
Mergeable Coresets

Pankaj K. Agarwal Graham Cormode Zengfeng Haung Jeff M. Phillips
Zhewei Wei Ke Yi

April 19, 2011

Abstract

We study the mergeability of data summaries. Informally speaking, mergeability requires that, given
two summaries on two data sets, there is a way to merge the two summaries into a summary on the two
data sets combined together, while preserving the error and size guarantees. This property means that
the summary can be treated like other algebraic objects such as sum and max, which is especially useful
for computing summaries on massive distributed data. Many data summaries are trivially mergeable by
construction, most notably those based on linear transformations. But some other fundamental ones like
those for heavy hitters and quantiles, are not (known to be) mergeable. In this paper, we demonstrate
that these summaries are indeed mergeable or can be made mergeable after appropriate modifications.
Specifically, we show that for ε-approximate heavy hitters, there is a deterministic mergeable summary
of size O(1/ε); for ε-approximate quantiles, there is a deterministic summary of size O(1

ε log(εn)) that
has a restricted form of mergeability, and a randomized one of size O(1

ε log3/2 1
ε) with full mergeability.

We also extend our results to geometric summaries such as ε-approximations and ε-kernels.

1 Introduction

Data summarization is an important tool for dealing with massive data. There are many reasons to desire
a summary in place of the full data: compact summaries enable accurate query answering while requiring
much lower resources, computations need less memory, and can be much faster. In some situations, it is
not feasible to work with the full data, such as when it is distributed across many different locations, or
is observed as a stream of data. Broadly speaking, a summary S on a data set (a bag of items) D is any
compact data structure from which certain queries on D can be answered. Since S should be much smaller
than D, queries are usually answered approximately, and there is a trade-off between the size of S and the
approximation error ε. A variety of data summaries have been studied in the past, starting with statistical
summaries like heavy hitters, quantile summaries, histograms, various sketches and synopses, to geometric
summaries like ε-approximations and ε-kernels, and graph summaries like distance oracles.

There are several models for how summaries can be built from the base data. At the most basic level,
we have the data set D accessible in its entirety, and the summary S is constructed offline: this can be
thought of as akin to a “bulk-load” operation. More generally, we often want the summary to be maintained
in the presence of updates, i.e., when a new record is added to D, S can be updated to reflect the new
arrival without recourse to the underlying D. Much progress has been made on incrementally maintainable
summaries in the past years, mostly driven by the study of data stream algorithms, as a streaming algorithm
with small space implies an incrementally maintainable summary.

In this paper, we study stronger requirements on summaries where there is a process of repeatedly merging
together two summaries of (separate) data sets to obtain a summary of their union. Such merging is a key
requirement in distributed and parallel computations, as we describe subsequently. We distinguish two
variants, full mergeability and one-way mergeability. In the following, we use S(D, ε) to denote a summary
on a data set D with approximation error ε. The exact interpretation of ε will vary depending on the purpose
of the summary; for now, we just treat it as a parameter.

Definition 1.1 (Full mergeability). A summary S(D, ε) is fully mergeable if the size |S(D, ε)| ≤ k(1/ε, |D|)
is bounded by an absolute function k(), and there exists an algorithmA that produces S(D1]D2, ε)1 from
any two input summaries S(D1, ε) and S(D2, ε).

Clearly, a trivial fully mergeable summary is one where A simply puts S(D1, ε) and S(D2, ε) together,
doubling its size. But such a summary will have size linear in |D| in a repeatedly merging process. Thus
we will only be interested in summaries whose size bound |S(D, ε)| ≤ k(1/ε, |D|) is always sublinear
in (and ideally, independent of) |D| at any time in the possibly indefinite merging process. That is, a
fully mergeable summary can be merged, in an arbitrary fashion for an indefinite number of steps, without
propagating either the error or the size. Such a mergeable summary essentially allows us to use it just like
some simple aggregate like sum or max.

Definition 1.2 (One-way mergeability). A summary S(D, ε) is one-way mergeable of size |S(D, ε)| ≤
k(1/ε, |D|) if there exists two algorithms A1 and A2 such that, (1) A1 takes any dataset D and produces
S(D, ε); (2) A2 takes two summaries, S(D1, ε) created by A1 and S(D2, ε) created by A2 or A1, and
produces S(D1]D2, ε).

Note that one-way mergeability degenerates to the standard streaming model if A1 simply takes a single
item x and does nothing to it. One-way mergeability is essentially a “batched streaming” model where there
is a main algorithm A2 that maintains the summary, which can take in a batch of items summarized by
another algorithm A1. Generality increases from the streaming model to one-way mergeability, and to full
mergeability.

1] denotes multiset addition.

1

1.1 Applications

Mergeable summaries are needed in a variety of settings. We mention two concrete applications here.

Data aggregation in sensor networks. In a sensor network, the nodes organize themselves into a
routing tree rooted at the base station. Each sensor holds some data and the goal of data aggregation is to
compute a summary on all the data. Nearly all data aggregation algorithms follow a bottom-up approach
[24]: Starting from the leaves, the aggregation propagates upwards to the root. When a node receives the
summaries from its children, it merges these with its own summary, and forwards the result to its parent.
Depending on the physical distribution of the sensors, the routing tree can take arbitrary shapes.

Computing the heavy hitters (a.k.a. frequent items) in a sensor network has received much attention.
Previous solutions have used the MG summary but with a merging algorithm that does not preserve the
error. As a result, they must set smaller ε near the leaves of the tree and gradually increase it towards
the root. The appropriate ε values at different nodes need an additional round of communication on the
sensor network to compute. A heuristic was given in [26] that tries to minimize the largest summary a node
sends out, but with no provable bounds. Another solution [25] bounds the sum of sizes of all summaries
communicated by O(k/ε) (k is the number of nodes) for a class of “nice” routing trees. On bad trees, this
cost can be as large as O(k5/4/ε).

For computing quantiles in sensor networks, the q-digest [36] is mergeable but it depends on log u, which
can be large. The quantile summary of [20] has sizeO(1

ε log n log(h/ε)) where h is the height of the routing
tree and it needs the knowledge of h in advance.

Cluster computation. A second direct application of mergeable summaries is in the MUD (Massive Un-
ordered Distributed) model of computation [16], which models large-scale distributed systems like MapRe-
duce and Hadoop. In this model, the input data is broken into an arbitrary number of pieces, each of which
is potentially handled by a different machine. Each piece of data is first processed by a local function,
which outputs a message. All the messages are then pairwise combined using an aggregation function in an
arbitrary fashion, eventually producing an overall message. Finally, a post-processing step is applied.

This exactly corresponds to our notion of full mergeability, where each machine builds a summary of
its share of the input, the aggregation function is the merging algorithm, and the post-processing step cor-
responds to posing queries on the summary. The main result of [16] is that any deterministic streaming
algorithm that computes a symmetric function defined on all inputs can be simulated (in theory) by a MUD
algorithm, but it does not hold for indeterminate functions, i.e., functions that may have many correct out-
puts. All problems considered in this paper are indeterminate, due to the approximation allowed. Their
result extends to certain approximation algorithms by treating the (deterministic) approximation algorithm
as the function, which will always give one determinate output. Unfortunately, for our problems, all existing
streaming approximation algorithms are not symmetric: the output depends on the order in which the items
arrive in the stream. Thus, the simulation result of [16] does not apply to any of the problems we consider.

1.2 Problems and Previous Results

The focus of this paper is on several fundamental problems that have existing summaries, but are not known
to be mergeable (or have unsatisfactory bounds). We use n to denote |D|, the size of the data set being
summarized. For randomized algorithms, the bounds we state hold for achieving a constant success proba-
bility for answering all queries correctly using the summary; the success probability can always be boosted
to 1 − δ by building O(log 1

δ) independent summaries. Our results all hold in a comparison model, where
only comparisons are used on items in the data sets. In this model we assume each data item, as well as any
integer no more than n, can be stored in one unit of storage. Some prior work has more strongly assumed

2

that items in D are drawn from a bounded universe [u] = {0, . . . , u− 1} (or from [u]d in the d-dimensional
case) for some u ≥ n, and any integer less than u takes one unit of storage. In some cases log u is large, for
example when the items are strings or user-defined types, so we seek to avoid such factors. Note that any
result in the comparison model also holds in the bounded-universe model, but not vice versa.

Frequency estimation and heavy hitters. For a multiset D, let f(x) be the frequency of x in D. A
frequency estimation summary S(D, ε) can be used to estimate f(x) for any x within an additive error
of εn. A heavy hitters summary allows one to extract all frequent items approximately, i.e., for a user-
specified φ, it returns all items x with f(x) > φn, no items with f(x) < (φ − ε)n, while an item x with
(φ− ε)n ≤ f(x) ≤ φn may or may not be returned.

In the bounded-universe model, the frequency estimation problem can be solved by the Count-Min sketch
[14] of size O(1

ε log u), which is a linear sketch, and is thus fully mergeable. Since the Count-Min sketch
only allows querying for specific frequencies, in order to report all the heavy hitters efficiently, we need a
hierarchy of sketches and the space increases to O(1

ε log u log(log u
ε)). This approach is randomized, but

there is also a deterministic linear sketch for frequency estimation [17], but its size is O((1
ε log u)2 log n).

The counter based summaries, most notably the MG summary [33] and the SpaceSaving summary [32],
have been reported [13] to give the best results for both the frequency estimation and the heavy hitters
problem (over a data stream of arriving items). They are deterministic, simple, and have the optimal size
O(1

ε). They also work in the comparison model. However, only recently were they shown to support one-
way merging [8]. In applications which require full mergeability, prior work used a weaker result, that
summaries could be merged with a loss in accuracy (i.e., resulting in a larger ε) at each step, and designed
schemes to ration out this reduction in precision [25, 26].

Quantile summaries. For the quantile problem we assume that D is a set (i.e., no duplicates); this
assumption can be removed by using any tie breaker. For any 0 < φ < 1, the φ-quantile of D is an item
x with rank r(x) = bφnc in D, where the rank of x is the number of items in D smaller than x. This is
also known as the order statistic of D. An ε-approximate φ-quantile is an item with rank between (φ− ε)n
and (φ+ ε)n, and a quantile summary allows us to extract an ε-approximate φ-quantile for any 0 < φ < 1.
It is well known [13] that the frequency estimation problem can be reduced to an ε′-approximate quantile
problem for some ε′ = Θ(ε), by identifying items which are quantiles for multiples of ε′. Therefore a
quantile summary is automatically a frequency estimation summary, but not vice versa.

Quite a number of quantile summaries have been designed [18, 20, 19, 36, 27, 14], but all the mergeable
ones either have dependency on log u (thus work only in the bounded-universe case). The Count-Min sketch
(more generally, any frequency estimation summary) can be organized into a hierarchy to solve the quantile
problem, yielding a linear sketch of size O(1

ε log2 u log(logn
ε)) [14]. The q-digest [36] has size O(1

ε log u);
although not linear, it is still fully mergeable. Neither approach scales well when log u is large. The most
popular quantile summary technique is the GK summary [19], which guarantees a size of O(1

ε log(εn)). A
merging algorithm has been previously proposed, but the error increases, albeit slightly, with each merge
[20]. Viewing the entire merging process as a binary tree, if its height, say h, can be bounded in advance, a
desired error bound can still be guaranteed in the final summary at the root of the tree, with a summary size
of O(1

ε log n log(h/ε)) [20]. This merging algorithm does not work in an indefinite merging process, so it
is not mergeable by our definition.

Summaries for range counting. Next we consider summaries for approximate range counting, often
referred to as ε-approximations of range spaces. In one dimension this is essentially equivalent to the
quantiles problem: in both cases, we want to approximate the number of data points in D in any query
interval within an additive εn error. In higher dimensions, queries are drawn from a family of ranges A

3

(such as axis-aligned rectangles or halfspaces). An ε-approximation Q is a subset of D that guarantees that
for all rangesR ∈ A, the fraction |R∩Q|/|Q| is within ε of |R∩D|/|D|, which means that |D|·|R∩Q|/|Q|
estimates the number of points in R within error ε|D|.

A random sample of O(d/ε2) points from P [39, 38] is an ε-approximation with constant probability
where d is the VC-dimension of the range space. Random samples are easily mergeable, but they are far
from optimal. It is known that for d-dimensional axis-aligned rectangles there are ε-approximations of size
O((1/ε) log2d(1/ε)) [35], and for halfspaces the optimal size is O(1/ε2d/(d+1)) [29]. These deterministic
summaries are constructed by partitioning the data to small subsets, and then iteratively merging summaries
of these subsets. However, for all existing analysis, the error increases on each merge step; hence these
techniques are not known to be mergeable.

ε-kernels. Finally, we consider ε-kernels [2, 1] which are summaries for approximating the convex shape
of a point set P . Specifically, they are a specific type of coreset that approximates the width of P within
a relative (1 + ε)-factor in any direction. These summaries have seen extensively studied in computational
geometry [9, 40, 10, 3] as they can be used to approximate many other geometric properties of a point set
having to do with its convex shape, including diameter, minimum enclosing annulus, and minimum enclos-
ing cylinder. In the static setting in Rd, ε-kernels can always be constructed of size O(1/ε(d−1)/2) in time
O(n + 1/εd−3/2) [9, 40], and sometimes this size is required. In the streaming setting, several algorithms
have been developed [2, 9, 4] ultimately yielding an algorithm [41] using O((1/ε(d−1)/2) log(1/ε)) space.

However, ε-kernels in general, including those maintained by streaming algorithms, are not mergeable.
Combining two ε-kernels will in general increase the error by ε in the resulting summary, or double the size.
The streaming algorithms rely heavily on processing a single point at a time, so even one-way mergeable
algorithms seem to be difficult.

1.3 Our Results

The ability to merge summaries together is a natural requirement, and as such, several types of summaries are
known to be mergeable. For example, all sketches that are linear functions ofD are clearly mergeable (due to
their linearity, they usually support arbitrary linear operations such as subtractions as well). These include
the AMS sketch [5], the Count-Min sketch [14], the `1 sketch [15, 34], among many others. Summaries
that maintain the maximum or top-k values are also mergeable, most notably summaries for estimating the
number of distinct elements [6, 23]. In the rest of the paper we provide several mergeable summaries for
more complicated types of summaries.

• In Section 2 we show that the MG and SpaceSaving summaries are fully mergeable; we present a
merging algorithm that preserves the size O(1/ε) and the error parameter ε. Along the way we make
the surprising observation that the two summaries are isomorphic, namely, an MG summary can be
mapped to a SpaceSaving summary and vice versa, which may be of independent interest.
• In Section 3 we show that the GK summary for ε-approximate quantiles is one-way mergeable, al-

though not fully mergeable. Then we design a randomized quantile summary of size O(1
ε log3/2 1

ε)
that is fully mergeable. This in fact even beats the previous best randomized streaming algorithm for
quantiles, which had size O(1

ε log3 1
ε) [37]. We conjecture that there are no deterministic quantile

summaries of size poly(1
ε , log n) that is fully mergeable.

• In Appendix C we present fully mergeable ε-approximation of range spaces that come close to the
size bounds for the deterministic static algorithms. This analysis generalizes the quantiles summaries
(for intervals) to more general range spaces. Specifically, for axis-aligned rectangles our mergeable
ε-approximation has size O((1/ε) log2d+3/2(1/ε)); for halfspaces (and other range spaces with VC-
dimension d) the size is O(1/ε2d/(d+1) · log2d/(d+1)+1(1/ε)).

4

• In Appendix D we provide a fully mergeable ε-kernel for a restricted, but reasonable variant. We
assume that we are given a constant factor approximation of the width in every direction ahead of
time. This allows us to specify a fixed reference frame, and we can maintain a fully mergeable ε-
kernel of size O(1/ε(d−1)/2) with respect to this fixed reference frame. We leave the unrestricted case
as an open question.

In the context of data aggregation in sensor networks our results imply several new or improved bounds,
and are always oblivious to the size and height of the routing tree. For heavy-hitters our mergeable sum-
maries will have maximum size O(1/ε) and total size O(k/ε) simultaneously. It is also simpler than the
previous algorithms [26, 25]. For ε-approximate quantiles we improve the size to O(1

ε log3/2 1
ε), and we

believe our results for range counting summaries and ε-kernels are the first of any kind.

2 Heavy Hitters

The MG summary [33] and the SpaceSaving summary [32] are two popular counter-based summaries for
the frequency estimation and the heavy hitters problem. We first recall how they work on a stream of items.
For a parameter k, a MG summary maintains up to k items with their associated counters. There are three
cases when processing an item x in the stream: (1) If x is already maintained in the summary, its counter
is increased by 1. (2) If x is not maintained and the summary currently maintains fewer than k items, we
add x into the summary with its counter set to 1. (3) If the summary maintains k items and x is not one
of them, we decrement all counters by 1 and remove all items with counters being 0. The SpaceSaving
summary is the same as the MG summary except for case (3). In SpaceSaving, if the summary is full and
the new item x is not currently maintained, we find any item y with the minimum counter, replace y with
x, and increase the counter by 1. Previous analysis shows that the MG and the SpaceSaving summaries
estimate the frequency of any item x with error at most n/(k + 1) and n/k, respectively, where n is the
number of items processed. Thus they solve the frequency estimation problem with additive error εn with
space O(1/ε), which is optimal. They can also be used to report the heavy hitters in O(1/ε) time by going
through all counters; any item not maintained cannot have frequency higher than εn.

In this section we show that both MG and SpaceSaving summaries are indeed fully mergeable. We first
prove the mergeability of MG summaries by presenting a merging algorithm that preserves the size and
error. Then we show that SpaceSaving and MG summaries are fundamentally the same, which immediately
leads to the mergeability of the SpaceSaving summary.

We start our proof by observing that the MG summary provides a stronger error bound. Let f(x) be the
true frequency of item x and let f̂(x) be the counter of x in MG (set f̂(x) = 0 if x is not maintained). For
space, we defer proofs in this section to Appendix A.

Lemma 2.1. For any item x, f̂(x) ≤ f(x) ≤ f̂(x) + (n − n̂)/(k + 1), where n̂ is the sum of all counters
in MG.

This is related to the result that the MG error is at most F res(k)
1 /k, where F res(k)

1 is the sum of the counts
of all items except the k largest [8]. Since each counter stored by the algorithm corresponds to (a subset of)
actual arrivals of the corresponding item, we have that n̂ ≤ (n− F res(k)

1).
Now we present an algorithm that, given two MG summaries with the property stated in Lemma 2.1,

produces a merged summary with the same property. More precisely, let S1 and S2 be two MG summaries
on data sets of sizes n1 and n2, respectively. Let n̂1 (resp. n̂2) be the sum of all counters in S1 (resp. S2).
We know that S1 (resp. S2) has error at most (n1 − n̂1)/(k + 1) (resp. (n2 − n̂2)/(k + 1)). Our merging
algorithm is very simple. We first combine the two summaries by adding up the corresponding counters.
This could result in up to 2k counters. We then perform a prune operation: Take the (k + 1)-th largest
counter, say Ck+1, and subtract it from all counters, and then remove all non-positive counters.

5

Theorem 2.1. Using the above algorithm, MG summaries are fully mergeable of fixed size O(1/ε) with at
most εn error. Each merge takes O(1/ε) time.

Next we show that MG and SpaceSaving are isomorphic. Specifically, consider an MG summary with
k counters and a SpaceSaving summary of k + 1 counters, processing the same stream. Let minSS be the
minimum counter of the SpaceSaving summary (set minSS = 0 when the summary is not full), and n̂MG

be the sum of all counters in the MG summary. Let f̂MG(x) (resp. f̂SS(x)) be the counter of item x in the
MG (resp. SpaceSaving) summary, and set f̂MG(x) = 0 (resp. f̂SS(x) = minSS) if x is not maintained.

Lemma 2.2. After processing n items, f̂SS(x)− f̂MG(x) = minSS = (n− n̂MG)/(k + 1) for all x.

Corollary 2.1. The SpaceSaving summary is fully mergeable.

3 Quantiles

We first show results for the one-way mergeability of quantiles by generalizing incremental algorithms,
including the GK algorithm [19]. Then the bulk of our work is to show a randomized construction which
achieves full mergeability by analyzing quantiles through the lens of ε-approximations of the range space
of intervals. Let D be a set of n points in one dimension. Let I be the set of all half-closed intervals
I = (−∞, x]. Recall that an ε-approximation S of D (w.r.t. I) is a subset of points of D such that for any
I ∈ I, n|S ∩ I|/|S| estimates |D ∩ I| with error at most εn. In some cases we may use a weighted version,
i.e., each point p in S is associated with a weightw(p). A point pwith weightw(p) representsw(p) points in
D, and we require that the weighted sum

∑
p∈S∩I w(p) estimates |D∩I|with error at most εn. Since |D∩I|

is the rank of x inD, we can then do a binary search with x to find an ε-approximate φ-quantile for any given
φ. We will first develop a randomized fully mergeable ε-approximation of sizeO((1/ε) log(εn)

√
log(1/ε))

inspired by low-discrepancy halving. Then after we review some classical results about random sampling,
we combine the random-sample-based and low-discrepancy-based algorithms to produce a hybrid mergeable
ε-approximation whose size is independent of n.

3.1 One-way mergeability

Theorem 3.1. Any quantile summary algorithm which is incrementally maintainable is one-way mergeable.

For space, this theorem is proved in Appendix B. An immediate observation is that the GK algorithm
[19] (along with other deterministic techniques for streaming computation of quantiles which require more
space [27]) meets these requirements, and is therefore one-way mergeable

Corollary 3.1. The GK algorithm is one-way mergeable, with a summary of size O(1
ε log(εn)).

This analysis implies a step towards full-mergeability. We can apply the rule of always merging the
summary of the smaller data set into the larger. This ensures that in the summarization of n items, any item
participates in at most log(εn) one-way merges (we only incur errors for data sets of at least 1/ε points).
Thus the total error is ε log εn, and the summary has size O(1

ε log εn). If we know n in advance, we can
rescale ε by a log(εn) factor, and achieve a space of O(1

ε log2(εn)), matching the result of [20]. However,
this does not achieve full mergeability, which does not allow foreknowledge of n.

3.2 Low-discrepancy-based summaries

In this section we mimic the merge-reduce algorithm [28, 11] for constructing deterministic ε-approximations
of range spaces, but randomize it in a way so that error is preserved as required by full mergeability. Below
we use abs(x) to denote the absolute value of x; we use |X| to denote the cardinality of a set X .

6

Same-weight merges. We first consider a restricted merging model where each merge is applied only to
two summaries representing data sets of the same size. Let S1 and S2 be the two summaries to be merged.
Let S′ = S1] S2, and sort S′. Then let Se be all even points in the sorted order and So be all odd points in
the sorted order. We retain either Se or So with equal probability as our merged summary S. We call this a
same-weight merge. Let us analyze this algorithm; see proof in Appendix B.

Lemma 3.1. For any interval I ∈ I, 2|I ∩ S| is an unbiased estimator of |I ∩ S′| with error at most 1.

We note that prior work has included similar ideas, but in a deterministic setting; since the worst-case
error is bounded, it can be applied multiple times to build a summary of a larger data set [27]. However,
in their case the error parameter ε grows with the merges. Suri et al. [37] also use a randomized merging
process, but their analysis still allows the error parameter to increase after each level of merges. Below we
describe a randomized merging process that preserves the error parameter after any number of merges.

Below we generalize the above lemma to multiple merges, but each merge is a same-weight merge. We
set the summary size to be kε; if a data set contains fewer than kε points we simply set the summary to be
the same as the data set. Let D be the entire data set of size n; note that the algorithm does not have a priori
knowledge of n. We assume that n/kε is a power of 2. If not we can make it so by adding at most n dummy
points and running the algorithm with ε/2 in place of ε. Thus, the whole merging process corresponds to a
complete binary tree with m = log(n/kε) levels. Each internal node in the tree corresponds to the (same-
weight) merge of its children. Let S be the final merged summary, corresponding to the root of the tree.
Note that each point in S represents 2m points in D.

Lemma 3.2. If we set kε = O((1/ε)
√

log(1/δ)), then for any interval I ∈ I with probability at least 1− δ,
abs(|I ∩D| − 2m|I ∩ S|) ≤ εn.
Proof. Fix any I . We prove this lemma by considering the over-count error Xi,j (which could be positive
or negative) produced by a single merge of two sets S1 and S2 to get a set S(j) in round i. Then we consider
the error Mi =

∑ri
j=1Xi,j of all ri = 2m−i merges in round i, and sum them over all m rounds using a

single Chernoff-Hoeffding bound. The errors for all rounds form a geometric series that sums to at most εn
with probability at least 1− δ.

Start the induction at round 1, before any sets are merged. Merging two sets S1 and S2 into S(j) causes the
estimate 2|S(j)∩I| to have over-count errorX1,j = 2|S(j)∩I|−|(S1]S2)∩I|. Now abs(X1,j) ≤ 1 = ∆1,
by Lemma 3.1. There are r1 = 2m−1 such merges in this round, and since each choice of even/odd is made
independently, this produces r1 independent random variables {X1,1, . . . , X1,r1}. Let their total over-count
error be denoted M1 =

∑r1
j=1X1,j . So, now except for error M1, the set of r1 sets S(j), each the result of

an independent merge of two sets, can be used to represent |D ∩ I| by 2|(⊎j S
(j)) ∩ I|.

So inductively, up to round i, we have accumulated at most
∑i−1

s=1Ms error, and have 2ri point sets of size
kε, where ri = 2m−i. We can again consider the merging of two sets S1 and S2 into S(j) by a same-weight
merge. This causes the estimate 2i|S(j) ∩ I| to have error Xi,j = 2i|S(j) ∩ I| − 2i−1|(S1] S2) ∩ I|, where
abs(Xi,j) ≤ 2i−1 = ∆i, by Lemma 3.1. Again we have ri such merges in this round, and ri independent
random variables {Xi,1, . . . , Xi,ri}. The total error in this round is Mi =

∑ri
j=1Xi,j , and except for this

error Mi and Mi−1, . . . ,M1, we can accurately estimate |D ∩ I| as 2i|(⋃j S
(j)) ∩ I| using the ri sets S(j).

We now analyzeM =
∑m

i=1Mi using the following Chernoff-Hoeffding bound. Given a set {Y1, . . . , Yt}
of independent random variables such that abs(Yj − E[Yj]) ≤ Υj , then for T =

∑t
j=1 Yj we can bound

Pr[abs(T −∑t
j=1E[Yj]) > α] ≤ 2e−2α2/(

Pt
j=1(2Υj)

2). In our case the random variables are m sets of ri
variables {Xi,j}j each with E[Xi,j] = 0 and abs(Xi,j − E[Xi,j]) = abs(Xi,j) ≤ ∆i = 2i−1. There are m
such sets for i ∈ {1, . . . ,m}. Setting α = h2m for some parameter h, we can write

Pr [abs(M) > h2m] ≤ 2 exp

(
− 2 (h2m)2∑m

i=1

∑ri
j=1(2∆i)2

)
= 2 exp

(
− 2 (h2m)2∑m

i=1(ri)(22i)

)

7

= 2 exp

(
− 2h2

(
22m

)∑m
i=1(2m−i)(22i)

)
= 2 exp

(
− 2h2

(
22m

)∑m
i=1 2m+i

)

= 2 exp
(
− 2h2∑m

i=1 2i−m

)
= 2 exp

(
− 2h2∑m

i=1 2−i

)
< 2 exp

(−2h2
)
.

Thus if we set h =
√

(1/2) ln(2/δ), with probability at least 1−δ we have abs(M) < h2m = hn/kε. Thus
for kε = O(h/ε) the error will be smaller than εn, as desired.

This scheme can also produce an ε-approximation that is correct for all intervals I ∈ I with probability
at least 1 − δ. There is a set of 1/ε evenly spaced intervals Iε such that any interval I ∈ I has abs(|D ∩
I| − |D ∩ I ′|) ≤ εn/2 for some I ′ ∈ Iε. We can then apply the union bound by setting δ′ = δε and run the
above scheme with kε = O((1/ε)

√
log(1/δ′)). Then with probability at least 1 − δ, no interval in Iε has

more than εn/2 error, which means that no interval in I has more than εn error.

Theorem 3.2. There is a same-weight merging algorithm that maintains a summary of sizeO((1/ε)
√

log(1/εδ))
which is a one-dimensional ε-approximation with probability at least 1− δ.

Uneven-weight merges. We next reduce uneven-weight merges to O(log(n/kε)) weighted instances of
the same-weight ones. This follows the so-called logarithmic technique used in many similar situations [20].

Set kε = O((1/ε)
√

log(1/εδ)) as previously. Let n be the size of data set currently being summarized.
We maintain log(n/kε) layers, where each layer has exactly kε points or is empty (we assume n/kε is an
integer; otherwise we can always store the extra ≤ kε points exactly without introducing any error). In the
0th layer, each point has weight 1, and in the ith layer, each point has weight 2i.

We merge two such summaries S1 and S2 via same-weight merging, starting from the bottom layer, and
promoting retained points to the next layer. At layer i, we may have 0, 1, 2, or 3 sets of kε points each. If
there are 0 or 1 such sets, we skip this layer and proceed to layer i+ 1; if there are 2 or 3 such sets we merge
any two of them using a same-weight merge, and promote the merged set of kε points to layer i+ 1.

The analysis of this logarithmic scheme is straightforward because our same-weight merging algorithm
preserves the error parameter ε across layers: Since each layer is produced by only same-weight merges, it
is an ε-approximation of the set of points represented by this layer, namely the error is εni for layer i where
ni is the number of points being represented. Summing over all layers yields a total error of εn, without the
algorithm requiring a priori knowledge of n.

Theorem 3.3. There is a fully mergeable summary of size O((1/ε)
√

log(1/εδ) log(εn)) which is a one-
dimensional ε-approximation with probability at least 1− δ.

3.3 Hybrid quantile summaries

Random sampling. A classic result [39, 38] shows that a random sample of kε = O((1/ε2) log(1/δ))
points from D is an ε-approximation with probability 1 − δ. So a fully mergeable summary for quantiles
can be obtained by just retaining a random sample of D. A random sample is easily fully mergeable. A
standard way of doing so is to assign a random value ui ∈ [0, 1] for each point pi ∈ D, and we retain in
S ⊂ D the kε elements with the largest ui values. On a merge of two summaries S1 and S2, we retain the
set S ⊂ S1 ∪ S2 that has the kε largest ui values from the 2kε points in S1 ∪ S2. It is also easy to show that
finite precision (O(log n) bits with high probability) is enough to break all ties.

Fact 3.1. A random sample of size kε = O((1/ε2) log(1/δ)) is fully mergeable and is an ε-approximation
with probability at least 1− δ.

8

We next show how to combine the approaches of random sampling and the low-discrepancy-based method
to achieve a summary size independent of n. At an intuitive level, for a subset of points, we maintain a
random sample of size about (1/ε) log(1/ε). The sample guarantees error about

√
ε for any range, so we

make sure that we only use this on a small fraction of the points (at most εn points). The rest of the points are
processed using the logarithmic method. That is, we maintain O(log(1/ε)) levels of the hierarchy, and only
in the bottom level use a random sample. This leads to a summary of size approximately (1/ε) log(1/ε).

Hybrid structure. We now describe the summary structure in more detail for n points, where 2j−1kε ≤
n < 2jkε for some integer j, and kε = (4/ε)

√
ln(4/ε). Let gε = (64/ε2) ln(16/ε). For each level l

between i = j − log2(gε) and j − 1 we either maintain kε points, or no points. Each point at the lth level
has weight 2l. The remaining m ≤ 2ikε points are in a random buffer at level i, represented by a random
sample of kε points (or only m if m < kε). Each point in the sample has weight m/kε (or 1 if m < kε).
Note the total size is O(kε log(gε)) = O((1/ε) log1.5(1/ε)).

Merging. Two hybrid summaries S1 and S2 are merged as follows. Let n1 and n2 be the sizes of the data
sets represented by S1 and S2, and w.l.o.g. we assume n1 ≥ n2. Let n = n1 + n2. Let j be an integer such
that 2j−1kε ≤ n < 2jkε, and let i = j − log2(gε).

First consider the random buffer in the merged summary; it now contains both random buffers in S1 and
S2, as well as all points represented at level i − 1 or below in either S1 or S2. Note that if n1 ≥ 2j−1kε,
then S1 cannot have points at level l ≤ i− 1. Points from the random buffers of S1 and S2 already have ui
values. For every p of weight w(p) = 2l that was in a level l ≤ i − 1, we insert w(p) copies of p into the
buffer and assign a new ui value to each copy. Then the kε points with the largest ui values are retained.

When the random buffer is full, i.e., represents 2ikε points, then it performs an “output” operation, and
outputs the sample of kε points of weight 2i each, which is then merged into the hierarchy at level i. It is
difficult to ensure that the random buffer represents exactly m = 2ikε points when it outputs points, but it is
sufficient if this occurs when the buffer has this size in expectation. There are two ways the random buffer
may reach this threshold of representing m points:

1. On insertion of a point from the hierarchy of level l ≤ i− 1. Since copies of these points are inserted
one at a time, representing 1 point each, it reaches the threshold exactly. The random buffer outputs
and then inserts the remaining points in a new random buffer.

2. On the merge of two random buffers B1 and B2, which represent b1 and b2 points, respectively. Let
b1 ≥ b2, and let B be the union of the two buffers and represent b = b1 + b2 points. If b < m we do
not output; otherwise we have m/2 ≤ b1 < m ≤ b < 2m. To ensure the output from the random
buffer represents m points in expectation we either:

(i) With probability ρ = (b−m)/(b− b1), we do not merge, but just output the sample of B1 and
let B2 be the new random buffer.

(ii) With probability 1− ρ = (m− b1)/(b− b1), output the sample of B after the merge, and let the
new random buffer be empty.

Note that the expected number of points represented by the output from the random buffer is ρb1 +
(1− ρ)b = b−m

b−b1 b1 + m−b1
b−b1 b = m.

Next, the levels of the hierarchy of both summaries are merged as before, starting from level i. For each
level if there are 2 or 3 sets of kε points, two of them are merged using a same-weight merge, and the merged
set is promoted to the next level.

Analysis. First we formalize the upward movement of points; see proof in Appendix B.

Lemma 3.3. Over time, a point only moves up in the hierarchy (or is dropped): it never decreases in level.

9

Now we analyze the error in this hybrid summary. We will focus on a single interval I ∈ I and show the
over-count error X on I has abs(X) ≤ εn/2 with probability 1 − ε/4. Then applying a union bound will
ensure the summary is correct for all 1/ε intervals in Iε with probability at least 3/4. This will imply that
for all intervals I ∈ I the summary has error at most εn.

The total over-count error can be decomposed into two parts. First, we invoke Theorem 3.3 to show that
the effect of all same-weight merges has error at most εn/4 with probability at least 1 − ε/8. This step
assumes that all of the data that ever comes out of the random buffer has no error, it is accounted for in the
second step. Note that the total number of merge steps at each level is at most as many as in Theorem 3.3,
even those merges which are later absorbed into the random buffer. Second, (the focus of this analysis) we
show the total error from all points that pass through the random buffer is at most εn/4 with probability at
least 1 − ε/8. This step assumes that all of the weighted points put into the random buffer have no error,
this is accounted for in the first step. So there are two types of random events that affect X: same-weight
merges and random buffer outputs. We bound the effect of each event, independent of the result of any other
event. Thus after analyzing the two types separately, we can apply the union bound to show the total error
is at most εn/2 with probability at least 1− ε/4.

It remains to analyze the effect on I of the random buffer outputs. First we bound the number of times
a random buffer can output to level l, i.e., output a set of kε points of weight 2l each; proof is deferred to
Appendix B. Then we quantify the total error attributed to the random buffer output at level l.

Lemma 3.4. A summary of size n, for 2j−1kε ≤ n < 2jkε, has experienced hl ≤ 2j−l = 2i−lgε random
buffer promotions to level l within its entire merge history.

Lemma 3.5. When the random buffer promotes a setB of kε points representing a set P ofm′ points (where
m/2 < m′ < 2m), for any interval I ∈ I the over-count X = (m/kε)|I ∩ B| − |I ∩ P | has expectation 0
and abs(X) ≤ 2m.

Proof. The expectation of over-count X has two independent components. B is a random sample from
P , so in expectation is has the correct proportion of points in any interval. Also, since E[|P |] = m, and
|B| = kε, then m/kε is the correct scaling constant in expectation.

To bound abs(X), we know that |P | < 2m by construction, so the maximum error an interval I could
have is to return 0 when it should have returned 2m, or vice-versa. So abs(X) < 2m.

Since m ≤ n/gε at level i, then m ≤ 2l−in/gε at level l, and we can bound the over-count error as
∆l = abs(X) ≤ 2m ≤ 2l−i+1n/gε. Now we consider a random buffer promotion that causes an over-count
Xl,s where l ∈ [0, i] and s ∈ [1, hl]. The expected value of Xl,s is 0, and abs(Xl,s) ≤ ∆l. These events
are independent so we can apply another Chernoff-Hoeffding bound on these

∑i
l=0 hl events. Recall that

gε = (64/ε2) ln(16/ε) and let T̂ =
∑i

i=0

∑hl
s=1Xl,s, which has expected value 0. Then

Pr[abs(T̂) ≥ εn/4] = 2 exp

(
−2

(εn/4)2∑i
l=0 hl∆

2
l

)
≤ 2 exp

(
−2

(εn/4)2∑i
l=0 (2i−lgε) (2l−i+1n/gε))

2

)

≤ 2 exp

(
−gε ε

2

8
1∑i

l=0 2i−l22(l−i)+2

)
= 2 exp

(
−gε ε

2

32
1∑i

l=0 2l−i

)

= 2 exp

(
−2 ln(16/ε)

1∑i
l=0 2−l

)
≤ 2 exp(− ln(16/ε)) = 2(ε/16) = ε/8.

Theorem 3.4. The above scheme maintains a fully mergeable one-dimensional ε-approximation of size
O(1

ε log1.5(1/ε)), with probability at least 3/4.

10

References

[1] P. K. Agarwal, S. Har-Peled, and K. Varadarajan. Geometric approximations via coresets. C. Trends
Comb. and Comp. Geom. (E. Welzl), 2007.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measure of points. J. ACM,
51(4):2004, 2004.

[3] P. K. Agarwal, J. M. Phillips, and H. Yu. Stability of ε-kernels. In Proceedings of 18th Annual
European Symposium on Algorithms, 2010.

[4] P. K. Agarwal and H. Yu. A space-optimal data-stream algorithm for coresets in the plane. In Pro-
ceedings 23rd Annual Symposium on Computational Geometry, 2007.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58:137–147, 1999.

[6] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in
a data stream. In RANDOM, 2002.

[7] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a
point set in three dimensions. Journ. of Algs, 38:91–109, 2001.

[8] R. Berinde, G. Cormode, P. Indyk, and M. Strauss. Space-optimal heavy hitters with strong error
bounds. ACM Transactions on Database Systems, 35(4), 2010.

[9] T. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Computational
Geometry: Theory and Applications, 35:20–35, 2006.

[10] T. Chan. Dynamic coresets. In SoCG, pages 1–9, 2008.

[11] B. Chazelle and J. Matousek. On linear-time deterministic algorithms for optimization problems in
fixed dimensions. J. Algorithms, 21:579–597, 1996.

[12] B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete
and Computational Geometry, 4:467–489, 1989.

[13] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. In Proc. International
Conference on Very Large Data Bases, 2008.

[14] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[15] J. Feigenbaum, S. Kannan, M. J. Strauss, and M. Viswanathan. An approximate L1-difference algo-
rithm for massive data streams. SIAM J. Comput., 32(1):131–151, 2003.

[16] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On distributing symmetric
streaming computations. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 2008.

[17] S. Ganguly and A. Majumder. CR-precis: A deterministic summary structure for update data streams.
In ESCAPE, 2007.

[18] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. How to summarize the universe:
Dynamic maintenance of quantiles. In Proc. International Conference on Very Large Data Bases,
2002.

11

[19] M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In Proc.
ACM SIGMOD International Conference on Management of Data, 2001.

[20] M. Greenwald and S. Khanna. Power conserving computation of order-statistics over sensor networks.
In Proc. ACM Symposium on Principles of Database Systems, 2004.

[21] S. Har-Peled. Approximation Algorithm in Geometry (Chapter 21).
http://valis.cs.uiuc.edu/˜sariel/teach/notes/aprx/, 2010.

[22] D. Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-
Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69:217–232, 1995.

[23] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct elements problem.
In Proc. ACM Symposium on Principles of Database Systems, 2010.

[24] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny aggregation service for ad-hoc
sensor networks. In Proc. Symposium on Operating Systems Design and Implementation, 2002.

[25] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and deltas: efficient and robust aggregation in
sensor network streams. In Proc. ACM SIGMOD International Conference on Management of Data,
2005.

[26] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in dis-
tributed data streams. In Proc. IEEE International Conference on Data Engineering, 2005.

[27] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other quantiles in one
pass and with limited memory. In Proc. ACM SIGMOD International Conference on Management of
Data, 1998.

[28] J. Matousek. Approximations and optimal geometric divide-and-conquer. In SToC, pages 505–511,
1991.

[29] J. Matousek. Geometric Discrepancy; An Illustrated Guide. Springer, 1999.

[30] J. Matousek. Tight upper bounds for the discrepancy of halfspaces. Discrete and Computational
Geometry, 13:593–601, 1995.

[31] J. Matousek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded VC-dimension.
Combinatorica, 13:455–466, 1993.

[32] A. Metwally, D. Agrawal, and A. E. Abbadi. An integrated efficient solution for computing frequent
and top-k elements in data streams. ACM Transactions on Database Systems, 2006.

[33] J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143–152, 1982.

[34] J. Nelson and D. P. Woodruff. Fast manhattan sketches in data streams. In Proc. ACM Symposium on
Principles of Database Systems, 2010.

[35] J. M. Phillips. Algorithms for ε-approximations of terrains. In ICALP, 2008.

[36] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New aggregation
techniques for sensor networks. In Proc. ACM SenSys, 2004.

[37] S. Suri, C. D. Tóth, and Y. Zhou. Range counting over multidimensional data streams. In Proceedings
20th Symposium on Computational Geometry, pages 160–169, 2004.

12

[38] M. Talagrand. Sharper bounds for Gaussian and emperical processes. Annals of Probability, 22:76,
1994.

[39] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their
probabilities. The. of Prob. App., 16:264–280, 1971.

[40] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting and
kinetic data structures using coresets. In SoCG, 2004.

[41] H. Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed dimensions. In
ESA, pages 817–829, 2008.

A Proofs for Heavy Hitters

In this section we provide deferred proofs relating to mergeable summaries for the heavy hitters problem.

Lemma A.1 (Lemma 2.1.). For any item x, f̂(x) ≤ f(x) ≤ f̂(x) + (n − n̂)/(k + 1), where n̂ is the sum
of all counters in MG.

Proof. It is clear that f̂(x) ≤ f(x). To see that f̂(x) underestimates f(x) by at most (n − n̂)/(k + 1),
observe that every time the counter for a particular item x is decremented, we decrement all k counters by 1
and ignore the new item. All these k + 1 items are different. This corresponds to deleting k + 1 items from
the stream, and exactly (n− n̂)/(k + 1) such operations must have been done when the sum of counters is
n̂.

Theorem A.1 (Theorem 2.1.). Using the above algorithm, MG summaries are fully mergeable of fixed size
O(1/ε) with at most εn error. Each merge takes O(1/ε) time.

Proof. Setting k + 1 = d1/εe, the size is O(1/ε) and the claimed error is (n − n̂)/(k + 1) ≤ nε. That
the size remains the same on a merge follows trivially from the algorithm. If we store the (items, counter)
pairs in a hash table, the merging algorithm can be implemented to run in time linear in the total number of
counters. So it only remains to argue that the error is preserved, i.e., the merged summary has error at most
(n1 + n2 − n̂12)/(k + 1) where n̂12 is the sum of counters in the merged summary.

The combine step clearly does not introduce additional error, so the error after the combine step is the
sum of the errors from S1 and S2, that is, at most (n1 − n̂1 + n2 − n̂2)/(k + 1).

The prune operation incurs an additional error of Ck+1, so if we can show that

Ck+1 ≤ (n̂1 + n̂2 − n̂12)/(k + 1), (A.1)

we will arrive at the desired error in the merged summary. If after the combine step, there are no more than
k counters, Ck+1 = 0. Otherwise, the prune operation reduces the sum of counters by at least (k+ 1)Ck+1:
the k + 1 counters greater than or equal to Ck+1 get reduced by Ck+1 and they remain nonnegative. So we
have n̂12 ≤ n̂1 + n̂2 − (k + 1)Ck+1 and the inequality (A.1) follows.

Lemma A.2 (Lemma 2.2.). After processing n items,

f̂SS(x)− f̂MG(x) = minSS = (n− n̂MG)/(k + 1)

for all x.

13

Proof. We prove f̂SS(x) − f̂MG(x) = minSS for all x by induction on n. For the base case n = 1, both
summaries store the first item with counter 1, and we have minSS = 0 and the claim trivially holds. Now
suppose the claim holds after processing n items. We analyze the MG summary case by case when inserting
the (n+ 1)-th item, and see how SpaceSaving behaves correspondingly. Suppose the (n+ 1)-th item is y.

(1) y is currently maintained in MG with counter f̂MG(y) > 0. In this case MG will increase f̂MG(y)
by 1. By the induction hypothesis we have f̂SS(y) = f̂MG(y) + minSS > minSS so y must be
maintained by SpaceSaving, too. Thus SpaceSaving will also increase f̂SS(y) by 1. Meanwhile
minSS remains the same and so do all f̂SS(x), f̂MG(x) for x 6= y, so the claim follows.

(2) y is not maintained by the MG summary, but it is not full, so it will create a new counter set to 1
for y. By the induction hypothesis f̂SS(y) = minSS , which means that y either is not present in
SpaceSaving or has the minimum counter. We also note that f̂SS(y) cannot be a unique minimum
counter in SpaceSaving with k + 1 counters; otherwise by the induction hypothesis there would be k
items xwith f̂MG(x) > 0 and the MG summary with k counters would be full. Thus,minSS remains
the same and f̂SS(y) will become minSS + 1. All other f̂SS(x), f̂MG(x), x 6= y remain the same so
the claim still holds.

(3) y is not maintained by the MG summary and it is full. MG will then decrease all current counters by
1 and remove all zero counters. By the induction hypothesis f̂SS(y) = minSS , which means that y
either is not present in SpaceSaving or has the minimum counter. We also note that in this case there
is a unique minimum counter (which is equal to f̂SS(y)), because the induction hypothesis ensures
that there are k items x with f̂SS(x) = f̂MG(x) +minSS > minSS . SpaceSaving will then increase
f̂SS(y), as well asminSS , by 1. It can then be verified that we still have f̂SS(x)− f̂MG(x) = minSS

for all x after inserting y.

To see that we always have minSS = (n − n̂MG)/(k + 1), just recall that the sum of all counters in the
SpaceSaving summary is always n. If we decrease all its k + 1 counters by minSS , it becomes MG, so
minSS(k + 1) = n− n̂MG and the lemma follows.

B Proofs for Quantiles

This section contains deferred proofs related to mergeable summaries for ε-approximate quantiles.

Theorem B.1 (Theorem 3.1). Any quantile summary algorithm which is incrementally maintainable is one-
way mergeable.

Proof. Given a quantile summary S, it promises to approximate the rank of any element by εn. Equivalently,
sinceD defines an empirical frequency distribution f (where, as in the previous section, f(x) gives the count
of item x) we can think of S as defining an approximate cumulative frequency function F̂ , that is, F̂ (i) gives
the (approximate) number of items in the input which are dominated by i. The approximation guarantees
mean that ‖F − F̂‖∞ ≤ εn, where F is the (true) cumulative frequency function (CFF) of f , and the
∞-norm, ‖ · ‖∞, takes the maximal value. Further, from F̂ and n, we can derive f̂ , the distribution whose
cumulative frequency function is F̂ .

Given summaries S1 and S2, which summarize n1 and n2 items respectively with error ε1 and ε2, we can
perform a one-way merge of S1 into S2 by extracting the distribution f̂2, and interpreting this as n2 updates
to S2. The resulting summary is a summary of f ′ = f̂1 + f2, that is, f ′(x) = f̂1(x) + f2(x). This summary
implies a cumulative frequency function F̂ ′, whose error relative to the original data is

‖F̂ ′ − (F1 + F2)‖∞ ≤‖F̂ ′ − (F̂2 + F1)‖∞ + ‖(F̂2 + F1)− (F1 + F2)‖∞

14

≤ε1(n1 + n2) + ‖F̂2 − F2‖∞
=ε1(n1 + n2) + ε2n2.

By the same argument, if we merge in a third summary S3 of n3 items with error ε3, the resulting error
is at most ε1(n1 + n2 + n3) + ε2n2 + ε3n3. So if this (one-way) merging is done over a large number of
summaries S1, S2, S3 . . . Ss, then the resulting summary has error at most

ε1(
s∑
i=1

ni) +
s∑
i=2

εini ≤ (ε1 + max
1<i≤s

εi)N

Setting ε1 = ε2 = . . . εi = ε/2 is sufficient to meet the requirements on this error.

Lemma B.1 (Lemma 3.1). For any interval I ∈ I, 2|I ∩ S| is an unbiased estimator of |I ∩ S′| with error
at most 1.

Proof. If |I ∩ S′| is even, then I ∩ S′ contains the same number of even and odd points. Thus 2|I ∩ S| =
|I ∩ S′| no matter whether we choose the even or odd points.

If |I ∩ S′| is odd, it must contain exactly one more odd point than even points. Thus if we choose the odd
points, we overestimate |I ∩ S′| by 1; if we choose the even points, we underestimate by 1. Either happens
with probability 1/2.

Lemma B.2 (Lemma 3.3). Over time, a point only moves up in the hierarchy (or is dropped): it never
decreases in level.

Proof. For this analysis, the random buffer is considered to reside at level i at the end of every action. See
Figure 1 for illustration of hybrid structure. There are five cases we need to consider.

1. A point is involved in a same weight merge at level l. After the merge, it either disappears, or is
promoted to level l + 1.

2. A point is merged into a random buffer from the hierarchy. The point must have been at level l ≤ i−1,
and the random buffer resides at level i, so the point moves up the hierarchy. If its ui value is too small,
it may disappear.

3. A point is in a random buffer B that is merged with another random buffer B′. The random buffer B
could not be at level greater than i before the merge, by definition, but the random buffer afterward is
at level i. So the point’s level does not decrease (it may stay the same). If the ui value is too small, it
may disappear.

4. A point in a random buffer when it performs an output operation. The random buffer was at level i,
and the point is now at level i in the hierarchy.

5. Both j and i increase. If the point remains in the hierarchy, it remains so at the same level. If it is
now at level i− 1, it gets put in the random buffer at level i, and it may be dropped. If the point is in
the random buffer, it remains there but the random buffer is now at level i where before it was at level
i − 1. Again the point may disappear if too many points moved to the random buffer have larger ui
values.

Lemma B.3 (Lemma 3.4). A summary of size n, for 2j−1kε ≤ n < 2jkε, has experienced hl ≤ 2j−l =
2i−lgε random buffer promotions to level l within its entire merge history.

Proof. By Lemma 3.3, if a point is promoted from a random buffer to the hierarchy at level l, then it can
only be put back into a random buffer at a level l′ > l. Thus the random buffer can only promote, at a fixed
level l, points with total weight n < 2jkε. Since each promotion outputs points with a total weight of 2lkε,
this can happen at most hl < 2jkε/2lkε = 2j−l times. The proof concludes using gε = 2j−i.

15

pi ∈ P → random ui ∈ [0, 1]
B = {pi}i with top kε uiP B

output:
kε points

input:
m� points

Random Buffer:

2j−1kε ≤ n < 2jkε

2j−1kε

2j−2kε

2j−3kε

2ikε

O(log(g
ε)) levels

kε = O(1
ε

�
log(1/ε))

gε = O(1
ε2 log(1

ε))
i = j − log(gε)
m = 2ikε < n/gε

2j−4kε

Figure 1: Illustration of the hybrid summary. The labels at each level of the hierarchy shows the number of
points represented at that layer. Each filled box contains only kε summary points.

C ε-Approximations of Range Spaces

In this section, we generalize the result of the previous section to ε-approximations of higher dimensional
range spaces. More generally, we consider a point set P ⊂ Rd and a set A ⊆ 2P of subsets of P . Usually
the interesting sets of subsets A are defined by inclusion in some family of geometric shapes such as balls
A = B, halfspaces A = H, or axis-aligned rectangles A = R. The pair (P,A) is called a range space. A
subset Q ⊂ P is an ε-approximation of (P,A) if

max
R∈A

abs

(|R ∩ P |
|P | − |R ∩Q||Q|

)
≤ ε.

We say a set X is shattered by A if every subset of X is described by R ∩ X for some R ∈ A. The
VC-dimension ν of (P,A) is the cardinality of the largest discrete subset of P that can be shattered by
A. A classic result [39, 38] shows that a random sample of O((1/ε2)(ν + log(1/δ)) elements from P
is an ε-approximation of (P,A) with probability at least (1 − δ). When P is a discrete point set of size
n, Matousek and Chazelle [28, 11] provided deterministic constructions for an ε-approximation of size
O((ν/ε2) log(ν/ε)). There exists smaller ε-approximations of size O(1/ε2− 2

ν+1 · log2− 1
ν+1 (νε)) [31], im-

proved to O(1/ε2− 2
ν+1) [30] for halfspaces ∈ Rd where ν = d. Axis-parallel rectangles R in Rd allows for

an ε-approximation of size O((1/ε) log2d(1/ε)) [35].

16

Previous constructions. These deterministic results are built on the idea of low-discrepancy color-
ing of a range space (P,A). Such a coloring can be written as a labeling χ : P → {−1,+1} so
Λχ(P,A) = maxR∈A abs(

∑
x∈P χ(x)) is small. Random coloring provides Λχ(P,A) = O(n1/2) in ex-

pectation and there are better colorings with Λχ(P,A) = O(n1/2−1/2ν log1/2 n) which can be computed
efficiently to construct the small ε-approximations following the Suri et al. [37] framework and the gen-
eral results [12, 22]. For (P,R), the algorithms for ε-approximations follow from discrepancy results with
ΛR = O(log2d n).

In a static setting, a set P of size n is arbitrarily partitioned into n/k sets of equal size. Then in a series of
log(n/k) rounds, arbitrary pairs S1, S2 of sets are “merged” (that is, S = S1 ∪S2) and then “reduced” (that
is, the doubled set S is partitioned into two sets S′1, S′2) via a low-discrepancy coloring, so that S′1 (as well as
S′2) is a cε-approximation of (S,A), for a certain value c, and only S′1 is retained. Since the approximation
factor degrades each round, the direct application of this merge-reduce scheme produces an (ε log(n/ε))-
sample of (P,A). Adjusting k = ((1/ε) log(n/ε))2ν/(ν+1)) yields an ε-approximation of (P,A) of size
O(k).

The extra log n factor can be removed by carefully skipping reduce steps every ν + 2 rounds, and then
performing those same reduce steps after merging to a single set. However, this delaying of reduces is
incompatible with the requirements for fully mergeable ε-approximations since the size of the summary
keeps growing, and the point when no more merges is required is never specified. Instead, as for intervals,
we choose to retain S′1 or S′2 at random.

Fully mergeable ε-approximations. We now generalize the approach in Section 3 to producing merge-
able ε-approximations for a range space (P,A). We can use roughly the same analysis as for intervals,
but now on a reduce step we require a more intricate procedure, namely a low discrepancy coloring of
S1 ∪ S2 into two sets S+ and S−. We then choose to retain either S+ or S− at random as the set S.
If the dual range space of (P,A) has VC-dimension ν, then the discrepancy of the coloring S−, S+ is
Λν = O(k1/2−1/(2ν) log1/2 k) where 2k = |S1 ∪ S2|. We can then generalize Lemma 3.1 as follows.

Lemma C.1. Let Λν = O(|S1 ∪ S2|1/2−1/(2ν) log1/2 |S1 ∪ S2|). Given any range R ∈ A, we can estimate
RS = |(S1 ∪ S2) ∩R| by RS,+ = 2|S+ ∩R| or RS,− = 2|S− ∩R| such that

E+ = abs(RS −RS,+) ≤ Λν and E− = abs(RS −RS,−) ≤ Λν .

This lemma can be slightly improved for halfspaces, but it does not improve the downstream theorem.
When we are interested in the range space (P,Rd), we can reduce the discrepancy to ΛR = O(log2d k).
Hence the generalization of Lemma 3.1 is as follows.

Lemma C.2. Let ΛR = O(log2d |S1∪S2|). Given any rangeR ∈ Rd, we can estimateRS = |(S1∪S2)∩R|
by RS,+ = 2|S+ ∩R| or RS,− = 2|S− ∩R| such that

E+ = abs(RS −RS,+) ≤ ΛR and E− = abs(RS −RS,−) ≤ ΛR.

Now we can run a randomized merge-reduce framework, but use a summary of size kε = O((1/ε)2ν/(ν+1) log1/2(1/εδ))
to bound the error in a single range R ∈ A. Lemma 3.2 and its proof generalize in a straightforward way,
the only change being that now ∆i = 2i−1Λν , hence implying h > O(Λv log1/2(1/εδ)) and ε′ = ε/h =
Ω(ε/Λv log1/2(1/εδ)). Solving n/kε = nε′ for kε yields

kε =
1
ε
O

(
Λv

√
log

1
εδ

)
= O

(
1
ε

(
k1/2−1/(2ν)
ε log1/2 kε

)√
log

1
εδ

)
= O

((
1
ε

)2ν/(ν+1)

log2ν/(ν+1)

(
1
εδ

))
.

For (P,Rd) we get kε = O((1/ε)ΛR

√
log(1/εδ)) = O

(
1
ε log2d

(
log(1/δ)

ε

)√
log 1

εδ

)
.

17

Applying the rest of the machinery as before we can achieve ε-approximations of size kε under same-
weight merges, with probability at least 1− δ.

Then this extends to different-weight merges with an extra log(nε) factor, as with intervals. Also, the
random buffer can maintain a random sample of the same asymptotic size O((1/ε2) log(1/δ)) and 0 ex-
pected over-count error. Substituting the increased kε value, the generalizations of Lemma 3.4 and Lemma
3.5 follow. From there, the rest of the analysis is the same with updated ∆l and kε values, yielding the
following theorem.

Theorem C.1. We can maintain a fully mergeable ε-approximation of (P,A) of VC-dimension ν, with
probability at least 1− δ, of size O

((
1
ε

)2ν/(ν+1) log2ν/(ν+1)+1
(

1
εδ

))
.

If the range space is (P,Rd), then the size is O
(

1
ε log2d

(
log(1/δ)

ε

)
log3/2

(
1
εδ

))
.

D ε-Kernels

A unit vector u in Rd defines a direction, and a point p ∈ Rd is projected to the line through u using the
inner product 〈u, p〉. Given a point set P ⊂ Rd, the extent in direction u is E[P, u] = maxp∈P 〈u, p〉, and
the width wid[P, u] = E[P, u] + E[P,−u]. An ε-kernel is a subset K ⊂ P such that over all directions u,

max
u

E[P, u]− E[K,u]
wid[P, u]

≤ ε.

Furthermore

max
u

wid[P, u]− wid[K,u]
wid[P, u]

≤ 2ε.

There exist algorithms to create ε-kernels of size O(1/ε(d−1)/2) in time O(|P | + 1/εd−3/2) [9, 40]. It is
also known that the union of two ε-kernels is still an ε-kernel [9].

Fact D.1. Given two ε-kernels K1 and K2 of two point sets P1 and P2, respectively, then K1 ∪ K2 is an
ε-kernel of P1 ∪ P2.

Using this fact alone would yield a trivial mergeable ε-kernel whose size is linear in n. Instead, we need
to provide a merge procedure that is guaranteed to (1) reduce K1 ∪K2 to an appropriate size, and (2) not
introduce any more error.

Reference frames and ε-kernel basics. We say a point set P is β-fat if over all directions u, v we
can bound the width ratio maxu,v(wid(P, u)/wid(P, v)) ≤ β. Given a bounding box B (i.e. where
P ⊂ B), we say P is β-fat with respect to B if over all directions u, v we can bound the width ratio
maxu,v(wid(B, u)/wid(P, v)) ≤ β. When β is less than some fixed constant (that depends only on d) we
say that P is just fat (with respect to B).

We let a bounding boxB represent a reference frame in that it fixes a set of axis, as well as a relative scale
along those axis. That is, the d orthogonal directions the of box’s face normals {b1, . . . , bd} define coordinate
axis, and the width of the box in each of these directions provides a relative scale of the contained point sets.

Most standard techniques to create ε-kernels use the following observations.

• Let A be an affine transform. If K is an ε-kernel of P , then A(K) is an ε-kernel of A(P) [2].

• Let I = [−1, 1]d and βd = 2dd5/2d!. There exists an O(d2|P |) size algorithm to construct an affine
transform A such that A(P) ⊂ I and A(P) is βd-fat with respect to I [7, 21].

18

• Place a grid Gε on I so that each grid cell has width ε/βd. For each grid cell g ∈ Gε, place one point
(if it exists) from g ∩ A(P) in K. Then K is an ε-kernel of A(P). Clearly the same holds if for each
column in the grid, you only retain the most extreme such points, reducing the size to O(1/εd−1) [2].

Because of the first two observations, for static ε-kernel algorithms it is convenient to simply assume that
P ⊂ I and P is fat with respect to I . The main difficulty in incremental ε-kernel algorithms is maintaining
such a reference frame I .

The size of ε-kernels can be reduced to O(1/ε(d−1)/2) using an additional trick [2], given that we have an
(ε/3)-kernel K1 of P that is β-fat with respect to I . Consider a sphere S of radius

√
d + 1 centered at the

origin, and place a set Qε of O(1/(εβ)(d−1)/2) evenly spaced points on S. For each point q ∈ Qε place the
closest point to q from K1 into K. Then K is an ε-kernel of P (of size O(1/ε(d−1)/2)).

Fully mergeable ε-kernels in a common reference frame. Now consider two point sets P1, P2 ⊂ I
and that are fat with respect to I . We can now create mergeable ε-kernels for P1 and P2. More precisely, we
can create ε-kernels K1,K2 of P1, P2, respectively, such that (1) |K1|, |K2| ≤ bε,d = O((1/εβ)(d−1)/2),
and (2) from K1 and K2 we can create an ε-kernel K of P = P1 ∪ P2 such that |K| ≤ bε,d.

First we create K1 and K2 using the three observations above and the additional trick to reduce the size.
Then for each point q ∈ Qε, we retain in K the closest point to q from K1 ∪K2. This approach generalizes
to as many merges as desired without increasing the ε error factor or the size beyond bε,d. The key is to use
a fixed reference frame I and set of points Qε in the construction of both kernels to be merged.

Theorem D.1. We can maintain fully mergeable ε-kernels of size O(1/ε(d−1)/2), assuming all input point
sets are fat with respect to a fixed reference frame I .

Although this may seem restrictive, it is a quite reasonable assumption for most data sets in practice.
Given a distributed data set, we probably have upper bounds and rough lower bounds on the total extent of
point sets. This is enough to provide a bounding box for which the point sets are fat with respect to. Even
if one partition of the data set is not fat with respect to the full bounding box (it may be a small localized
subset), the full result will be.

We leave open the question of maintaining a fully mergeable ε-kernel that does not restrict the points to a
fixed reference frame.

19

