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ABSTRACT
Local differential privacy (LDP), where users randomly perturb
their inputs to provide plausible deniability of their data without the
need for a trusted party, has been adopted recently by several major
technology organizations, including Google, Apple and Microsoft.
This tutorial aims to introduce the key technical underpinnings of
these deployed systems, to survey current research that addresses
related problems within the LDP model, and to identify relevant
open problems and research directions for the community.
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1 MOTIVATION
The most impactful data science often relies on analysing data from
individuals that is considered highly sensitive — medical history,
personal interests and preferences, and opinions. In many cases it is
not feasible to gather the necessary sensitive information without
providing strong guarantees of privacy to the users in question.
The model of differential privacy can provide such guarantees, and
most recently the topic of local differential privacy (LDP) — where
users randomly perturb their inputs to provide plausible deniability
of their data without the need for a trusted party — has come to
the fore.

Local differential privacy has been adopted by several major
technology organizations, so the technology is used by hundreds
of millions of users daily. These companies include Google through
their RAPPOR system, to collect web browsing behaviour [12];
Apple’s implementation, that allows Apple and app developers to
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collect usage and typing history [22]; and Microsoft’s collection of
a variety of telemetry data over time [10].

The aims of this tutorial are to introduce the key technical un-
derpinnings of these deployed systems, and provide intuition on
how they work; to survey current research that addresses related
problems within the LDP model; and to identify open problems
and research directions for privacy. For this tutorial, we use the
deployed systems to exemplify and motivate the ideas that derive
from algorithms and theory. Participants will learn how an idea
from fifty years ago has found application in the 21st Century, and
how major companies are scaling this up to Internet scale.

2 OUTLINE OF THE TUTORIAL
This tutorial is intended to introduce SIGMOD participants to the
new but rapidly developing topic of Local Differential Privacy. Our
approach is practice-led, inspired by the large-scale deployments
of Locally Differential Private data collection by major technol-
ogy companies, including Google, Apple and Microsoft [9, 10, 12].
We structure the core of the tutorial around these three deployed
systems, using them to motivate the underlying algorithms, and
connecting out to the research literature that underpins them. In
more detail, our outline is given below.

2.1 Introduction and Preliminaries
We briefly motivate the need for tools for private data collection
and analysis, and introduce the definitions of Differential Privacy
and Local Differential Privacy (LDP). The first definition equivalent
to LDP came from the database community as “amplification” [13],
then came to prominence in the work of Duchi et al. [11]. We intro-
duce the most basic LDP mechanism, randomized response [6, 27],
which came from the survey design community, and masks a single
bit by tossing a biased coin. We also introduce the mathematical
tools to understand LDP, including unbiasedness, variance and
confidence tail bounds.

2.2 State of the Art Deployments
We describe three practical realizations of LDP algorithms for col-
lecting popularity statistics, and cover the development of these
ideas through the computer science research literature, and subse-
quent enhancements that have been proposed.

(1) RAPPOR fromGoogle, which combines Randomized Response
with Bloom Filters to compactly encode massive sets [12].
The application is to identify popularweb destinations (URLs),
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without revealing any individual user’s browsing habits. Sub-
sequent work from the same team has described how to effi-
ciently extract the identities of popular destinations without
prior knowledge of their URLs [14].

(2) Apple’s DP implementation was announced in 2016, and is
documented in a patent application [22] and subsequent
white paper [9]. The technique combines several technical
advances: using the Fourier transform to spread out signal
information, and sketching techniques to reduce the dimen-
sionality of the massive domain. In parallel, a rich stream
of literature has abstracted the problem of identifying Dif-
ferentially Private Heavy Hitters, progressively refining and
optimizing these techniques [2–4, 20, 25].

(3) Telemetry collection from Microsoft, which makes use of
histograms and fixed random numbers to collect data over
time [10].

2.3 Theoretical Foundations
Informed by these practical deployments, we then more formally
describe the LDP setting and give a brief overview of the history
of this concept. In the LDP setting, there is a set of users. The i-th
user possesses a private value vi in some domain D. These users
interact with an untrusted aggregator such that the aggregator
learns statistical information about the the distribution of the pri-
vate value in the user population, while the information leakage
for each individual is bounded. More specifically, a user perturbs
the private value vi using an algorithm π and sends π (v) to the
aggregator. The aggregator then processes the collected reports
to recover statistical information. The algorithm π (·) satisfies the
following property:

Definition 2.1 (Local Differential Privacy). An algorithm π satis-
fies ϵ-local differential privacy (ϵ-LDP), where ϵ ≥ 0, if and only if
for any input v and v ′, we have

∀y ∈ Range(π ) : Pr [π (v) = y] ≤ eϵ Pr [π (v ′) = y],

where Range(π ) denotes the set of all possible outputs of the algo-
rithm π .

We will discuss the history of this model and the relationship
of LDP to the classic DP definition. Specifically, in the standard (or
centralized) setting, each user sends raw data v to the aggregator,
who obtains the true distribution, adds noise, and then publishes
the result. In this setting, the aggregator is trusted to not reveal the
raw data and is trusted to handle the raw data correctly. But in the
local setting, each user perturbs the data locally and thus does not
have to trust the aggregator. In brief, LDP has a stronger privacy
model than DP, but entails greater noise. We will also cover the
refinements of the definition, i.e., the relationship between bounded
and unbounded definitions, node-based and edge-based definitions
(in graph problems), pure and non-pure definitions. We will also
describe composition theorems, including parallel, sequential, and
advanced composition in the local setting.

2.4 Frequency Oracles
We describe an abstraction of a core problem in LDP which has
attracted a lot of theoretical and practical attention. Protocols for
enabling the estimation of the frequency of any value in the domain

D are called Frequency Oracles (FO). A basic FO protocol generalizes
the Random Response protocol in [27] (which is defined for binary
values). It is specified as follows:

∀y∈D Pr [π (v) = y] =

{
eϵ

eϵ+ |D |−1 , if y = v
1

eϵ+ |D |−1 , if y , v

That is, we sample the true element with higher probability, and
all other elements with lower uniform probability. This protocol’s
accuracy degrades as the size of the domain D increases, because
the probability that a value is correctly reported, is approximately
inversely proportion to |D |. Several other FO protocols have been
proposed, including RAPPOR by Erlingsson et al. [12], Random
Matrix Projection by Bassily and Smith [3], and a mechanism based
on the Count sketch with Hadamard transform by Bassily et al. [2].

In recent work [24], authors of this tutorial introduced an ab-
stract framework of FO protocols, and showed that most previ-
ously proposed protocols can be placed within it. Protocols in this
framework share a common aggregation algorithm that produces
unbiased estimates of values. They also enable a convenient deriva-
tion of the estimation variance, which describes the accuracy of
the oracle. This enables us to compare different protocols; identify
new, more optimized FO protocols; and provide precise conditions
regarding which protocol one should use, depending on the domain
size and the privacy budget ϵ . In this part, we will use the approach
in [24] to organize and analyze FO protocols in the tutorial.

2.5 Current Research Directions
We will briefly describe some of the related quite recent results that
have been published on applying LDP to other domains.

• Heavy Hitter Identification. Here the goal is to identify the
values that are frequent. When the size of the domain is
small, this can be solved with an FO protocol. One simply
queries the frequency of every value in the range, and then
identifies the frequent ones. However, if the domain is very
large (e.g., 2128 or larger), finding the most frequent values
this way is computationally infeasible. The method proposed
by Thakurta et al. [22] identifies frequent byte at each lo-
cation, and uses semantic analysis to filter out meaningless
combinations. There are several related works in the pure
LDP setting: Hsu et al. [15] and Mishra et al. [18] provide
efficient protocols for heavy hitters, but the error bound
proved is higher than for the method proposed by Bassily
and Smith [3]. The follow-up work by Bassily et al. [2] pro-
posed TreeHist, which is shown to be more efficient and
accurate than that of Bassily and Smith [3]. Bun et al. [4]
proposed PrivateExpanderSketch with state-of-the-art the-
oretical performance. Concurrent work [25] gave the first
implemented protocol PEM.

• Itemset Mining. This problem considers the setting where
each user’s value is a set of items from the item domain.
Such a set-valued setting occurs frequently in the situation
where LDP is applied. For example, when Apple wants to
estimate the frequencies of the emojis typed everyday by
the users, each user has a set of emojis that they typed [23].
The problem is quite challenging even when one just tries
to find frequent items. Encoding each transaction as a single



value in the domain (power set of the original domain), and
using existing FO protocols does not work. An FO protocol
can identify only values that are very frequent in the popu-
lation, because the scale of the added noise is proportional
to square root of the population size [5]. It is quite possible
that each particular transaction appears relative infrequently,
even though some items and itemsets appear very frequently.
When no value in new domain is frequent enough to be iden-
tified, using a direct encoding an aggregator can obtain only
noise.
For example, assume that the transactions are {a, c, e}, {b,d, e},
{a,b, e}, {a,d, e}, and {a, f }, respectively. While no transac-
tion appears more than once, items a and e each appears 4
times, and the itemset {a, e} appears 3 times. Thus the three
most frequent itemsets are {a}, {e}, {a, e}.
To solve the problem, the LDPMiner protocol in [20] uses a
technique called “padding and sampling”. That is, each user
first pads her set of values with dummy items to a fixed size
ℓ, then randomly samples one item from the padded set, and
finally uses an FO protocol to report the item. When estimat-
ing the frequency of an item, one multiples the estimation
from the FO protocol by ℓ. Without padding, the probability
that an item is sampled is difficult to assess, making accurate
frequency estimation difficult.
Very recent work [26] proposes a protocol that provides
much better accuracy than LDPMiner within the same pri-
vacy constraints. The advantage comes from several key ob-
servations including privacy amplification under sampling,
which is known to hold in the centralized DP setting [16].

• Private location collection Data can often be represented as
points in multidimensional space—as a simple example, con-
sider user locations in two-dimensional space. Sketching
frequencies within multidimensional spaces, allowing recti-
linear counting queries to be answered approximately, and
identifying “hot spots” are primitives that could then be used
to build more sophisticated user activity models. Initial work
on this problem has extended LDP private frequency collec-
tion [7]. It is open to extend this to build more sophisticated
user movement models.

• Marginal distributions of multidimensional data. Given users
represented as points in multidimensional space, a natural
question is to extract distributions over subsets of dimen-
sions. Naively, we could materialize all possible subsets and
apply existing approaches, but this rapidly degrades the ac-
curacy. Instead, taking projections of the data via a Fourier
basis allows better reconstructions [8].

• Graph algorithms and synthetic graph modeling. Much sensi-
tive individual data is best represented as a graph—either a
simple graph between users, or a bipartite graph between
users and other entities. Recent work has aimed to build
accurate graph models under LDP [21].

• Language modeling. An application of private data collection
is to build better prediction models e.g., for typing on mobile
devices. Recent work has shown how to accurately and pri-
vately train sophisticated deep neural network models [17].

Finally, we will briefly connect to other models of privacy and
security, that adopt different assumptions and trust models. These
include contrasting with the centralized differential privacy model,
and achieving privacy by adding centralized noise via encrypted
data collection. We will also discuss other approaches from secure
multi-party computation, homomorphic encryption and private
information retrieval, amongst others, that achieve different trade-
offs.

2.6 Open Problems and New Directions
We will point to a number of directions for future work, based on
emerging trends in the literature.

• Multiple Rounds.Most deployed LDP protocols require the
user to follow a fixed protocol over their data, and send their
(perturbed) response for aggregation. More generally, we
could allow multiple rounds of interaction, where the aggre-
gator poses new queries in the light of previous responses.
This approach has been proposed for building machine learn-
ing models [19]. It is open to understand the power of multi-
ple rounds, compared to what is possible in a single round.

• Hybrid models. LDP gives a very strong protection to users,
at the expense of lower accuracy compared to a centralized
model with a trusted aggregator. Recent work has proposed
a hybrid model where some users follow LDP and some users
submit to a trusted aggregator, and both sets are “blended”
together [1].

• Theoretical underpinnings. Several works on LDP have started
to appear in the theory literature, addressing questions about
the power of LDP [3, 4, 11]: what are the lower bounds on the
accuracy guarantees (as a function of privacy parameter and
population size); is there any benefit from adding an additive
“relaxation” δ to the privacy definition; and minimizing the
amount of data collected from each user to a single bit.

3 INTENDED AUDIENCE AND
BACKGROUND KNOWLEDGE

We intend to make this tutorial accessible to all participants in
SIGMOD and PODS. Although there has been a vast amount of
research on the topic of privacy, even when narrowing to work on
Differential Privacy, the topic of this tutorial is quite accessible, and
does not require any familiarity with prior work. The emphasis is on
the design of scalable algorithms, with some consideration of how
these can be built into robust systems. To appreciate the correctness
and accuracy guarantees of the algorithms, some statistical tools are
needed. These are at the level of an introductory statistics course:
computing the variance of a discrete random variable, and using
this to provide confidence bounds. We will give a brief refresher
on the necessary tools, but will not provide detailed proofs of the
algorithms; rather, we will try to provide our insights into what the
guarantees mean, and where the different terms in the guarantees
arise from.
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