how to output
this gradient privately. We refer to the problem of publishing a vector with appropriate (local)
differential privacy guarantees as “Vector Release”. A first challenge for vector release is that
gradient values could be arbitrarily large. This would make it hard to guarantee privacy, since
we need to ensure that large values are protected by correspondingly large noise. A standard
solution is “clipping”: we ensure that the magnitude of each entry in the gradient vector is clipped
to the range [−1,+1]. It is now possible to adapt existing LDP mechanisms to solve the vector
release problem. For an individual coordinate in the range [−1,+1], one can apply a variant of
randomized response. A simple approach due to Duchi et al. (2013) is to first randomly round the
input to {−1,+1}: given r ∈ [−1,+1], map to +1 with probability (r + 1)/2, otherwise map to
−1. We can then apply randomized response to the two inputs {−1,+1} based on the parameter
ε.

In order to handle d dimensional vector inputs, there are alternate approaches to consider. We
could apply this rounding to every coordinate in the vector, after reducing the privacy parameter
to ε/d, invoking a privacy composition result for LDP. Or, we could pick one (or a few) coordinates
to release with a larger privacy budget. This latter approach is advocated in the work of Nguyên
et al. (2016), who show that it gives preferable results. Taking the mean of the unbiased responses
from the users is used to give a gradient update, and compute a new set of parameters Θ′.

Putting it all together. Finally, we need to consider multiple steps of the gradient descent algo-
rithm. Again, we could have each user participate in multiple rounds, by dividing their privacy
budget up into smaller pieces; or divide the users into groups (“minibatches”), and have each
user participate in one round only. Analysis due to Nguyên et al. (2016), who proposed and an-
alyzed this protocol, demonstrates that the minibatch approach is clearly preferable. This means
that obtaining accurate results can be a challenge, since the population of users is spread out over
a number of rounds, and a large number of users is needed to ensure accuracy. This motivates
working with a small model dimension d when possible, perhaps by using random projection
techniques to reduce the dimensionality.

The need for multiple rounds of interaction means that convergence may be slow, due to the
need to wait to receive responses from a large population of distributed users, perhaps using rel-
atively impoverished mobile devices. There has been some theoretical study of whether multiple
rounds of interaction are necessary for LDP machine learning tasks. Smith et al. (2017) show
constant-round protocols for simple problems like least-squares regression; Zheng et al. (2017)
incorporate dimensionality reduction and approximation theory to learn in a single round; and
Wang et al. (2018a) use polynomial approximations for smooth loss functions to further improve
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on these.

5.5 Recommender Systems

Recommender systems form another compelling use-case for Local Differential Privacy. They ab-
stract the problem of providing meaningful recommendations to users, based on their previously
expressed interest in items. Recommender systems are already widely used in the non-private set-
ting, to recommend products from an e-commerce site based on past purchases, or to recommend
music or movies.

Formally, we imagine that user preferences can be represented by an n × m matrix R, where
n is the number of users and m is the number of items. The value of Ri,j is the rating given by
user i to item j. The rating system can be a scale (0 to 5), or binary (indicating whether or not the
user has bought that item). Typically the matrix R is large and sparse. A common approach to
recommender systems is to try to approximately factor R into UV, where U is an n × ℓ matrix and
V is ℓ× m. The parameter ℓ captures the number of “latent factors”. Then the (predicted) ranking
for item j for user i is given by (UV)i,j.

If we introduce yi,j to indicate whether user i has entered a rating for item j, we can write an
objective function for this in order to minimize a loss, ∑i,j yi,j(ri,j − UT

i Vj)
2, which is the squared

error in predictions compared to the known ratings. As in the previous section, this can be solved
by gradient descent, alternating over updating U and V.

For Local Differential Privacy, Shin et al. (2018) proposed an approach that offers a guarantee
per user, across their entire data. It makes use of a protocol for “vector release”, as described in
the previous section, over multiple iterations. Informally, each user will maintain their presence
in U as a vector ui, which is not shared with anyone else, and their ratings, as a vector ri. Given
a current choice of matrix V, each user will compute a gradient vector based on minimizing their
contribution to the loss function, i.e., based on Loss(V, ui, ri) = ∑j yi,j((ri)j − uT

i Vj)
2. As before,

clipping can be used to ensure that the gradients stay within [−1, 1]m. These (noisy) gradients are
returned to the data analyst, who averages them to obtain a new matrix V ′, and the procedure is
repeated, up to some fixed number k of iterations. The final matrix Vk is then shared with users
for them to make future predictions with. The result is effective in practice, although is somewhat
static, since it is not convenient to add new users i or items j after the initial training is complete.

5.6 Common Themes for LDP in Machine Learning Applications

Across these various examples of combining modeling and machine learning with local differen-
tial privacy, some common themes emerge due to the interaction of privacy requirements with
ML models.

Finding a good class of models. In non-private machine learning and data analytics, there is a
trend towards bigger and more complex models: larger volumes of training data mean that we
can fit richer models, and capture behaviors exhibited by only a small fraction of the training ex-
amples. This is not uniformly the case under models of privacy, and particularly so under local
differential privacy. Firstly, fitting parts of the model to a small number of examples contradicts
the aims of privacy, where we seek to protect the information of individuals or small groups.
Moreover, the model of LDP works against this: the noise added must be such that if a parameter
is only supported by a small number of individuals, then the recovered value will be completely
distorted by the noise. To obtain accurate values, we should ensure that they are supported by
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a large enough fraction of the users. This is most clearly seen in the text prediction model (Sec-
tion 5.1): the model is chosen to be compact, and is factored into two small pieces, rather than
explicitly trying to learn a larger joint distribution. However, the same phenomenon guides other
tasks: the work on graphs described in Section 5.3 seeks a model where each user contributes to a
low-degree model (captured by the parameter k) that is much smaller than the number of nodes,
n. The works on other ML tasks in Sections 5.4 and 5.5 are similarly affected by the dimensionality
d, and it is suggested to choose d relatively small, or to use techniques like random projections to
reduce the dimensionality.

Collect data that can be combined linearly. A common thread across all the examples discussed
is that the data collected from users is combined in a way that is fundamentally linear. That is,
we can sum up the debiased user reports. This is clearest for the earlier examples of gathering
statistics on frequencies and distributions (Section 4), where the data — whether in the form of
histograms or Hadamard/Wavelet coefficients — are simple linear transforms of the users’ inputs
that can be added together by the data analyst. However, our other examples, of text, spatial data,
graphs, classification and recommender systems, can all be viewed as combining data linearly, in
the form of vectors, matrices, histograms or distributions.

Note that this does not preclude the use of non-linear models, just that the data collected is
most conveniently handled in a linear form. Consider the highly non-linear models that emerge
when using (deep) neural networks. We can consider learning the weights for such models under
LDP. Many optimization techniques are non-linear, and so are hard to implement under LDP. But
various gradient descent methods are feasible here. The computation of the gradient itself is a
non-linear function of the input. Nevertheless, as described in Section 5.4, it can be decomposed
into the gradient due to each user’s input. We can therefore delegate the (non-linear) local gradient
computation to the user, who can then use an appropriate LDP mechanism to release information
about the gradient vector to the analyst. By ensuring that non-linear tasks are performed either by
users or by the analyst, in such a way that the messages sent can be combined linearly, we obtain
solutions that can be practical under LDP.

Reduce to well-understood problems. Although we have considered quite a varied range of
applications, there are only a few different abstract problems solved by the central parts of the LDP
protocol. In many of the cases seen above, the problem reduces either to that of Frequency Oracle,
or Vector Release. These two primitives, and some of their generalizations, form the backbone of
many LDP protocols. This is a helpful abstraction, since it means that LDP protocol designers do
not have to re-solve these basic problems, but can adopt one of the optimized solutions from the
literature. It also helps to focus on a feasible design for a new application: we should first attempt
to reduce the problem to a model that can be instantiated by one or other of these methods, before
turning to think about other possible solution methods.

Noise reduction techniques. In the centralized differential privacy case, the existence of com-
position theorems make it commonplace to build compound mechanisms using various steps. It
is common to treat the overall privacy parameter ε as a “privacy budget”, and to divide this bud-
get among subtasks. This also allows protocols to be spread across multiple iterations, where the
budget is further subdivided across each iteration. While corresponding composition results hold
for LDP, the mathematics of the analysis tend to encourage different approaches to building pro-
tocols. Specifically, rather than asking each user to answer multiple questions about their input, it
is usually better to partition the users into groups, and ask each group one of the questions. Or,
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somewhat equivalently, we may ask each user to sample one question to answer out of the set of
possibilities. Roughly speaking, this is because LDP protocols built on top of frequency oracles
typically have an error behavior that scales with 1

ε
√

n . If we are trying to measure d quantities,

then dividing the error budget ε into d pieces produces an error for each quantity of (d/ε) · 1/
√

n.
However, asking groups of (n/d) users to answer each question yields an error proportional to
1/ε ·

√
d/n, better by a factor of

√
d. Similar reasons mean that when running a protocol over

multiple iterations, it is preferable to have each user participate in only one of the k iterations,
rather than devote (ε/k) privacy budget to each round. As noted above, we are also incentivized
to pick d and k as small as possible, to further reduce these error bounds.

Data representation. Last, we note that various methods described above have used various
(linear) transformations on the users’ data. Hadamard transforms are used in the construction
of frequency oracles and in gathering marginal statistics, to help maximize the information in
data that would otherwise be sparse. Haar wavelet transforms rotate the user data to answer
queries related to ranges and quantile queries. Random projections are advocated to reduce the
dimensionality of data that may be large and sparse. Finally, histograms can be viewed as a
data transformation to reduce the domain size in a structured way. The lesson here is that a
transformation like these may help to capture the essence of the data needed to solve a particular
problem, and reduce the error.

6 LDP Limitations and Related Models

In this closing section, we reflect on some of the limitations of the Local Differential Privacy model,
and some of the variant models that have been proposed as a consequence.

6.1 LDP Limitations

Budget management. A key parameter of any differentially private procedure is the “privacy
budget”, ε. Despite its centrality to the DP model, there is still much discussion and disagreement
around how to set and interpret this parameter (see, for example, Dwork et al. (2020)). In LDP this
is a particularly knotty question, since many of the applications aim to make repeated measure-
ments of user data over time. The data collection in Apple operating systems has been criticized,
due to the high values of ε used, and the fact that the budget “resets” every day to allow fresh col-
lection, as analyzed by Tang et al. (2017). Other implementations have tried to address this issue,
by using “fixed random values” and memoization techniques, but these only provide a partial
solution (Erlingsson et al., 2014; Ding et al., 2017). Providing meaningful privacy guarantees over
long periods of time remains an open problem.

Strength of ML models. As discussed in the previous section, much work on implementing
machine learning models under LDP has focused on models that may be considered more at the
more simplistic end: linear regression, or models like SVM and decision trees. Many state-of-the-
art results in machine learning are achieved with larger and more complex models, particularly
deep neural networks. As noted above, the tradeoff with LDP is different, meaning that large and
complex models cannot always be handled well. Work is ongoing to combine the accuracy of deep
models with the privacy guarantees of LDP.

16



Accuracy guarantees. We return to the first example in the introduction: releasing the number
of people that hold a particular attribute. We saw that the error in LDP scales with

√
n/ε, while

the error for centralized DP scales with 1/ε. The additional dependence on
√

n may be an Achilles
heel for LDP: as we consider increasingly complex tasks, the overall error from privacy quickly
stacks up. There are two basic ways to decrease the error of an arbitrary LDP protocol: increase ε
or increase n.

Increasing ε means taking an increasingly relaxed notion of privacy, to the point where the
precise statement of the guarantee may be statistically meaningless. Growing ε from 1 to 10,
say, may look relatively tame, but the consequence is that probabilities of different outcomes are
bounded by factors of exp(ε), which for ε = 10 is over 22,000. For protocols based on Random-
ized Response, the probability of reporting a false answer is 1/(exp(ε) + 1). For ε values of this
magnitude, almost every user is reporting their true information, and the guarantees of LDP are
consequently quite weak.

Increasing n is perhaps more defensible, but comes at a cost. The error rate decreases only with√
n, so to halve the error, we need to quadruple the number of participants. For more complex

protocols, this means that much larger user populations must be engaged to participate (honestly)
in the protocol. Concretely, in Google’s deployment, it was noted that at least 10,000 users must
report a phenomenon before a clear enough signal could be observed (Erlingsson et al., 2014). Ac-
cess to tens of thousands, if not millions, of users may be feasible for large technology companies,
but is out of reach for lesser groups. This may mean that LDP is primarily of interest only to a
minority of organizations.

Vulnerability to ‘poisoning’. So-called “poisioning” attacks on machine learning systems are
based on the idea of a manipulating a small amount of the training data to force the resulting
classifier to achieve poor results. Within the context of local differential privacy, this question asks
what influence a small number of colluding users can have on the results? It has been observed
that LDP is particularly vulnerable to data poisoning, more so than centralized DP (Cao et al.,
2019). The intuition for this is that the random perturbations of randomized response and similar
techniques lead us to reweight the averaged responses accordingly, to compensate for the cancel-
lation of the random noise. Input poisoning can take advantage of this reweighting, by throwing
all this weight in a particular direction. Different mechanisms vary in their susceptibility to such
poisoning (Cheu et al., 2019a), and while some mitigations exist, all LDP methods are vulnerable
to poisoning to some extent.

6.2 Alternate models

Federated Learning. The model of Federated Learning is similar to some of the LDP protocols
for model training we have seen. In Federated Learning, a central server shares a current model
with all users, who each evaluate the model on their local training data, and reply with their
suggested updates to the model. Most commonly, these updates are in the form of gradients,
which the server can combine by averaging to build the new model. In this form, no effort is made
to mask or manipulate the messages from the users. The idea is that, since the users’ data remains
under their control and is not directly shared with the server, they remain private. However, the
revealed gradients can inform on the users’ data, particularly if the model is crafted adversarially.
This leakage can be limited to just the server if the users establish a secure channel to the server.
In order to provide a stronger guarantee, some form of (differential) privacy can additionally be
enforced, and research is ongoing into how to achieve the best balance between privacy and utility
– see the recent extensive survey due to Kairouz et al. (2021).
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Distributed Noise Generation and Secure Multiparty Computation. The goal of the LDP model
can be summarized as protecting the input of each user through an appropriate privacy guarantee,
and ensuring that the view and output of a data analyst meets a differential privacy guarantee.
LDP achieves both simultaneously by enforcing the DP property for each user individually. This
implies that DP also holds at the analyst, but as we have seen the accuracy guarantee is weaker
than in the centralized DP model. An alternate approach is to use cryptographic techniques to
provide privacy for the users, so that the output of the analyst is DP (Dwork et al., 2006). We
compare against the centralized DP model, where a typical approach has the analyst compute the
exact solution, and add noise from an appropriate distribution (say, Laplace or Gaussian noise).
In the “distributed noise generation” approach, each user adds a small fraction (or “share”) of
that noise, so that the sum of these shares is distributed according to the overall target noise level.
This requires the target noise distribution to be “infinitely divisible”, but fortunately many distri-
butions appropriate for differential privacy have this property Agarwal et al. (2021); Bagdasaryan
et al. (2021); Ghazi et al. (2021); Pagh and Stausholm (2022). To put this into effect, “secure sum”
techniques can be used so that the analyst can derive the sum of the submitted (noisy) values,
without observing any of the inputs. We could delegate this task to a trusted entity (with a secure
hardware implementation), or via a distributed protocol using cryptographic techniques to com-
pute the sum Bonawitz et al. (2017); Bell et al. (2020). The key here is to ensure that the protocol
is robust to attempts to evade it, such as if some users collude with the analyst to try to discover
the value of one targeted user, and to handle cases when some users may drop out of the protocol
(e.g., mobile users moving out of communication range, or running out of battery).

Shuffling. The shuffling model of privacy alters the model of trust by introducing an interme-
diate step between the users and the data analyst. The intuition is that if we can break the link
between the message sent by a user and the identity of that user, then it becomes harder to draw
any inference about them, and we can obtain a higher level of (differential) privacy. In the shuf-
fle model, we imagine that there is a “shuffler” who sits between the users and the analyst, and
who receives all messages, removes all identifying information about the source, and reveals the
multiset of messages to the analyst. Under this model, it is possible to prove “privacy amplifi-
cation” results: that messages sent with a low privacy guarantee nevertheless provide a stronger
privacy guarantee at the analyst. As well as general amplification theorems, results have been
shown giving tight bounds for specific problems such as sums and counts (Bittau et al., 2017; Er-
lingsson et al., 2019; Balle et al., 2019; Cheu et al., 2019b). Importantly, it is observed that users can
follow an ε-local DP protocol to determine their (private) messages to the shuffler, and be assured
of a stronger ε′ DP guarantee for the overall outcome of the shuffled protocol. This motivates fur-
ther development of LDP protocols which can then be used as a building block within the shuffle
model.

To realize the shuffler in practice, we could instantiate a trusted entity to act as the shuffler,
who is relied upon to act independently of the analyst. However, this relies on a certain level of
trust, so we could instead seek to build a distributed shuffler via cryptographic “mix” networks.
There are close connections between distributed noise generation and shuffling: many protocols
in the shuffle protocol can be viewed as generating distributed noise, and vice-versa. This implies
that secure aggregation techniques can often be applied to build the histogram of outputs from a
shuffling protocol Bell et al. (2020).
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7 Concluding remarks.

Local Differential Privacy provides a clean definition of privacy that is appropriate for many com-
putations over large, distributed populations who wish to share their data under a suitable privacy
guarantee. Several large-scale deployments have demonstrated that LDP is practical for data col-
lection and analysis. However, since accurate and usable results require large populations and
larger values of privacy parameter ε, current approaches are reaching the limits of what can be
achieved effectively, and generalizations or extensions of the model may be required for more
advanced machine learning tasks with fewer participants while still giving strong privacy guar-
antees.
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