
Aggregate Query Answering on Possibilistic Data
with Cardinality Constraints

Graham Cormode Divesh Srivastava
AT&T Labs – Research

{graham,divesh}@research.att.com

Entong Shen Ting Yu
North Carolina State University
{eshen, tyu}@ncsu.edu

Abstract— Uncertainties in data arise for a number of reasons:
when the data set is incomplete, contains conflicting information
or has been deliberately perturbed or coarsened to remove
sensitive details. An important case which arises in many real ap-
plications is when the data describes a set of possibilities, but with
cardinality constraints. These constraints represent correlations
between tuples encoding, e.g. that at most two possible records
are correct, or that there is an (unknown) one-to-one mapping
between a set of tuples and attribute values. Although there has
been much effort to handle uncertain data, current systems are
not equipped to handle such correlations, beyond simple mutual
exclusion and co-existence constraints. Vitally, they have little
support for efficiently handling aggregate queries on such data.

In this paper, we aim to address some of these deficien-
cies, by introducing LICM (Linear Integer Constraint Model),
which can succinctly represent many types of tuple correlations,
particularly a class of cardinality constraints. We motivate and
explain the model with examples from data cleaning and masking
sensitive data, to show that it enables modeling and querying
such data, which was not previously possible. We develop an
efficient strategy to answer conjunctive and aggregate queries
on possibilistic data by describing how to implement relational
operators over data in the model. LICM compactly integrates the
encoding of correlations, query answering and lineage recording.
In combination with off-the-shelf linear integer programming
solvers, our approach provides exact bounds for aggregate
queries. Our prototype implementation demonstrates that query
answering with LICM can be effective and scalable.

I. INTRODUCTION

Lately, the data management community has invested much
effort in dealing with non-exact data, which may be incom-
plete, perturbed or masked such that conventional database
systems fail to manage them effectively [1], [2], [3], [4].
Such uncertain data arises in many domains, including data
integration, data cleaning, anonymization and others, all of
which naturally result in large amounts of non-exact data.

Many approaches have been proposed to manage uncer-
tainty in databases. Among these, models which can handle
tuple-level correlations among uncertain tuples [1], [3], [5], [6]
are particularly important, due to the dependencies between
tuples that often occur in real data. For instance, records
generated by a sensor network naturally have correlations
in space and time. However, the correlations which we call
cardinality constraints, are prevalent in real applications but
are rarely explicitly handled in prior work. Consequently,
existing systems do not effectively answer queries with such
constraints. In this paper we focus on modeling and query an-

swering on this type of correlated data. We first introduce and
motivate cardinality constraints in two different applications:

Example 1: Suppose that in a data cleaning and integration
scenario we have five different records of the address of the
same customer, arising from different sources. It is known that
at least one and at most two out of the five records are correct
(home and office addresses). Without further information or
conflict resolution rules, it is reasonable to retain all five
records in an uncertain database to reason over. Then all anal-
ysis must respect the constraint on the cardinality expressed
above. For example, suppose that the data is to be used to
plan an advertising campaign. An example query to ask is
‘At most how many regions are there in the United States
having more than a thousand of our customers?’. Answering
this query requires us to place a (tight) upper bound on the
answer, based on the cardinality constraints in the data.

Example 2: Cardinality constraints also arise in data which
has had its precision reduced to provide privacy. For instance,
the sensitive attributes (e.g. disease) of a group of individuals
may be permuted such that there exists a bijective mapping
between the group of individuals and the group of attributes.
Suppose that {Alice, Bob, Carol} is associated with {flu,
cancer, heart disease}. The cardinality constraint encoded
is twofold: each entity has exactly one attribute and each
attribute is associated with exactly one entity. In this example
a researcher would like to know ‘At least how many male
patients are there who do not have cancer?’.

These sorts of cardinality constraints over possibilistic data
are quite natural and common. However, no existing models
provide ways to directly model them, instead requiring awk-
ward formulations or exhaustive enumeration. In possibilistic
data with cardinality constraints, we typically want to answer
aggregate queries (as in our motivating examples), about sums
or counts of values in the data, or conditions on cardinalities
like having COUNT > d. But existing work on uncertain
data provides weak support, if any, for aggregation. While cor-
relations between tuples are handled by many working models
[3], [1], [5], [4], these do not adequately handle cardinality
constraints. Their focus has been on more logical constraints
(implications, mutual exclusions or co-occurrences) which,
while expressive, do not naturally capture cardinalities.

In this work we introduce a new model for representing and
querying data with cardinality constraints, the Linear Integer
Constraint Model (LICM) and show that it succinctly repre-

sents a variety of data with cardinality constraints (and other
simpler correlations as well). LICM takes advantage of integer
valued variables and linear constraints on those variables. As
for query processing, rather than querying each possible world
encoded by LICM, we instantiate the behavior of relational
operators so that query processing can take place within the
LICM framework. In line with the motivating examples, we
focus on providing upper and lower bounds on aggregate query
answers: without further semantics of the uncertain data, we
must consider all consistent possible worlds, and hence seek
to bound these answers. The exact upper and lower bounds
provide us two extreme points on the spectrum of the query
answers, which can be further used for best/worst case analysis
to answer queries like those in Examples 1 and 2. The bounds
are implied by a collection of linear integer constraints which
encode the lineage of tuples. This problem naturally forms
a binary integer programming (BIP) problem, which we can
solve using off-the-shelf linear programming solvers to obtain
the exact minimum and maximum values of aggregate queries.
Modern solvers are able to handle large optimization problems
very efficiently [7]. They can exploit the structure within the
BIP instances generated, and solve efficiently even for 105 to
106 variables and constraints, as we confirm in experiments.

To make the presentation more concrete, we provide ex-
amples of the LICM approach in the context of imprecise
transaction data, in the form of set-valued data with cardinality
constraints. In set-valued data, each logical entity is associated
with a set of values. Examples of such data include retail
transaction information, health care records and search logs.

Contributions. We summarize our contributions as follows:

• We propose LICM, a novel working model for uncertain
data that can succinctly represent data with complex corre-
lations among tuples including cardinality constraints. We
show that it is complete for finite sets of possible worlds and
it is closed under conjunctive relational algebra by carefully
devising the set of linear constraints which correctly encode
the semantics of each operator. This implies a systematic
method for query answering.
• LICM compactly integrates encoding of correlations, query

processing and data lineage such that it does not necessitate
explicit lineage representation or materialization of possible
tuples, as required in prior work. LICM is able to answer
queries in a purely relational way which does not introduce
new operators and thus can benefit from existing query
optimization techniques. (Section III and IV)
• Using LICM, it is possible to obtain not only the expected

value of an aggregate query, but also the upper and lower
bounds which are useful for best/worst case analysis by
naturally formulating the LICM representation of the query
answer as a binary integer programming problem. The
bounds of aggregate query answers can be found readily
using off-the-shelf integer program solvers. (Section IV-D)
• We conduct extensive experiments to evaluate the effec-

tiveness and efficiency of LICM approach and compare it
to the Monte-Carlo sampling approach. The experimental

results show that LICM combined with linear programming
solvers can efficiently and accurately compute bounds on
aggregate query answers over uncertain data. (Section V)

II. RELATED WORK

In this section, we show that while the various models intro-
duced have many strengths, they cannot work with cardinality
constraints well. Specifically, we note that in all prior work,
either the models do not naturally represent these constraints
(making it impossible or very expensive to represent the input),
or they do not support efficient answering of aggregate queries
that we focus on (they either omit aggregation operations,
or require exploration of exponentially many possibilities).
Consequently, we conclude that new approaches are needed
for the problems described in the introduction.

ULDBS, WSDs and U-relations. ULDBs [3] are a represen-
tation system that deal with both uncertainty and lineage. The
underlying model uses ‘x-tuples’ plus three-valued logic to
represent the uncertain data. The model itself is not complete.
But integrated with lineage information, it facilitates the cor-
relation and coordination of uncertainty in query results with
uncertainty in the input data. Antova et al. [2] introduce world-
set decompositions (WSDs) which lists several components
whose Cartesian product reconstitutes the full relation. U-
relations extend WSDs by introducing an extra column D
which encodes the conditions for each tuple to occur, based
on variables, and a table containing possible assignments of
variables [1]. E.g., condition x→ 1,y→ 2 indicates that the
tuple exists only when the variable x is set to 1 and y to
2. Ranging over all assignments to variables provides the set
of possible worlds. This is effective in encoding correlations
such as alternatives, but does not naturally allow cardinality
constraints. In Example 1, representing the constraint that
exactly 1 or 2 out of 5 possibilities are true seems to require
enumerating all possibilities.

Similarly, consider the uncertain transaction data in Figure
2(a), where some items in the transaction are only known
approximately, according to the hierarchy in Figure 2(b): the
“alcohol” in Transaction T1 could be any non-empty subset
of {Beer, Wine, Liquor}. Representing this knowledge in U-
relations is cumbersome: Figure 1 illustrates one possible
encoding which enumerates all the non-empty subsets. Even if
we can represent our data in this form, there has been no work
on answering aggregate queries over U-relations.1 Hence,
U-relations and its antecedents do not apply to problems
involving cardinality constraints.

Probabilistic Graphical Models. Probabilistic graphical mod-
els [6], [5] represent a popular class of models used to handle
correlations in probabilistic data. The probabilistic and/xor
tree model [5] generalizes the Block-Independent Disjoint
model by considering combinations of two types of correla-
tions (co-existence and mutual exclusion) between tuples or
attributes. Again, we consider the constraint from Example 1

1Where aggregates have been considered, they required enumeration of
exponentially many possible worlds, or give bounds only on expected values.

TID LNodeID D TID LNodeID D
T1 Beer x→ 1 T1 Liquor x→ 5
T1 Wine x→ 2 T1 Wine x→ 6
T1 Liquor x→ 3 T1 Liquor x→ 6
T1 Beer x→ 4 T1 Beer x→ 7
T1 Wine x→ 4 T1 Wine x→ 7
T1 Beer x→ 5 T1 Liquor x→ 7

x 7→ {1,2,3,4,5,6,7}
Fig. 1. U-relation encoding of first alcohol item in Fig 2(a)

that exactly 1 or 2 out of 5 tuples exist. Certainly this can be
represented as the mutual exclusivity of the 15 possibilities
(10 worlds of two items, and 5 of one), but this enumeration
is unacceptable when the number of possible tuples in a block
is large (e.g., up to 20) because of the exponential number
of possibilities encoded. Other models use Bayesian networks
to capture more general correlations [6]. These models rely
on factored representations to allow computation of the joint
distribution of all possible tuples as a product of distributions
over pairwise (or small groups of) correlated tuples.

Across all methods based on probabilistic representations of
data, some fundamental roadblocks arise to representing data
with cardinality constraints. In our motivating examples, the
input does not provide probabilities of different events, only
a description of the possibilities, and we require reasoning
over all of these to correctly answer aggregate queries. That
is, there is no meaningful way to assign probabilities to the
different possibilities. It is tempting to make some uniformity
assumptions (treat all outcomes as equally likely), but this
gives a false semantics which is not consistent with the original
description of the data. Query answering over probabilistic
data, when it has considered aggregate queries, has tended
to stick to simple expected values or approximations of the
distribution of answers, which are necessarily vague about
extremal values [8]. Moreover, they do not offer solutions
which do not require exponential enumeration of all possibili-
ties. Other systems support efficient implementations of Monte
Carlo methods [9], [12], but empirically we show that such
sampling does not explore the full range of possibilities. Thus,
these approaches do not provide correct answers for queries
such as those described in Examples 1 and 2.
C-tables. The c-tables model [10] and its generalizations form
a very powerful collection of models. Indeed, our proposed
model (as well as U-relations, ULDBs, etc.) can be seen as
instances of the c-tables framework with a restricted type of
constraints. Previously, there has been little effort to actually
implement such powerful models, due to the difficulties in
supporting efficient query processing, particularly for the ag-
gregates we focus on. The strength of LICM lies not only in
its representation but more importantly the ability to actually
answer a wide range of complex queries.
Constraint-based Methods. Many papers have used con-
straints to help model correlations in data, and search for satis-
fying solutions, which is broadly similar to our approach. The
areas of constraint programming and constraint networks [11]
consider ways to encode and solve problems with constraints.

Our work adds to this area: to the best of our knowledge, there
has been no work which encodes the cardinality constraints
of the form we consider here and discusses how to apply
query operators to manipulate the representation. Recent work
in parallel to this [12] discusses sampling only those possi-
ble worlds which satisfy some global aggregate constraints.
While ostensibly similar, the problem differs from ours since
uncertainty is only over tuple values, and techniques provide
a sampling mechanism, not a data model.
Summary of Prior Works. Our survey encompassed many
more works than there is room to discuss in detail; instead,
we have tried to highlight representative examples and expand
on the common features present. Overall, while there are
many prior efforts relating to various aspects of our work,
such as encoding uncertainties, or reasoning via constraints,
we did not observe any prior work which is able to capture
exactly the space of possible worlds and efficient solutions
of LICM for problems involving cardinality constraints. Some
models are (much) more general, such as c-tables, but these
then suffer since it is unknown how to efficiently answer
queries: we deliberately ensure that the model is limited to
linear constraints, since these are expressive while producing
an optimization problem which is efficiently solvable.

III. LINEAR INTEGER CONSTRAINT MODEL

We adopt a common interpretation of an uncertain database
as a finite set of deterministic database instances D =
{D1,D2, . . . ,D|D|}, which we call possible worlds. Each world
is a distinct subset of the tuples present in D. Note that explicit
representation and query answering on every possible world
is usually not feasible because the number of possible worlds
is exponential in the number of tuples in the database. We
seek more efficient ways to represent and query the data. As
discussed in Section I, cardinality constraints occur naturally
in many application domains.

Definition 1 (Cardinality constraint): Given a set S of pos-
sible tuples, let S̃ ⊂ S be a set of tuples in a possible world.
Cardinality constraints are of the form Z1 ≤ |S̃| ≤ Z2, where
Z1,Z2 are integers.

Example 3 (Permutation Constraints): A constraint on a
collection of tuples that requires them to have a bijective
mapping to an equal-sized collection of values (permutation
constraints) can be seen as a special case of cardinality
constraints. Recall Example 2 which had such a constraint.
Let T ID = {tid1, tid2, . . . , tidn} be a set of tuple IDs which
has one-to-one mapping to a set of possible values V =
{v1,v2, . . . ,vn}. We have the following cardinality constraints:
For each i, among Si = {(tidi,v1),(tidi,v2), . . . ,(tidi,vn)}, only
one tuple exists (in any possible world); for each j, among
S j = {(tid1,v j),(tid2,v j), . . . ,(tidn,v j)}, only one tuple exists.

Definition 2 (LICM relation): An LICM relation R is a
collection of tuples {t1, t2, . . . , tn} of schema {A1, . . . ,Ak,Ext},
where Ai, i = {1, . . . ,k}, are attributes over finite domains and
Ext is a special attribute indicating the existence of each tuple.

For each tuple t ∈R, the Ext attribute can be either ‘1’ which
confirms the occurrence of t, or a binary variable bi ∈ {0,1}

TID Items Purchased
T1 {Alcohol, Shampoo}
T2 {Alcohol, Shampoo}
T3 {Liquor, Health Care}
T4 {Liquor, Health Care}
T5 {Shampoo}
T6 {Shampoo}
(a) Uncertain transaction data

All

Beer Wine Liquor

Alcohol Health Care

Diapers Pregnancy test Shampoo

(b) An example generalization hierarchy for items

TID ItemName Ext
T1 Beer b1
T1 Wine b2
T1 Liquor b3
T1 Shampoo 1

b1 +b2 +b3 ≥ 1
(c) LICM encoding of T1 in Fig. 2(a)

Fig. 2. Example data set and different encodings of generalized data

which indicates t is a maybe-tuple.
Definition 3 (LICM database): An LICM database D is a

tuple (R,C), where R is a set of LICM relations and C is a
set of linear constraints on binary variables that may appear
in the LICM relations in R.
Let B = {b1,b2, . . . ,b|B|} be the set of all binary variables
appearing in D. A linear constraint Ci : fi(B) θ Z is a linear
function fi with respect to B⊆ B, an operator θ ∈ {=,≥,≤}
and an integer Z.

Example 4: Figure 2(c) shows an LICM database for the
first transaction in Figure 2(a) with the generalization hierar-
chy of Figure 2(b). The uncertain transaction data set can be
stored in a table TRANSITEM(TID, ItemName, Ext). The
first three tuples are maybe-tuples subject to the constraint
below the tuples, ensuring that at least one of them is present.
The last tuple (T1,Shampoo) exists in every possible world.

We next define the semantics of an LICM database, i.e., the
set of possible worlds defined by D. Given an LICM database
D = (R,C), a possible world is obtained when a value of 0 or 1
is assigned to each of the binary variables in B. An assignment
A is valid if it satisfies all the linear constraints in C. Given a
valid assignment, we eliminate all tuples t inR with t.Ext = 0.
An instantiation of D is given by the remaining tuples

A(D) = {t(a1,a2, . . . ,ak) | t.Ext = 1, t ∈ R,R ∈R}
Each instantiation represents a possible input database that

is consistent with the description provided by D. Thus, an
LICM database D defines the set of databases (the possible
worlds) that are instantiated by all the valid assignments.

The introduction of variables is one of the major techniques
to represent uncertain information in a database, such as
c-tables and U-relations. In the original c-tables approach,
variables can be associated with both tuples and attributes,
and arbitrary constraints can apply to variables, making it
very powerful. Hence, it is challenging to maintain data in
the full model, and to evaluate queries. Although LICM only
allows linear constraints and association of binary variables
with tuples, it does not affect its expressiveness: any finite set
of database instances can be described by an LICM database.

Theorem 1 (Completeness): LICM is complete for uncer-
tain databases. That is, given any finite set of database in-
stances D, there exists an LICM database D that defines D.

Proof: Let D = {D1,D2, . . . ,Dn} be a finite set of
database instances. Let T denote all the tuples in D. Then
every database instance consists of a collection T ⊆ T of
tuples. Suppose each tuple ti ∈ T is associated with a binary
variable bi indicating the tuple’s existence. Then any finite set

of possible worlds can be represented in disjunctive normal
form (DNF) over the binary variables. In the DNF representa-
tion each disjunctive component represents a database instance
D j by conjoining all the binary variables in either positive
form bi or negation form ¬bi, depending on the existence (or
non-existence) of ti in D j. Each assignment of truth values
to binary variables for which the DNF form evaluates to true
corresponds to one of the possible worlds.

We convert the DNF to conjunctive normal form (CNF)
using the standard method. Each conjunctive component must
be true. Since for each component the binary variables are in
disjunctive form, we can add all bi of positive form and all
(1−bi) for bi in negation form and let the sum ≥ 1. Writing
linear expressions in this way for all conjunctive components
encodes all the possible worlds exactly.
Succinctness. Given a set S of possible uncertain tuples, LICM
represents cardinality constraints over S succinctly using |S|
tuples and corresponding cardinality constraints. Each maybe-
tuple is associated with a binary variable, and the linear
constraints are written as cardinality constraints on the sum of
all those binary variables. The compactness of LICM comes
from the expressive power of linear constraints over binary
variables and a natural match between LICM and cardinality
constraints. In Figure 2(c), LICM concisely represents the
same semantics as in Figure 1.

Other Correlations. The linear constraints over binary vari-
ables in LICM can naturally represent not only cardinality
constraints but also other common correlations.

Example 5: Suppose two uncertain tuples t1 and t2 are
associated with binary existence variables b1 and b2 respec-
tively. Then linear constraints can easily capture the following
correlations: Mutual exclusion: b1 + b2 = 1; Co-existence:
b1−b2 = 0; Material implication (t1→ t2): b1−b2 ≤ 0

In fact, linear constraints over binary variables can repre-
sent arbitrary correlations between tuples, as any correlations
describe a set of possible worlds and can be encoded via the
method in Theorem 1. For disjunctive constraints, LICM may
need to perform the costly DNF to CNF conversion. But, as
shown above, LICM represents common correlations including
cardinality constraints directly and compactly.

IV. QUERY ANSWERING WITH LICM

In this section we describe how conjunctive and aggregate
queries can be processed in the LICM framework by redefining
the behaviors of relational operators. Since an LICM database
D describes a set of database instances D = {D1,D2, . . . ,Dn},

TID ItemName Ext
T1 wine b1
T1 liquor b2
T2 beer 1

b1 +b2 ≥ 1
(a) R1

TID ItemName Ext
T1 wine b3
T2 beer b4

(b) R2

TID ItemName Ext
T1 wine b5
T2 beer b4

Constraints
b1 +b2 ≥ 1, b5 ≤ b1,
b5 ≥ b1 +b3−1, b5 ≤ b3,

(c) R1 ∩R2

Fig. 3. Query answering example in LICM

the semantics of a query Q(D) is to evaluate Q(Di) for each
instance Di. As in [10], our approach is to translate Q to Q′ on
the data representation, so that the evaluation of Q′ encodes
the answers to Q(Di), i = 1 . . .n. This is much more efficient
than explicitly evaluating the query on each Di separately.

A. Overview

Example 6: Figure 3 gives an example of how relational
algebra operators can be applied to LICM representations,
and obtain results which are also in LICM form. Given two
LICM databases in Figure 3(a) and Figure 3(b), to process
the intersection operator in LICM, we create a new variable
b5 and link it to its lineage variables b1 and b3 by a set of
new constraints shown in Figure 3(c). The tuple (T1,wine) is
in R1 ∩R2 (i.e., b5 = 1) if and only if b1 = 1 and b3 = 1.
This can be represented by a set of linear constraints: b5 ≤ b1,
b5 ≤ b3 and b5 ≥ b1 +b3−1. If either b1 or b3 is 0, b5 must
be 0 to satisfy this set of constraints.

The way LICM processes queries has advantages over exist-
ing models. First, the linear constraints over binary variables
integrate representation, query answering and data lineage as
a whole. Data lineage is recorded implicitly in the constraints
and can be traced when necessary. Second, LICM does not
require materializing the possibilities of tuples throughout the
entire process of query evaluation. In contrast, ULDB requires
traditional query evaluation over all the alternatives of the
base x-relations, and the poss operator in U-relations generates
the set of all possible tuples [1], [3]. Finally, LICM does not
require a new approach to query optimization, since it does
not introduce new operators.

As can be seen from the above example, the biggest
challenge is how we can reason with linear constraints in a
systematic and compact way, i.e., how to devise the set of
variables and constraints which correctly encode the semantics
of an operator. Now we give the details of the algorithms.

B. Translation of Conjunctive Operators

Selection σ . The behavior of the selection operator σ in
LICM framework is natural: given an LICM relation R(A,Ext)
with constraint set C and a selection predicate σAθd , the
output LICM relation contains all tuples which satisfy the
predicate, along with constraint set C. The constraints are
kept unchanged. Some constraints may become irrelevant
after selection; these can be dropped, or allowed to remain:

Algorithm 1 Projection πT ID(R)
1: R̃← /0; C̃←C;
2: for all Ti : (Ti, Itemi,Exti) ∈ R do
3: if ∃(T ID, Item,Ext) ∈ R|(T ID = Ti)∧ (Ext = 1) then
4: R̃← R̃∪{(T IDi,1)}
5: else
6: R̃← R̃∪{(Ti,b)} for new variable b
7: T ←{(T ID j,b j)|T ID j = Ti,(T ID j, Item j,b j) ∈ R}
8: ∀t j = (T ID j,b j) ∈ T : C̃← C̃∪{b≥ b j}
9: C̃← C̃∪{b≤ ∑t j∈T b j}

Algorithm 2 Intersection R1∩R2

1: R̃← /0; C̃←C1∪C2
2: for all ti = (T IDi, Itemi,Exti) ∈ R1 do
3: if ∃t j ∈ R2 : T IDi = T ID j ∧ Itemi = Item j then
4: if (Exti = Ext j)∨ (Ext j = 1) then
5: R̃← R̃∪{ti}
6: else if Exti = 1 then
7: R̃← R̃∪{t j}
8: else
9: R̃← R̃∪{(T IDi, Itemi,b)} for new variable b

10: C̃← C̃∪{b≤ bi,b≤ b j,b≥ bi +b j−1}

the solver will eliminate them later. Note that selection and
projection (introduced below) operators in LICM can only be
posed over the normal attributes, i.e., they cannot explicitly
reference the special Ext attribute.

Projection π . The projection operator in relational algebra
enforces set semantics instead of the bag semantics in SQL.
So duplicate tuples (regardless of Ext attribute) should not
appear in the resulting relation. Without loss of generality,
consider an LICM relation R(TID, ItemName, Ext) with
constraint set C. Note that the special attribute Ext is always
present in an LICM relation. Let D̃ = πT ID(D) = (R̃,C̃). For
each distinct T ID, if some instance is certain to exist, then a
certain tuple is added to R̃, else a maybe-tuple is added whose
presence depends on the existence of any previous tuple with
a matching T ID. Algorithm 1 formally defines the behavior of
π under LICM. We illustrate the algorithm with an example:

Example 7: Let D be the LICM relation in Figure 4(b). To
build πT ID(D), observe that T2 will certainly appear in πT ID(R)
because of tuple (T2,Wine,1). T1 should be present if any of
b1,b2 and b3 is true. We first associate T1 with a new binary
variable b8 and put (T1,b8) in πT ID(R). New constraints

b8 ≥ b1 b8 ≥ b2 b8 ≥ b3 b8 ≤ b1 +b2 +b3
are added to πT ID(C) to encode these semantics. A similar
process can apply to T3, but an optimization is to observe
that T3 is unique in D, so R̃ can contain (T3,b7). The
resulting table has constraints as defined above and πT ID(R) =
{(T1,b8),(T2,1),(T3,b7)}.
Intersection ∩. Given two LICM databases D1 = (R1,C1) and
D2 = (R2,C2) with schema R(TID, ItemName, Ext), the
intersection D = D1 ∩D2 = (R̃,C̃) is defined in Algorithm 2.
The logic is that a tuple exists in the intersection only if it
exists in both input relations. The existence of the new tuple
is then derived from the existence of the tuples from each input

)(,R TID It mNamee

ItemName Shampoo
or Diaper
or Pregnancytest

! !"

! !

! !

, ()TID COUNT ItemName Cnt
!

2Cnt
!

(*)Count

'R

''R

(a) Example query tree

TID ItemName Ext
T1 Pregnancy test b1
T1 Diapers b2
T1 Shampoo b3
T2 Wine 1
T2 Shampoo b6
T3 Pregnancy test b7

(b) Example LICM relation

Fig. 4. Query answering in LICM

relation. Note that new variables and constraints are created
when ti and t j are two maybe-tuples in R1 and R2 and their
normal attributes match exactly (they need not match on Ext).

The rules to handle Cartesian product (Algorithm 3) are
very similar to those of Intersection, as the combination of
two maybe-tuples exists in the resulting relation if and only
if their binary variables will both be assigned 1. Since Join
can be decomposed to a Cartesian product, a selection and
a projection, we do not explicitly define a join algorithm: an
efficient join operator is built by combining these definitions.

A salient feature of query answering with LICM is that by
carefully devising a set of linear constraints, each relational
operator is processed in a deterministic way, i.e., given an
assignment to the variables in the input tables to an operator,
there exists only one correct assignment of the variables in
the output tuples which satisfy that set of constraints. The
correctness of the above algorithms can be easily verified by
checking the truth table of each operator. Compared to other
uncertain data models, query processing in LICM is much
more self-contained and direct. It does not require a rewrite of
the original query Q to incorporate new operators like ‘merge’
in the U-relations model [1]. Nor does it need to express and
extract lineage information explicitly like in ULDBs [3]—
lineage is implicitly encoded in LICM through addition of new
variables and constraints. Moreover, since we only redefine
the behaviors of operators rather than rewriting the query, the
same space of query plans exists as in the traditional relational
case (e.g. selections can be pushed down). Since the LICM
operators are deterministic, the answers from equivalent query
trees will be equivalent even though the sets of variables and
representations of constraints may differ.

C. COUNT and SUM Operators

COUNT and SUM are not core relational algebra operators,
but queries involving these operators are extremely common
and useful in practice, and hence are central to our efforts.
According to their positions in the query tree, aggregate
operators may be handled in the following cases:

Aggregation at the top. If a COUNT operator appears at
the top of the query tree, the count is exactly the sum of all
Ext values in the final relation. For example, for the LICM
database described in Figure 3(a), a query asks for the number
of transactions in which the ItemName attribute is ‘beer’ or

Algorithm 3 Product R1×R2

1: R̃← /0; C̃←C1∪C2
2: for all ti = (T IDi, Itemi,Exti) ∈ R1,

t j = (T ID j, Item j,Ext j) ∈ R2 do
3: if Exti = Ext j then
4: R̃← R̃∪{(T IDi, Itemi,T ID j, Item j,Exti)}
5: else if Exti = 1 then
6: R̃← R̃∪{(T IDi, Itemi,T ID j, Item j,b j)}
7: else if Ext j = 1 then
8: R̃← R̃∪{(T IDi, Itemi,T ID j, Item j,bi)}
9: else

10: R̃← R̃∪{(T IDi, Itemi,T ID j, Item j,b)} for new b
11: C̃← C̃∪{b≤ bi, b≤ b j, b≥ bi +b j−1}

Algorithm 4 Intermediate COUNT operator
1: R̃← /0; C̃←C
2: Case 1: COUNT≤ d
3: if m+n≤ d then
4: R̃← (T,1)
5: else if n≤ d then
6: R̃← (T,b) for new variable b
7: C̃← C̃∪{d−n+1≤ (d−n+1)b+∑

m
i=1 bi}

8: C̃← C̃∪{m≥ (m−d +n)b+∑
m
i=1 bi}

9: Case 2: COUNT≥ d
10: if n≥ d then
11: R̃← (T,1)
12: else if m+n≥ d then
13: R̃← (T,b) for new variable b
14: C̃← C̃∪{(d−n)b≤ ∑

m
i=1 bi}

15: C̃← C̃∪{d−n−1+(m−d +n+1)b≥ ∑
m
i=1 bi}

‘wine’. The COUNT operator is applied in the end after the
desired tuples have been selected. Then it is straightforward
to obtain an expression for the total count as b1 +1.

Similarly, when SUM is applied over a constant numeric
attribute (such as the sum of prices of a subset of items),
the result is exactly the sum of each value multiplied by the
corresponding Ext value. Other aggregates, such as MIN and
MAX can also be handled in a similar way to SUM and COUNT,
using case based reasoning to encode their effect in LICM. To
focus the discussion, for the remainder of the paper we study
the more common case of COUNT.
COUNT in the middle. In more complex queries the COUNT
operator may also appear in the middle of the query tree. In
this case, it is usually associated with a selection immediately
above it. In order to more easily represent the resulting relation
in LICM, we handle count and selection together and consider
a count predicate COUNT θ d. To better illustrate how the count
predicate is handled in LICM, we provide an example.

Example 8: Consider the query “Count how many transac-
tions include ≥ 2 ‘Health Care’ items” on the dataset shown
in Figure 4(b) (the constraint set is not shown). The corre-
sponding query tree, in Figure 4(a), is evaluated bottom-up.
Tuple (T2,Wine,1) is dropped by the first selection operator.
Considering the count and selection on the count together, T2
cannot appear in R′′ because only one tuple involving T2 exists
in R′. The same logic excludes T3. Tuple T1 in R′′ is uncertain,
depending on b1,b2 and b3. Hence a new binary variable b8

is created and (T1,b8) is put in R′′, while constraints

b1 +b2 +b3 ≥ 2b8 b1 +b2 +b3−2b8 ≤ 1

encode the desired semantics that
b1 +b2 +b3 ≤ 1 ⇐⇒ b8 = 0
b1 +b2 +b3 ≥ 2 ⇐⇒ b8 = 1

The count predicate operator semantics are defined formally
in Algorithm 4, and its correctness is established as follows.

Correctness of Algorithm 4. Let D = (R,C) be the input
LICM database and D̃ = (R̃,C̃) be the output database of a
count predicate COUNT θ d. Suppose there are m + n tuples
relevant to the transaction T (or item) to be counted in R,
of which m are maybe-tuples with binary variables b1, . . . ,bm
and the remaining n tuples are certain (have ‘1’ in the Ext
attribute). Algorithm 4 defines the conditions for T to appear
in R̃. We argue the correctness of this algorithm for a COUNT
operator in the middle of a query tree by case analysis. For
count predicate COUNT≤ d,
1. If m+n≤ d, regardless of the assignment of b1, . . . ,bm, the
count predicate is satisfied and R̃ should include (T,1).
2. If n > d, regardless of the assignment of b1, . . . ,bm, the
count predicate is violated and R̃ should not include T .
3. Writing B = ∑

m
i=1 bi, we show that

d−n+1≤(d−n+1)b+B (1)
m≥(m−d +n)b+B (2)

implies
n+B≤d ⇐⇒ b = 1 (3)
n+B >d ⇐⇒ b = 0 (4)

For (3) and (4), the ⇐ direction can be directly proved by
letting b = 1 in (2) and b = 0 in (1) respectively. For the ⇒
direction in (3) and (4), we prove by contradiction. For (3)
given B+n≤ d, assuming b = 0 contradicts (1), so b must be
1. For (4) given B+n > d, assuming b = 1 contradicts (2), so
b must be 0. The case for COUNT≥ d follows the same outline.

D. Aggregate Query Answering

The result of processing a query in the LICM framework is
an LICM relation which accurately describes the set of possi-
ble worlds consistent with the query. That is, any instantiation
of the result table provides the answer to the query for the
corresponding instantiation of the base table(s). For the case
when the final operator of the query is an aggregate, such as
the ‘COUNT(*)’ queries described in previous sections, we
describe two types of query answers:

Expected Value. A natural way to obtain expected query
answer is the “Monte Carlo” approach, which picks an arbi-
trary world from the space of possible worlds to evaluate the
query on. Aggregate queries can take the average of multiple
repetitions. However, we point out that this approach to
query answering is statistically unprincipled. That is, given
uncertain data describing many possibilities, we have no basis
for attaching probabilities to any outcomes. The Monte Carlo
approach implicitly assumes that all possibilities are equally
likely, and produces expected values based on this assumption.

But all we know for sure is that the “true” world is somewhere
amongst the (many) possibilities, and thus the true query
answer may be far from that found by Monte Carlo. The only
correct approach to query answering is to consider the full
range of possibilities.

Upper/Lower Bounds. There are many possible answers to
queries. A compact way to summarize these is to give the
range of query answers: note that Examples 1 and 2 precisely
ask for the upper and lower ends of this range, respectively.

The LICM framework allows a novel approach to finding
bounds on answers. Since the constraints over the final table
effectively encode the “lineage” of each tuple, the maximum
(or minimum) value of an aggregate query is exactly the
solution to an optimization problem P defined by R̃ and C̃.
In the case of a COUNT query, the objective function is the
summation of Ext attributes of the tuples in R̃, and the
constraint set of P is precisely C̃. This gives a binary integer
programming (BIP) instance to solve.

To obtain upper (resp., lower) bounds on an aggregate query,
we search for a maximum (minimum) solution to the corre-
sponding BIP problem. While we could define algorithms and
heuristics to find the extremal values of queries on a case-by-
case basis, by adopting the more uniform LICM method, we
remove the need for this. Instead, we can take advantage of the
huge effort that has gone into building solvers, which already
implement many techniques, such as pre-solving, cutting plane
methods, branch-and-bound, branch-and-cut, etc. Note that the
problems we want to solve are often hard in the worst case.
For example, even for simple queries, finding tight bounds has
been shown to be NP-Hard, based on adversarially constructed
inputs [13]. Thus, it makes sense to use solvers which can
cope with such problems in the worst case, and will find good
solutions quickly in non-worst case settings.

The solver can exploit the structure of our BIP problem—
each constraint contains only a very small number of
variables—and solve it efficiently even for hundreds of thou-
sands of variables and constraints [7]. Moreover, the solution
vector (assignment to B) found by the solver that achieves the
extreme bounds identifies the corresponding possible world.
This is useful in identifying the “boundary cases”, and in
demonstrating the extreme possibilities which are consistent
with the uncertain data.

V. EXPERIMENTAL STUDY

A. Uncertain Data From Anonymization

Our experimental study evaluates the LICM framework for
query answering on a variety of queries over real uncertain
data sets. As discussed earlier, a common source of uncertainty
arises due to data masking for privacy purposes. Such data
“anonymization” introduces uncertainty in the form of gener-
alization [14], [15], permutation [13] and suppression [16].

Our evaluation is for query answering over uncertain data
produced under such methods. We emphasize that our primary
purpose here is not to discuss the suitability of these methods
for the task of data anonymization, nor to propose any new

methods for data anonymization. Rather, our aim is to under-
stand the extent to which we are able to effectively answer
queries if we are given data which contains uncertainties
such as those that result from these processes. However, we
do argue that the ability of LICM to represent and query
data containing the correlations introduced by anonymiza-
tion demonstrates its suitability for handling the uncertainties
which are observed in practice over a range of applications.

Anonymization Methods. We obtained the code imple-
menting anonymization algorithms from the authors of km-
anonymity [14], k-anonymity [15] and bipartite safe-grouping
[13] schemes. These methods are described in more detail
in the Appendix. For km and k-anonymity anonymization,
we consider values of the parameter k as {2,4,6,8}, which
controls the amount of uncertainty created in the output.
These methods replace some items with a set of possibilities,
so that each input tuple has at least k − 1 others which
match it (under various definitions of similarity). The bipartite
grouping anonymization creates groups of transactions of size
k = {2,4,6,8}, with an (unknown) permutation mapping the
group of transaction ids to the itemsets. The groups are
chosen to be the same as the equivalence classes chosen
by the k-anonymization algorithm so that we can compare
these two schemes. The Appendix describes how we represent
anonymized data in LICM. While the main goal of our exper-
iments is not to evaluate or compare these anonymizations per
se, a side benefit of the LICM approach is to allow us to make
some observations in this direction.

B. Experimental Setup

Experiments were conducted on a machine with Intel Core2
Duo 3.00GHz CPU and 3GB RAM running Windows 7.
We implemented our LICM operators in Java using the JDK
1.6 compiler, to produce a concise description of the set of
possible worlds consistent with the query. For comparison, we
also ran each experiment using “naive” Monte Carlo (MC):
sample a number of possible worlds, and evaluate the same
query on each using a traditional DBMS. We used Microsoft
SQL Server 2008 to implement the MC approach. We focus
on comparing LICM to MC sampling in obtaining the bounds
of query answers, instead of computing expected values (as
discussed in Section IV-D).

Solver. IBM ILOG CPLEX 12.1 is used as the solver in the
experiments [17]. CPLEX is a powerful solver which is able
to handle large scale linear optimization problems, in the form

Maximize c ·x
Subject to Ax≤ b

where c is a vector of scores, x is the solution vector, and A
is the constraint matrix. By formulating A appropriately, one
can encode all the constraints of LICM in this format. For
our problem, the Mixed Integer Programming (MIP) module
of CPLEX is used and all variables are declared as binary.

The constraints are encoded in the LP file format, and
CPLEX is invoked via its Java API. The procedure is bro-
ken into three steps: creating the model by applying query

operators (which happens outside CPLEX), a pre-solve stage
which removes redundant constraints and variables, and a final
solve stage where the solver chooses a method and traverses
a search space of solutions.

Dataset. We show results on the BMS-POS dataset [18] which
has 515K transactions over 1657 item types: the average trans-
action size is 6.5, and the largest is 164. Other experiments
on BMS-Webview-1 and -2 [18] showed similar trends, and are
omitted for brevity. To facilitate richer queries, we associate
each transaction with a Location attribute and each item with
a Price attribute. Synthetic location IDs are chosen uniformly
in the range [0,999] for each transaction, and price IDs are
chosen uniformly in the range [0,39] for each item.

Queries. We evaluate three queries of increasing complexity:
• Query 1: Count the number of Pa transactions which

contain at least one Pb item. Pa is a location predicate (e.g.
3 ≤ locationID ≤ 15) and Pb is a price predicate, so this
query has predicates on both transactions and items. We set
the selectivity of Pb as 25% and 0.5% for Pa.
• Query 2: Count the number of Pa transactions which

contain ≥ X Pb items AND ≥ Y Pc items. This query con-
tains two count operators in the middle and an intersection
operator. In all plots shown, we set X = 4 and Y = 2, and the
selectivities of Pa,Pb,Pc as 0.5%, 25%, 25% respectively.
• Query 3: Count the number of Pa transactions which con-

tain at least one item which appears in ≥ X Pb transactions.
This is an even more complex query with a count operator
in the middle and a join operation. In the experiments shown
here, we set X = 80, and the selectivity of Pa,Pb as 0.3%
and 0.3% respectively.

C. Experimental Results

LICM Bounds vs MC Bounds. Figure 5 shows the LICM
bounds (L min and L max) and MC bounds (M min and
M max) of the three queries for different settings of the
anonymity parameter k = {2,4,6,8} on the same dataset
anonymized by different anonymization schemes. Because the
LICM approach is deterministic, it obtains the exact upper and
lower bounds on the answers to aggregate queries. That is, the
solver proves that it has found the optimal solution to the opti-
mization problem posed, and the solution vector that achieves
the maximal (minimal) value describes a particular possible
world consistent with the anonymized data. In contrast, MC
sampling explores a relatively narrow range of possibilities: it
is unlikely to pick a world that achieves an extremal value.

For example, in Figure 5(b), the MC sampling results (based
on a sample of 20 possible worlds) lie in a small range near
1600 for the k = 2 case. However, the exact upper bound of
the query answer is around 2100 and the exact lower bound
(about 1200) is far below the MC lower bound. The same
pattern occurs in most of the other plots. Increasing the size of
the sample does not significantly widen the observed range of
values. The reason for this is that random sampling of worlds
makes independent choices across tuples, whereas the extreme
values occur when the choices are highly correlated (e.g. many

2 4 6 8
0

500

1000

1500

2000

2500

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(a) km anonymization, Query 1

2 4 6 8
0

500

1000

1500

2000

2500

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(b) k-anonymity, Query 1

2 4 6 8
0

500

1000

1500

2000

2500

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(c) Bipartite Grouping, Query 1

2 4 6 8
0

500

1000

1500

2000

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(d) km anonymization, Query 2

2 4 6 8
0

500

1000

1500

2000

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(e) k-anonymity, Query 2

2 4 6 8
0

500

1000

1500

2000

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(f) Bipartite Grouping, Query 2

2 4 6 8
0

500

1000

1500

2000

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(g) km anonymization, Query 3

2 4 6 8
0

500

1000

1500

2000

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(h) k-anonymity, Query 3

2 4 6 8
0

500

1000

1500

2000

Anonymity(K)

Q
u

e
ry

 A
n

s
w

e
r

L_min L_max M_min M_max

(i) Bipartite Grouping, Query 3

Fig. 5. LICM bounds compared with MC bounds over three queries

transactions contain one specific item, while omitting certain
others). We conclude that MC sampling does a very poor job
for finding the extreme values which are needed to correctly
answer aggregate queries, as in Examples 1 and 2.
Degree of Uncertainty. The parameter k can be interpreted
as an indicator of the degree of uncertainty in the data. The
general pattern observed is an increase in the LICM upper
bounds and a decrease in the lower bounds as the anonymity
parameter k increases. This is in line with expectations:
increasing k should lead to more information loss during
anonymization, and hence more uncertainty (wider bounds).
In some examples, bounds go against this trend: this is an
artifact of the anonymization methods, which do not guarantee
consistency of output as k is varied.
Time Efficiency. Figure 6 shows the time taken to process
queries for both approaches on anonymized data. For LICM,
the timing information is broken into three pieces: L-model
is the time to convert the raw anonymized data into LICM
databases, L-query is the time to process LICM operators
and prune redundant variables and constraints (see paragraph
below on pruning) and L-solve is the time for the solver to

solve both minimization and maximization problems. The MC
bar represents the time taken for MC sampling and processing
(for 20 sampled worlds).

For methods using generalization (k-anonymization and km

anonymization), the time cost for LICM approach is always
much lower than for the MC approach (note the log scale on
the time axis). For all three queries, LICM finds the exact
bounds in a fraction of time it takes to sample a handful of
possible worlds and perform the query on each (Figure 6(a)).
For the more complex query 3, LICM requires somewhat more
time to solve the resulting BIP problem.

For bipartite safe-grouped data, we observed similar behav-
iors in Query 1 and Query 2 (Figure 6(a) and Figure 6(b)).
However, for the more complicated query (Query 3), the solver
had more difficulty in finding an optimal solution, and reported
(quite tight) approximate bounds instead. This is due to the
correlations encoded in the permutation-based constraints,
which lead to a larger enumeration for the solver. Nevertheless,
the solver can identify good bounds on the maximal and
minimal values within about 600 seconds. This represents a
benefit of LICM: exploring the large space of possible worlds

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

k
m k Bipartite

T
im

e
 (

m
s
)

Anonymizations

MC L-model L-query L-solve

(a) Query1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

k
m k Bipartite

T
im

e
 (

m
s
)

Anonymizations

MC L-model L-query L-solve

(b) Query2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

k
m k Bipartite

T
im

e
 (

m
s
)

Anonymizations

MC L-model L-query L-solve

(c) Query3

Fig. 6. Timing results for three queries under different anonymizations (k = 8)

LICM modeling Querying After pruning
variables 44,578,852 44,583,678 215,741
constraints 2,242,715 2,253,932 20,851

(a) Query 2 (k-anonymity, k = 6)

LICM modeling Querying After pruning
variables 44,578,852 44,690,237 1,185,950
constraints 2,242,715 2,684,284 453,704

(b) Query 3 (k-anonymity, k = 6)

Fig. 7. Effectiveness of Pruning

given by this anonymization for arbitrary queries is clearly
a hard problem. By presenting the problem to a solver, we
take advantage of the many techniques and heuristics for
optimization. In contrast, designing new methods specifically
for particular anonymizations is not only “reinventing the
wheel”, but also unacceptably slow and costly.

Pruning. CPLEX is a memory-based solver. As we do not
remove any variables or constraints during LICM query pro-
cessing, the size of the representation can grow quite large,
and thus require a lot of memory for the solver. However,
some variables and constraints are not reachable from the
variables in the final objective function. Those variables and
constraints do not contribute to the optimal answer of the BIP
problem and thus can be removed to reduce problem size. This
pruning can be done by finding and keeping all variables and
constraints reachable from the set of variables in the objective
function. Since new variables are created sequentially, a single
pass over the constraints (from last to first) suffices to identify
the reachable variables and hence prune the rest.

This pruning turned out to be an effective tool to bound the
size of the instances. Figure 7(a) and Figure 7(b) show the
number of variables and constraints for Query 2 and 3 respec-
tively under k-anonymized data when k = 6. When the query
has relatively low selectivity, a large number of constraints and
variables can be pruned. When the query complexity increases
(e.g. Query 3), the pruning is less effective than for the simpler
query, although the problem size is still reduced significantly.

Comparison of Different Anonymization Methods. LICM
enables us to compare the utility in terms of query results
across different anonymizations of set-valued data. For each
algorithm, the parameter k plays a broadly similar role. As
discussed in the Appendix, the k-anonymity scheme uses local
generalization in preference to global generalization favored

for km anonymization. He and Naughton argued that local
generalization provides better utility, based on experiments
using an “information loss” metric [15]. Our experiments are
consistent with this claim: the bounds shown in Figure 5(b)
and Figure 5(e) are typically tighter than those in Figure 5(a)
and Figure 5(d) respectively for the same queries and values
of k. That is, methods using global generalization seem to
generate sets of possible worlds with wider variations in query
answers (except for Query 3, where for the value of m used, k-
anonymity is a stronger requirement than km anonymization).

VI. CONCLUDING REMARKS

We have shown LICM is effective for representing and
querying data with complex correlations, especially cardinality
constraints. Best/worst case analysis is enabled over uncertain
data using the constraint framework provided. LICM can be
applied to a variety of uncertain data with correlations: our
experiments concentrated on the context of anonymized set-
valued data, but the model applies far more generally. A
broader question is to understand how other forms of uncertain
data like graph data can benefit from modeling and querying
within LICM. Our work indicates it is feasible to include
LICM within a DBMS due to its compatibility with relational
algebra. Full integration requires further research: for example,
to allow effective query planning, we must extend notions of
plan cost and selectivity estimation etc. to the LICM setting.

LICM is fundamentally a possibilistic model: it describes
the set of possible worlds. Absent any further information,
we argued that this is the only way to proceed. However, in
some cases, a user may have beliefs about the likelihood of
these different possibilities, encoded as probabilistic priors.
An open problem is to extend LICM to incorporate prior
distributions, perhaps as (independent) distributions over the
binary variables. The goal of query answering is then to find
the expected value of an aggregate, or tail bounds on its value.
Of course LICM provides exact upper/lower bounds on queries
over probabilistic data, by dropping the probability values.

Lastly, it is natural to question how far LICM can scale
to large datasets. Our experiments showed that it can tolerate
data with millions of tuples. However, this starts to stretch
what is possible on desktop hardware in a reasonable time,
so parallelism and more power may be required to scale the
LICM approach to larger data sets and more complex queries.

REFERENCES

[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and simple
relational processing of uncertain data,” in ICDE, 2008.

[2] L. Antova, C. Koch, and D. Olteanu, “10(106) Worlds and Beyond:
Efficient Representation and Processing of Incomplete Information,” in
ICDE, 2007.

[3] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom, “ULDBs: Databases
with uncertainty and lineage,” in VLDB, 2006.

[4] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom, “Working
Models for Uncertain Data,” in ICDE, 2006.

[5] J. Li and A. Deshpande, “Consensus answers for queries over proba-
bilistic databases,” in PODS, 2009.

[6] P. Sen and A. Deshpande, “Representing and querying correlated tuples
in probabilistic databases,” in ICDE, 2007.

[7] R. Bixby and E. Rothberg, “Progress in computational mixed integer
programming,” Annals of OR, vol. 149, no. 1, pp. 37–41, 2007.

[8] R. Ross, V. Subrahmanian, and J. Grant, “Aggregate operators in
probabilistic databases,” J. ACM, vol. 52, no. 1, pp. 54–101, 2005.

[9] R. Jampani, L. L. Perez, F. Xu, C. Jermaine, M. Wi, and P. Haas,
“MCDB: A monte carlo approach to managing uncertain data,” in
SIGMOD, 2008.

[10] T. Imielinski and W. Lipski Jr., “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, pp. 761–791, 1984.

[11] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.
[12] M. Yang, H. Wang, H. Chen, and W. Ku, “Querying uncertain data

with aggregate constraints,” in SIGMOD, 2011.
[13] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang, “Anonymizing

bipartite graph data using safe groupings,” in VLDB, 2008.
[14] M. Terrovitis, N. Mamoulis, and P. Kalnis, “Privacy- preserving

anonymization of set-valued data,” in VLDB, 2008.
[15] Y. He and J. F. Naughton, “Anonymization of set-valued data via

top-down, local generalization,” in VLDB, 2009.
[16] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu, “Anonymizing transaction

databases for publication,” in SIGKDD, 2008.
[17] “IBM ILOG CPLEX,” http://www.ibm.com/software/integration/

optimization/cplex/.
[18] Z. Zheng, R. Kohavi, and L. Mason, “Real world performance of

association rule algorithms,” in KDD, 2001.

APPENDIX

Here, we show how LICM compactly represents different
kinds of uncertainty introduced by several methods over set-
valued data. Without loss of generality, our discussion in this
section is based on transactional (itemset) data which consists
of a set of transaction TRANS, a set of items ITEM, and a
transaction-item table TRANSITEM. The methods we describe
easily apply to set-valued data in other application domains.

While the price of a particular item or a transaction location
is generally public information, the relation TRANSITEM may
be considered sensitive. There has been considerable recent
work on the problem of “set-valued data anonymization”: the
process of masking the dataset so as to make it harder to
infer the relation between a transaction and the items bought
in that transaction. Prior work on this problem has employed
three general techniques: generalization, permutation and sup-
pression. A limitation of these efforts is that most work has
focused on generating the anonymized data, with little or
no discussion on how to actually evaluate queries over the
resulting uncertain data. We discuss these efforts, and show
how to encode anonymized data in LICM, thus enabling
effective query answering. We note that while techniques
which apply random perturbation to data for anonymization
(such as differential privacy) have recently been advocated,
this paradigm does not yet allow publishing full itemset data.

A. Generalization-based Anonymization

Generalization-based anonymization assumes the existence
of a domain generalization hierarchy over the whole domain of
items (such as the one shown in Figure 2(b)). The anonymiza-
tion process may replace some items (leaves in the hierarchy)
with “generalized items”, which represent internal nodes in the
hierarchy that are ancestors of items replaced. k-anonymity
for itemset data requires that for each transaction t in the
anonymized output there exist at least k−1 other transactions
with exactly the same (generalized) items as in t [15]. km-
anonymity [14] has the weaker requirement that each subset
of an anonymized transaction of size at most m should appear
in at least k−1 other transactions.

The anonymization process defines a recoding which maps
the original transactions to anonymized transactions satisfy-
ing the privacy definition. In the global recoding case, if a
particular generalized item g is used in the anonymization
then every item that is a descendant of g is replaced with
g across all transactions. Under local recoding, the scope of
the replacement is restricted to a single transaction at a time.
Existing methods adopt a set semantics, so if multiple items in
the same transaction are generalized to the same value, only
a single copy of that item is placed in the anonymized output.

Nevertheless, while privacy definitions and recoding meth-
ods vary, they can be compactly encoded in LICM. For each
item I in an anonymized transaction T , the following tuples
and constraints are included in the TRANSITEM relation:
• If I is non-generalized, (T, I,1) is added to TRANSITEM.2

• If I is a generalized item, let I1, . . . , Ik be the items covered
by I. Then (T, Ii,bi), i = 1, . . . ,k is added to the LICM
relation, and b1 + · · ·+bk ≥ 1 is added to the constraints.

Observe that the above representation applies to both global
and local recoding schemes. Figure 2(a) shows a 2-anonymous
generalized transactional data using the local recoding scheme,
and the LICM representation of the first transaction using this
transformation is shown in Figure 2(c). The compactness of
the encoding depends on the amount of anonymization: if each
item is replaced by a generalized item encoding a large number
of possibilities, it will add the corresponding number of rows
to the LICM relation. The impact of this can be reduced by
not explicitly “expanding out” these generalized items during
query processing for as long as possible.

To bound the size of the LICM representation, observe
that there is a tuple for each possible item represented by
a generalized item. In the largest possible world (that is
consistent with the anonymization), every one of these possible
items is present, so the total number of tuples is O(N). Further,
the constraints include each of the O(N) variables exactly
once, so the total size of the constraints is also O(N).

B. Permutation-based Anonymization

Permutation-based anonymization introduces uncertainty to
the mapping between transactions and items. One represen-
tative approach is the bipartite graph anonymization method

2This is equivalent to adding tuple (T, I,b) and constraint b = 1.

T1

T3

T5

T2

T4

T6

Beer

Liquor

Wine

Shampoo

Diaper

Pregnancy Test

L1

L3

L2

L4

L6

L5

R1

R3

R2

R4

R6

R5

Fig. 8. A safe (3,2) grouping of a transactional data set

proposed by Cormode et al. [13]. In their approach, transac-
tions and items are the two node sets of a bipartite graph. An
edge between a transaction node and an item node indicates
that the item appears in that transaction. To anonymize the
transactional data, the graph structure is preserved exactly.
But the mapping from transactions and items to the nodes of
the bipartite graph is masked by grouping. Specifically, for a
(k, `) grouping, the transaction set (the item set) is partitioned
into groups so that each group has at least k (`) transactions
(items). Inside each group, the mapping of nodes to entities
is not revealed, beyond the fact that it must be a bijection. A
grouping is said to be safe if each transaction (item) in one
group is linked to at most one item (transaction) in another
group. This condition prevents certain density-based attacks.
Figure 8 shows an example safe (3,2) grouping.

Given a (k, `) grouping (whether safe or not), it can be
represented in LICM as follows. For the bipartite graph, we
encode its topology using a relation G(LNodeID, RNodeID),
where a tuple (u,v) in G represents an edge from a node u to
a node v. A grouping of transactions T = {T1, . . . ,Tk} that is
mapped to nodes L= {L1, . . . ,Lk} via a (hidden) permutation,
is represented within an LICM relation TRANSGROUP(TID,
LNodeID, Ext) by including all tuples (Ti,L j,bi j), for i =
1, . . . ,k, j = 1, . . . ,k. The following linear constraints are added
to capture the one-to-one mapping between the k transactions
and the k nodes in the graph:

1) ∀1≤ i≤ k, bi,1 + · · ·+bi,k = 1.
(Each transaction is mapped to exactly one node.)

2) ∀1≤ j ≤ k, b1, j + · · ·+bk, j = 1.
(Each node is mapped to exactly one transaction.)

For each grouping of item nodes, we similarly construct the
LICM relation ITEMGROUP(ItemName, RNodeID, Ext).
Figure 9 shows the LICM relation corresponding to the
first transaction group in Figure 8. This example shows the
convenience of LICM: representing the set of possible worlds
consistent with a bijection between T and L is possible in
complete models such as c-tables, but it is not particularly
succinct. Encoding the fact that “exactly one of these variables
is true” is lengthy in Boolean logic. In some models, it is
worse: there is no way to encode the bijection semantics
without exhaustively listing out each possible world.

For the representation size, first note that each possible
world in the permutation case has the same number N of

TID LNodeID Ext TID LNodeID Ext
T1 L1 b11 T3 L3 b23
T1 L2 b12 T5 L1 b31
T1 L3 b13 T5 L2 b32
T3 L1 b21 T5 L3 b33
T3 L2 b22

Constraints:
b11 +b12 +b13 = 1 b21 +b22 +b23 = 1
b31 +b32 +b33 = 1 b11 +b21 +b31 = 1
b12 +b22 +b32 = 1 b13 +b23 +b33 = 1

Fig. 9. LICM relation for first transaction group in Fig. 8

tuples. Here, N is also the number of tuples in relation
G(LNodeID,RNodeID) in Section B. Let |T | be the number
of transactions and |I| be the number of distinct items. Given
parameters k and ` which bound the group sizes on the
transaction and item sides, respectively, the LICM relation
TRANSGROUP contains k|T | tuples, and ITEMGROUP con-
tains l|I| tuples. The total size of the tuples and constraints is
therefore O((k+`)N). Since k and ` are typically independent
of N, this is O(N).

C. Suppression-based Anonymization

Suppression can be viewed as an extreme form of gener-
alization: a subset of items are removed from transactions
completely. If there was some indication that an item was
removed, this would be the same as generalizing to a “wild-
card” item. Suppression also has local and global variations:
in the global case, if one instance of an item is suppressed
from a transaction, then it is also suppressed everywhere else
it appears. In the local case, this restriction is removed.

Suppression is used as the mechanism to achieve (h,k, p)-
coherence as defined by Xu et al. [16]. In their model, items
are further categorized into “public” and “private”, with the
intention that an observer might know some public items
from a transaction, and should be prevented from inferring
information about the private items. In the definition p plays
a similar role to m in the km anonymization: in the anonymized
table, every subset of p private items that appear should appear
in at least k transactions, and at most an h fraction of those
transactions should contain a common private item.

A table that has been anonymized using suppression can be
encoded into the LICM format in a similar way to general-
ization. Any transaction that (possibly) contains a suppressed
item could potentially contain any subset of items. If global
recoding has been used, then the suppressed items can only be
those items that do not appear in any transaction. Thus, rows
(T, Ii,bi) are added to the LICM relation for each transaction T
and each possibly suppressed item Ii. As in the generalization
case, the succinctness of this encoding will depend on the
domain size: if many items are potentially suppressed, the
encoding could grow somewhat large. This may be mitigated
by keeping the encoding implicit for as long as possible
during query processing. Since suppression can be thought
of as an extreme form of generalization, the size of the LICM
representation of a relation with suppressions is also O(N).

