
Space Efficient Mining of Multigraph Streams ∗

Graham Cormode†

Bell Laboratories
cormode@bell-labs.com

S. Muthukrishnan
Rutgers University
muthu@cs.rutgers.edu

ABSTRACT
The challenge of monitoring massive amounts of data gen-
erated by communication networks has led to the interest in
data stream processing. We study streams of edges in mas-
sive communication multigraphs, defined by (source, desti-
nation) pairs. The goal is to compute properties of the un-
derlying graph while using small space (much smaller than
the number of communicants), and to avoid bias introduced
because some edges may appear many times, while others
are seen only once. We give results for three fundamen-
tal problems on multigraph degree sequences: estimating
frequency moments of degrees, finding the heavy hitter de-
grees, and computing range sums of degree values. In all
cases we are able to show space bounds for our summa-
rizing algorithms that are significantly smaller than stor-
ing complete information. We use a variety of data stream
methods: sketches, sampling, hashing and distinct counting,
but a common feature is that we use cascaded summaries:
nesting multiple estimation techniques within one another.
In our experimental study, we see that such summaries are
highly effective, enabling massive multigraph streams to be
effectively summarized to answer queries of interest with
high accuracy using only a small amount of space.

1. INTRODUCTION
The past few years have witnessed an emergence of moni-

toring applications that has lead to the study of data streams,
where data is generated rapidly and continuously—in a stream—
and one needs to perform real-time analyses on the observed
stream of data records. The quintessential application is
that of analyzing the traffic on links in an IP network. IP
packets traverse links at very high rates (up to millions per
second). For our discussion here, each packet p is a tuple
(sp, dp, bp) where sp is the source IP address, dp is the des-
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tination IP address and bp is the size in bytes of the packet;
sp’s and dp’s are integers in the range 0..232−1. Data analy-
sis needs to keep pace with the rate at which packets are for-
warded in the IP link (typically one every few nano-seconds);
at such speeds, it is prohibitive to have large memories [13].
This motivates the need for methods for managing and min-
ing massive streams under severe resource—space, per item
processing time—constraints. Fortunately, for such stream
analyses, answers that are exact to the last decimal are not
required and, in fact, fast, approximate answers (with rea-
sonable guarantees on the approximation error) are often
preferred. Thus, it is possible to trade accuracy for reduced
resource requirements when analyzing massive streams.

The seminal work on these problems [2] presented meth-
ods for approximating frequency moments such as F2 =P

j(
P

k pk|sk=j)
2 in small space; F0 is the well-known dis-

tinct count and F2 is the repeat rate that has mining appli-
cations. Since then, a number of results have been shown
estimating quantiles, heavy-hitters, range aggregates, etc.
This has led to an emerging theory of data stream algo-
rithms [28]. Some of these techniques have been incor-
porated into specialized data stream management systems
(DSMSs) like Gigascope [11] and others [3] for IP network
management. More generally, manipulating stream data in-
volves new stream operators, SQL extensions, query opti-
mization methods, and operator scheduling techniques. Gen-
eral purpose DSMSs like NiagaraCQ, Stanford Stream, Tele-
graph, Aurora are being developed [4].

Our motivation also lies in analysis of IP traffic data which
we view as defining a communication network. In communi-
cation networks, the pattern of communication is typically
represented by a graph. Each node (IP address) represents a
communicant, and a (directed or undirected) edge (a packet
tuple (sp, dp, bp)) connects two communicants (sp, dp) who
communicate. Properties of this graph are important for
network managers to understand the behavior of their net-
work. For example, nodes of high degree are those that
communicate with a large number of other participants in
the network. Identifying such nodes in an IP network can
indicate unusual activity on that host, such as port scans or
virus activity, even though the overall bandwidth for that
host may still be low (since each scan requires only a few
packets). However, if we are monitoring packet streams, it
may be difficult to detect such activity, since there are also
very large packet streams between other hosts (e.g. net-
work backups), and the volume of these dominates that of
the suspicious communications. Similarly, one may be in-
terested in the frequency moments such as F0 and F2 of



their degrees based on the number of different communi-
cants rather than the total number of communications be-
tween hosts. For example, the second frequency moment is
M2 =

P
j(|{dk|sk = j}|)2 and similarly for M0 that is an

analog of F0.
Formally, in the graph terminology, we see a multigraph

stream — each edge can occur many times — and we are
interested in properties of the underlying graph. If we could
filter out multiple occurrences of the same edge, then we
could more easily find the nodes of high degree, since they
would stand out. But, doing such filtering exactly requires
a large amount of space to be devoted to recording which
edges have and have not been seen before; this is precisely
the challenge with data streams where we do not have the
space to memorize all the edges that have been seen.

Surprisingly, despite the robust collection of data stream
algorithms known to date, few if any apply to estimating
graph aggregates on multigraph streams. In this paper, we
study problems of developing new approximate techniques
to compute on massive multigraph streams. Even though
we have motivated the discussion above in the case when
the communication graph is derived from the traffic on IP
networks, there are many other multi-graphs: telephone
call graphs where nodes are telephone numbers and edges
are calls, web graphs where nodes are webpages and edges
are web links, etc. Transactions on such graphs—telephone
calls, followed web links, IP flows—form the edges of massive
(multi)graphs. Processing such edge streams in one pass is
of great interest in many applications.

1.1 Problems
We study some of the most basic problems with multi-

graph streams. Formally, we see edges of a multigraph on n
nodes in the input stream. Without loss of generality, edges
are directed, so (i, j) indicates an edge from i to j. Each edge
may be observed in the stream many times, however we only
wish to count each edge once. Let m denote the number of
(distinct) observed edges. We assume that m = Ω(n), i.e.,
n does not count nodes that do not participate in at least
one edge. Let G[i, j] = 1 if (i, j) appears in the stream, and
0 if it does not. We study the problem of estimating various
quantities on the underlying graph G. In particular, let di

be the degree of i which is
Pn

j=1 G[i, j]. Our aim is to accu-
rately approximate various functions of the di. We wish to
get sublinear algorithms, that is, algorithms that use space
and time o(n). This is the well-known cash-register model
of data streams [28]. Example problems that we focus on in
this paper are:

• Frequency estimates. Frequency moments of the dis,
i.e. Mk =

Pn
i=1 dk

i . In particular, M0 and M2 are
generalizations of the well known F0 and F2 to the
multigraph context and stand for count-distinct and
repeat rate (Gini index) calculation respectively. M1

is simply 2m, the total number of (distinct) edges in
the multigraph stream.

• Heavy hitters. Finding the largest degrees, that is,
finding those i’s where di is at least some fraction of
the sum of the number of nodes. This corresponds to
finding say the source IP address that communicates
with a large number of destinations, a natural measure
of heavy hitters generalized to the multigraph setting.

• Rangesums. Computing range sums of di, that is,
given j and k, computing

Pk
i=j di. This is the in-

dexing problem for multigraph streams; it reduces to
the “point” estimate problem when j = k, and it is
the problem of counting the destinations of a “subnet”
which is a hierarchical range of IP addresses associated
with individual subnets/organizations, another natu-
ral problem. It is also the primitive that we can use
to build simple, approximate, equidepth histograms
(quantiles) for the distribution of di’s.

There are two distinct challenges to overcome: first, there
is the challenge faced by graphs where we need to coordinate
information between multiple nodes but the space we have is
sublinear in the number of nodes. This is the common chal-
lenge associated with streaming, be it graph or multigraph.
Second, statistics we want to keep with sketches or sam-
ples are biased by repetitions of the same edge many times
on streams since the input is a multigraph. As a result,
even problems that are solvable on graph streams become
nontrivial on multigraph streams. Computing F2 on a graph
stream can be approximated to 1±ε with probability at least
1−δ in O((1/ε2) log(1/δ) log n) space and time per edge [2].
But this cannot be directly applied to M2 on multigraphs,
where the same edge can appear many times and we do not
want the multiple appearances to skew the outcome.

1.2 Previous Work
There has been a large amount of recent work on sum-

marizing and querying massive data streams — see, for ex-
ample, some of the surveys and tutorials in major confer-
ences [18, 28, 24, 4]. We focus on work relevant to processing
massive (multi)graphs. Despite the large amount of interest
in data stream algorithms, there has been relatively little
focus on (multi)graph streams. In [21], the authors stud-
ied special multigraphs and showed Ω(n2) lower bounds on
space needed for solving many problems. Computing with
more general graph properties such as shortest paths, con-
nectivity etc. is provably difficult in the cash register model,
so the semi-streaming model was proposed [28] where the
space is proportional to n, the number of nodes, and sublin-
ear in m, the number of edges. This is of interest in struc-
tural analysis of web graphs and in estimating transitivity of
binary relations in databases. Some interesting results have
been obtained in the semi-streaming model for graph prop-
erties such as diameters, spanners etc. [14, 15]. In [6], the
authors presented a way to estimate the count of triangles
in graphs, using space potentially super-linear, but sublin-
ear if the graphs had certain properties. We are not aware
of any prior positive results for multigraphs in one pass.
Recently, [7] there has been interest in the “superspreaders”
problem, which corresponds to the heavy hitters problem on
multigraph streams. The solution presented there relies on
an appropriate sampling technique based on fully random
hash functions, and is not immediately comparable to our
results in terms of parameters ε, δ.

Although there are a few works that have proposed space-
efficient summaries for data streams that implicitly com-
bines various synopses (for example, [17] cascades a set of
counters within the Flajolet-Martin sketch structure), our
explicit construction of cascaded summaries is novel and
more fully developed.



1.3 Our Contributions
Our main results are space efficient (sublinear) algorithms

for the three problems. Keeping approximate per-node in-
formation (eg, approximate degree counts) is not allowed in
this space limited model. All our algorithms are randomized
and approximate, that is, they produce answers to some ap-
proximation ε and succeed with probability at least 1 − δ.
Our results are as follows:

• Our algorithm for computing M2 of multigraph streams
takes space O( 1

ε4

√
n log n) and per-edge processing time

O(
√

n log n). The space used is sublinear in the num-
ber of nodes. This result can be extended to approxi-
mating Mk.

• We find all nodes with degree at least φm, and re-
port no nodes with degree less than (φ− ε)m in space
O( 1

ε3 log2 n) and time per edge O(log2 n). This is
the multigraph analog of heavy hitters [8, 26, 10] for
graph or numerical streams, but harder, using more
than the O( 1

ε
log n) space solutions for non-multigraph

streams [8, 26, 10].

• We can compute range sums of degree sequences in
space O(( log n

ε
)3) and time per edge O(log2 n). The

error is less than εn with high probability. This can
be used to compute approximate quantiles of the dis-
tribution of di’s and maintain a summary.

Our results are the first sublinear results known for multi-
graph streaming problems. In addition to above algorithmic
contributions, we make following technical contributions:

1. We introduce cascaded data stream summaries. Data
Stream summaries — such as samples or sketches —
typically focus on estimating a single aggregate (such
as COUNT DISTINCT, MEDIAN, etc.). Here, our
problems are more complicated aggregates, requiring
second or third order functions (our F2 problem on
multigraphs can be thought of as sum of squares of
count distinct, i.e. an aggregate of aggregates). To
solve these we create approximation methods that com-
bine multiple sketch or sample methods, to give “sketch
within sketch” or similar ideas. Here, the challenge
is both to design the appropriate cascading summary
structure and to prove strong guarantees about its
quality. Within the context of “cascaded data stream
summaries”, many different combinations of data stream
summaries can be cascaded. Careful choice of sum-
maries gives us our provable results above; many of
the other rather natural choice turn out to be provably
inefficient or inaccurate in the worst case and have var-
ious shortcomings that we point out; still, sometimes
they yield reasonable heuristic methods to compare
against our guaranteed methods.

2. We observe that multigraph problems such as above
can be thought of more generally as what we call cas-
caded aggregates, that is, composition of some aggre-
gate P on a stream that is derived from the input
stream by application of aggregate Q. We present
many results classifying the complexity of cascaded ag-
gregate problems on data streams for various P ’s and
Q’s.

3. By giving methods that are invariant under repetitions
of the same input, they are idempotent, and can be
merged to summarize the union of multiple multigraph
streams. This makes them immediately applicable to
a wider variety of settings, such as distributed mea-
surement, and diffusing synopses within a sensor net-
work [29]. Summaries can be “flooded” and merged
throughout a network to avoid loss of information,
without any danger of over-counting.

4. Lastly, we perform a detailed experimental study with
real communication streams and compare our provable
methods with other heuristics; we also explore their
performance over synthetic data such as Zipfian dis-
tributions that are found in communication networks.
We observe that our methods are highly efficient, giv-
ing very accurate answers while using limited space,
between 100 to 200 KB.

Map. Section 2 gives background for the data stream
primitives that we make use of. Our algorithms for comput-
ing M2, the second frequency moment of the degrees, are in
Section 3; in Section 4 we describe how to compute individial
degrees; and degree range sums in Section 5. In Section 6
we present our experimental results Extensions are present
in Section 7, with concluding remarks in Section 8.

2. PRELIMINARIES
Throughout, we make use of algorithms which approxi-

mate the number of distinct items observed. This is a key
problem in data streams, and several methods have been
proposed [16, 20, 19, 5, 9]. We omit detailed discussion of
these methods for space reasons, and instead summarize the
properties that they guarantee. Throughout, we will write
x = (1± ε)y as shorthand for (1− ε)y ≤ x ≤ (1 + ε)y, and
we assume ε < 1.

Fact 1 (Due to [16, 5]). There exist approximate dis-
tinct counter algorithms that take parameters ε and δ and
create a data structure, D, of size O( 1

ε2 log 1/δ) machine
words. The time to process each update is O(log 1/δ). They
observe a stream of (integer) values, and report a value |D|
such that, if S is the set of values observed thus far, then
|D| = (1± ε)|S| with probability at least 1− δ.

Throughout, we will set δ = poly(1/n), so taking the
union bound of all probabilities means that all inequalities
hold simultaneously with high probability. These data struc-
tures can have additional properties: give two data struc-
tures that summarize two sets, say S and T , then one can
merge the data structures to get a summary of S∪T . Also, in
many implementations, repetitions of the same item in the
stream do not alter the data structure. In our discussion, we
treat the approximate distinct counters as sets, and so use
set notation to denote operations upon them: D = D ∪ {i}
means we add item i to the distinct counter D, |D| means
we take the approximate count of distinct items, etc. Other
implementations of approximate distinct counters also al-
low the effect of the insertion of an item to be undone [9],
ie D = D\{i}.

To build our algorithms, we also make use of hash func-
tions with special properties, min-wise hash functions:



Fact 2. Let h : {1 . . . n2} → {1 . . . n2} be drawn from
a family of approximately min-wise independent hash func-
tions [22]. For given ε, ε-approximate min-wise indepen-
dent hash functions h can be computed in time, and rep-
resented in space, O(log(1/ε)); for any i, they guarantee
Pr[h(i) = min1≤j≤n2 h(j)] = (1± ε) 1

n2 .

3. MK ESTIMATION METHODS
We first show a simple lower bound in Section 3.1 for sam-

pling methods to illuminate the nature of our main result,
then present our Mk estimation algorithm based on sam-
pling in Section 3.2. As mentioned earlier, our algorithm
will rely on cascading one summary (the distinct counters
from above) into another (min-wise hash sampling) and we
show it provides strong approximation guarantees. However,
other combinations of summaries within each other suggest
themselves. These turn out to have poor worst case guaran-
tees, but still some are useful as heuristics, as discussed in
Section 3.3.

3.1 Lower Bounds for Sampling Techniques
We show that a simple lower bound for the most simple

sampling technique.

Theorem 1. Any algorithm based on the uniform ran-
dom sampling technique to estimate M2 (in fact, even F2)
requires Ω(

√
n) bits of storage.

Proof. We create a multigraph stream of edges on n
nodes. We randomly divide the nodes into two sets, X and
Y each of size n/2. We choose a random mapping from X to
Y , and create a stream based on this mapping as n/2 edges
(x, y). We now pick from two possibilities: either create a
new random mapping and insert a further n/2 edges, or ran-
domly permute the same mapping and insert the same first
n/2 edges again. Observe that in the first case, M2 = 4n
whereas in the second M2 = n. Clearly, in the second case,
sampling will find no node with degree two. However, in the
first case, if the sample size is o(n1/2) then with high proba-
bility, random sampling of the edge stream will not include
both (x, y) and (x, y′) in the sample (from the birthday para-
dox). Consequently, the two cases will be indistinguishable,
and so such sampling cannot approximate M2 to a factor
better than 2. 2

Having shown a Ω(
√

n) lower bound for uniform sampling,
we now give an algorithm based on a more sophisticated
sampling method that approximates M2 in space propor-
tional to

√
n log n.

3.2 Algorithm based on Min-wise Hashing
We approximate the number of distinct edges that are seen

using an approximate data structure D. The output |D|
gives an approximation, m̂ of M1 =

Pn
i=1 di = m. We will

define an estimator, X, whose expectation is the quantity
that we desire and whose variance is bounded in terms of
the square of its expectation. By keeping O(KL) copies of
this estimator independently and in parallel (for suitably
chosen values of K and L), we can combine these to get an
estimate with guaranteed accuracy bounds. The estimator
is based on the technique in [2] for F2 based on sampling;
here, the adaptation to M2 requires the combination of min-
wise hashing and distinct items counters, and a new proof.
The (k, l)th estimator is created as follows:

Min-wise hash estimator. Initialize mink,l = n2 + 1,
and v = 0. For each edge (i, j) in the stream, compute
hk,l(ni + j), where hk,l is an approximate-min-wise hashing
function in Section 2. If hk,l(ni + j) < mink,l then set
mink,l = hk,l(ni + j), and set vk,l = i. We keep the set of
(distinct) edges (vk,l, j

′) that are seen in the stream from
this point onward as Ek,l. If the size of this set |Ek,l| ≥ 1

ε2 ,
then we initialize an instance of an approximate distinct
elements counter, Dk,l. Then, for every subsequent edge
(vk,l, j

′), we insert this into Dk,l, if it is not already stored
in Ek,l. When we reset v, we also reset Ek,l and Dk,l to ∅.
When needed, we output an estimate. If Dk,l is not being

used, then set d̂ = |Ek,l|. Else, denote by |Dk,l| the output

of the estimator, and let d̂ be |Ek,l| + |Dk,l|. The estimate

is m̂(2d̂− 1). 2

Intuitively, we use the min-wise hash function to approx-
imately sample nearly uniformly from the set of all distinct
edges that has been seen at any time. For the sampled edge,
we maintain the distinct count estimate of its degree. This
is an instance of our “cascaded summaries”: first we sample,
then for each member of the sample we keep an approximate
distinct elements counter. We compute the appropriate es-
timator based on this sample degree and are able to prove
the following.

Theorem 2. Each estimator Xk,l = m̂(2d̂ − 1) has ex-

pectation (1 + O(ε))M2 and variance (1 + O(ε))n1/2M2
2 .

Proof. Let v be the value of the variable vk,l at the end
of the stream. Using the property of h, Pr[v = i]

=
P

G[i,j]=1 Pr[h(ni + j) < mini′ 6=i,G[i′,j′]=1 h(ni′ + j′)]

= di
m

(1± ε).
The expectation of this estimator is the probability that

any given edge (i, j) is chosen by the min-wise hash func-
tion (1/m), times the contribution of that edge to the total,
which is related to a, the number of unique edges (i, k) that
occur after (i, j) in the stream.

Thus E(Xk,l) = 1±ε
m

Pn
i=1

Pdi
a=1 m̂(2d̂− 1)

= (1± ε)2 m̂
m

Pn
i=1

Pdi
a=1 2d̂− 1

= (1± ε)2 m̂
m

Pn
i=1

Pdi
a=1(1± 2ε)(2a− 1)

= (1± ε)2(1± 2ε)
Pn

i=1(d
2
i + di − di)

= (1± ε)4M2

The main step relies on the fact that we have computed
d̂ = a exactly if a ≤ 1

ε2 . Otherwise, if d̂ is approximated,

then 1 < ε2a and so 2a− 1 = (1± ε2)2a. Since d̂ = (1± ε)a,

then 2d̂− 1 = (1± 2ε)(2a− 1).
Similarly, for the variance,

Var[Xk,l] ≤ E(X2
k,l) = 1±ε

m

Pn
i=1

Pdi
a=1(m̂(2d̂− 1))2

≤ (1 + ε)3m
Pn

i=1

Pdi
a=1(4d̂2 − 4d̂ + 1)

≤ (1 + ε)3m
Pn

i=1

Pdi
a=1(1 + 2ε)2(4a2 − 4a + 1)

≤ (1 + ε)3(1 + 2ε)2m
Pn

i=1
4
3
d3

i

≤ (1 + ε)7 4
3
M1M3

≤ (1 + ε)7 4
3
n1/2M2

2 ≤ O(n1/2)E(Xk,l)
2

This follows from the bounds on ε; the accuracy of the esti-
mation d̂; and that M1M2k−1 ≤ n1−1/kM2

k [2]. 2

The probability that the mean of K = O(n1/2

ε2 ) estimates
diverges from the correct answer by more than a 1 ± ε fac-
tor is bounded by constant probability using the Cheby-
shev inequality. Taking the median of L = O(log n) such
averages amplifies this to arbitrary small probability using
standard Chernoff bounds arguments. The full algorithm is
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M2UpdateMinHash(i, j)

1: D = D ∪ (i, j);
2: for l = 1 to L do

3: for k = 1 to K do

4: if (hk,l(n ∗ i + j) < mink,l) then

5: mink,l = hk(n ∗ i + j);
6: vk,l = i; Dk,l = ∅; Ek,l = ∅;
7: if (i = vk,l) then

8: if (|Ek,l| < 1
ε2 ) then

9: Ek,l = Ek,l ∪ (i, j);
10: else if ((i, j) 6∈ Ek,l) then

11: Dk,l = Dk,l ∪ (i, j);

M2OutputMinHash

1: m = |D|;
2: for l = 1 to L do

3: sl = 0;
4: for k = 1 to K do

5: if (|Ek,l| ≤ 1
ε2 ) then

6: d = |Ek,l|;
7: else

8: d = |Ek,l|+ |Dk,l|;
9: sl = sl + m ∗ (2 ∗ d− 1);
10: sl = sl/K;

11: return(median(sl));

Figure 1: Min-wise hash based data structure and algorithms for computing M2 of multigraph streams.

illustrated and given in pseudo-code in Figure 1. The rou-
tine M2UpdateMinHash takes a new edge (i, j) from the
multigraph stream and updates the appropriate data struc-
tures; M2OutputMinHash uses these data structures to
give the estimate of M2 of the stream.

The space required is O( 1
ε2 n1/2) estimators, each of which

requires space to store the min-wise hash function, the ex-
act list of edges E and the approximate distinct elements
counter D, giving an overall space bound of O( 1

ε4 n1/2 log n).
We now summarize these results with the following theorem:

Theorem 3. There exists a randomized algorithm that
estimates M2 over multigraph streams to (1 ± ε) accuracy
with high probability using O( 1

ε4

√
n log n) space and time

O( 1
ε2

√
n log n) per edge.

This approach naturally extends to estimating Mk for k >

2 with O( k2

ε4 n1−1/k log n) space; we omit the details here.

3.3 Heuristic methods forM2

Many other algorithms suggest themselves for this prob-
lem, however several of the obvious solutions exhibit draw-
backs or limitations. One might try sampling uniformly over
the domain of items, rather than from those seen in the
stream. An estimator could then be generated by using a
distinct items algorithm, and squaring the result. While this
estimator has the correct expectation, the variance is much
higher, meaning that Ω(n) samples must be taken to give a
guaranteed approximation of the desired quantity. Similarly,
sampling directly from the stream without using the min-
wise hash functions that we do here means that repetitions
of an edge in the stream can skew the sampling, and fail to
result in an unbiased estimator. Hence, although the above
hashing procedure seems involved, it appears necessary in
order to give an approximation with guaranteed bounds. We
consider one seemingly promising approach that suggests it-
self as a heuristic to compare against, and point out why it
cannot give strong guarantees for M2.

In a seminal paper, Alon, Matias and Szegedy gave a
method for computing the second frequency moment of a
stream of values, also known as F2 [2]. They showed that in
small space and with bounded randomness, high quality es-
timators for F2 could be constructed with a single pass over
the stream of values. The space is essentially independent
of the size of the stream, requiring only O( 1

ε2 log 1
δ
) in order

to give an approximation of the second frequency moment
up to a 1± ε factor with probability at least 1− δ.

A natural idea is to try to take this algorithm and gener-
alize it to work on multigraph streams. Where their sketch
algorithm kept sums of counts of observed items, one could
imagine replacing these with approximate distinct counters,
and applying the estimation technique on these. That is,
create a cascaded summary based on approximate distinct
counters cascaded within AMS sketches. In fact, such an ap-
proach contains a subtle flaw, meaning that one cannot give
the desired tight bounds on the result. We will describe the
details of such a method, which can be used as a heuristic
method for this problem.

Sketch-based M2 estimation. The key idea is to take the
“tug-of-war” sketch of [2, 1], and replace the counts of items
with approximate distinct counters. In order to do this, we
also need to “open up” the structure, which mapped values
onto +1 or −1, and then added these values to counters. We
take 2b approximate distinct counters. Given each update
(i, j), we use a 2-wise independent hash function, σ, to map
i onto {0, 1, . . . b − 1}. Then we use a 4-wise independent
hash function π to map i onto −1 or 1, and compute τ(i) =
2σ(i) + (π(i) + 1)/2. We then place (i, j) into the τ(i)th
estimator for F0, denoted Dτ(i).

By analogy with [2], we can compute an estimate for M2

as X =
Pb−1

k=0(|D2k| − |D2k+1|)2. However, this is not an
unbiased estimator: each |Di| estimator gives a 1±ε estimate
of the number of items placed into it, but because we must
subtract two such estimates, the result is no longer a 1 ± ε
estimator. Although we can use this method as a heuristic,
in our experiments we see bad cases where this bias causes
the estimate to be wildly wrong.

4. APPROXIMATING DEGREES AND
DEGREE HEAVY HITTERS

The next problem we consider is to find nodes with large
degrees, that is, di > φm, for a parameter φ < 1. In mas-
sive graph scenarios such as web graphs, often few nodes
have large degrees and finding nodes with overwhelming de-
grees is of interest. Existing methods for finding items with
high frequencies in a data stream are suited for estimating
edges or nodes that occur frequently but do not find nodes
with large multigraph degrees. For example, consider an ap-
proach based on sampling from the stream of edges. Then
it is easy to see that this sampling will be biased if the same
edge appears multiple times in the stream. Equally, sam-
pling from the domain (that is, choosing in advance a set



PointUpdateMinHash(i, j, v)

1: for k = 1 to K do

2: if (hk(n ∗ i + j)<mink) then

3: mink = hk(n ∗ i + j); ik = i;

PointQueryMinHash(i)

1: for k = 1 to K do

2: if (ik = i) then d = d + 1;
3: return(d ∗ |D|/K);

PointUpdateSketch(i, j, v)

1: for k = 1 to L do

2: D[k, fk(i)] = D[k, fk(i)] ∪ v;

PointQuerySketch(i)

1: d = ∞;

2: for k = 1 to L do

3: d = min(d, |D[k, fk(i)]|);
4: return d;

ProcessEdge(i, j)

1: D = D ∪ (i, j);
2: PointUpdate(i, j, j);
3: if (PointQuery(i) ≥ φ|D|) then

4: V = V ∪ i;
5: if |V | = 2/φ then

6: for all v ∈ V do

7: if (PointQuery(v)<φ|D|) then

8: V = V \v;

Figure 2: Algorithms for finding nodes of high degree in multigraph streams

of edges to sample, and then recording whether they were
seen or not) gives a method that is correct in expectation,
but has very high variance, meaning that the size of the
sample required to give an accurate answer has to be lin-
ear in the size of the stream, m. In what follows we give
algorithms for the problem of estimating di’s (denoted by
PointQuery(i)), and finding heavy hitter i’s, ie., i’s with
large di’s.

Given a subroutine implementing PointQuery, one can
then build an algorithm to track only those dis that exceed
the threshold φn as further updates are observed, in the
style of [8]. In order to maintain the largest degrees, we
keep the current set of heavy degrees in a heap. After each
update (i, j), we compute PointQuery(i); if it is above φm̂,
then retain i in a set V of nodes. We need to check that
the this set of nodes does not grow too large, so if |V | >
2/φ, we remove any i ∈ V for which D[f(i)] < φm̂. When
needed, output every node i ∈ V for which PointQuery(i)
the estimated count of i is at least φm̂. Following [8], this
procedure guarantees to find the heavy hitters, provided the
point query routines give accurate estimates. This algorithm
to maintain the heavy hitter nodes is illustrated in Figure 2
as ProcessEdge.

Hence, our discussion now focuses on how to estimate the
dis in order to implement PointQuery.

4.1 Sampling using Min-wise Hashing
We first give a sophisticated sampling procedure to draw

a sample uniformly from the edges of the graph, rather than
the edges of the multigraph stream. From this sample, one
can then use the degrees of the sampled subgraph to approx-
imate the frequency of nodes in the original graph. The key
idea is to use the min-wise sampling technique as used above
in the M2 estimation algorithm to draw from the stream.

Theorem 4. PointQuery can be implemented approxi-
mately with error εm with high probability in space and time
per update and per query O( 1

ε2 log(1/ε) log n).

Proof. We use K min-wise hash functions h : {1 . . . n2} →
{1 . . . n2}. For each edge in the stream (i, j) we compute
h(n ∗ i + j), and for each hash function retain the edge
that maps to the smallest value. After processing the whole
stream, the probability of each edge being retained by each
hash function is 1±ε

m
. Let S denote the set of edges retained

in the sample, clearly |S| = K. Given a particular node
i, the approximate degree is computed by |{(i, j)|(i, j) ∈
S}| ∗ m̂

K
. Here, m̂ is our 1± ε estimate of the number of dis-

tinct edges m. This estimator is correct in expectation. By
application of the Hoeffding inequality [27], one can show
that the estimator is correct within (1 ± ε)m with proba-
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Figure 3: Sketch Structure for Degree Estimation

bility δ, provided we set K = O(1/ε2 log 1/δ). To main-
tain the sample, we need to compute the K min-wise hash
functions on each edge, and maintain the K smallest edges.
Since each hash function requires space O(log 1

ε
), the total

space required is O( 1
ε2 log(1/ε) log n) to guarantee the ap-

proximation quality with high probability. The algorithm is
illustrated in Figure 2 as routines PointUpdateMinHash
and PointQueryMinHash. 2

Corollary 1. Using the above routine, we can find heavy
hitters in multigraph streams in space O( 1

ε2 log(1/ε) log n) to
guarantee all nodes with di > (φ + ε)m are output, and no
nodes with di < (φ− 2ε)m are output, with high probability.

4.2 Sketch Based Algorithm
A disadvantage of the above sampling based method is

that it requires a lot of processing time per update. We de-
sign an alternate approach, which is another example of a
cascaded summary, or a “sketch within a sketch”: combining
the sketch structure of [10] with distinct element algorithms.
The important feature is that this sketch structure relies on
additions only and therefore, it can give bounded guaran-
tees on the accuracy of estimates (unlike the sketch-based
algorithm for M2).

Sketch Algorithm for Degree Estimation. Keep an ar-
ray of L×B distinct element counters, labeled D[1, 1] . . . D[L, B].
Let fk : {1 . . . n} → {1 . . . B} be a hash function drawn from
a pairwise independent family. For each edge (i, j), insert j
into D[k, fk(i)]. We will show that taking mink |D[k, fk(i)]|
is an accurate estimate for di. The algorithm and data struc-
tures are illustrated graphically in Figure 3 and in pseudo-
code in Figure 2 as routines PointUpdateSketch and Point-
QuerySketch.



DRSUpdateSketch(i, j, sumdi)

1: α = i;
2: for β = 0 to log n do

3: PointUpdateSketchβ(β∗n+α, j, sumdi∗(i∗n)+j)
4: α = bα/2c;

Figure 4: Processing an edge to compute distinct
range sums

Theorem 5. We can implement PointQuery approxi-
mately with error εm with high probability in space O( 1

ε3 log2 n).

The time per update and per query is O(log2 n).

Proof. We show that the estimate mink |D[k, fk(i)]| is a
good estimator of di. We set B = 2/ε.

E(|D[k, f(i)|]) = (1± ε)(
P

j,f(j)=f(i) dj)

= (1± ε)di + (1± ε)
P

j 6=i,f(j)=f(i) dj

= di ± εdi + (1± ε) ε(m−di)
2

.

Hence, Pr[|D[k, f(i)]| − (1± ε)di > ε(1± ε)(m− di)] < 1
2
.

So with constant probability, |D[k, f(i)]| = di +(1±ε)(εm).
By taking the estimate of di to be the minimum of L =
O(log n) independent repetitions of the estimator, we can
obtain guarantees to high probability. The space required is
O( 1

ε3 log2 n), and the time per edge is O(log2 n). 2

Using this routine within the heap-based solution to track-
ing the heavy hitter degrees gives the following guarantees
about the output. If di > (φ + ε)m then |D[k, f(i)]| >
(φ + ε)m > φ(1 + ε)m > φm̂ with constant probability, and
so it will be retained (assuming ε ≤ φ ≤ 1

2
). Symmetri-

cally, if |D[k, f(i)]| > φm̂ = φ(1 ± ε)m > φ(1 − ε)m then
di + (1 + ε)(εm) > (1− ε)φm ⇒ di > m(φ− ε(1 + φ + ε)) >
m(φ− 2ε). In summary,

Corollary 2. Using the above routine, we can find heavy
hitters in multigraph streams in space O( 1

ε3 log n) to guar-
antee all nodes with di > (φ+ ε)m are output, and no nodes
with di < (φ− 2ε)m are output, with high probability.

4.3 Lossy Counting Heuristic
There are several methods which find frequently occur-

ring items in a data stream and report ε-accurate counts for
them. A natural approach to the problem of finding large
multigraph degrees is to take some of these methods and try
to modify them to avoid multiply counting the same edge.
For example, one could take the Lossy Counting method
of Manku and Motwani [26], which stores counts of certain
observed items, and replace the exact counters with approx-
imate distinct counters. Intuitively, this seems a reasonable
modification to make, but it turns out that in analyzing the
new algorithm one can no longer make tight bounds on its
accuracy. Where the original algorithm assumes accurate
item counts, we have only approximations, and so the deci-
sion about whether to retain an item in memory or to prune
it is no longer clear cut. In the worst case, one can argue that
the space required to track item counts could grow without
bound. However, this algorithm is a reasonable heuristic to
try out in practice and to see how it performs on realistic
data.

5. DISTINCT RANGE SUMS
We can make use of the above methods in order to com-

pute other functions, over multigraphs or in other streaming

settings. In many cases the nodes of a streaming multigraph
are comparable under a total order, and consecutive nodes
under the ordering have a natural interpretation. For ex-
ample, in IP networks, nodes can be indexed by IP address,
and consecutive nodes make up subnetworks. It is natural
then to ask range queries over ranges of node values, say
[j, k]. There are two equally reasonable ways to interpret
such queries given the range [j, k]:

• Sum di: Sj,k =
Pk

i=j di = |{(i, y)|(i, y) ∈ E∧j ≤ i ≤ k}|.

• Union di: Uj,k = |{y|(i, y) ∈ E ∧ j ≤ i ≤ k}|.
The first query computes the sum of the degrees of nodes

in the range query; the second treats the nodes in the range
as a single node, and computes its degree. Using appropriate
calls to the PointQuerySketch routine from the previous
section, both types of distinct range query can be answered
in the same bounds.

The problem can be reduced to querying a logarithmic
number of non-overlapping dyadic ranges (see, for exam-
ple, the discussion in [10]). These are ranges of the form
DR(α, β) = [α2β , (α+1)2β−1] for integer α and β. We can
then treat each dyadic range as a single point, so by track-
ing information about all log n dyadic range lengths in log n
separate sketches, and updating the log n ranges affected by
each new edge, we can answer range queries.

In order to give guaranteed bounds on the accuracy of
our results, we focus on the sketch-based methods, since in
order to give answers with high accuracy to a range query,
we must merge the results of the dyadic range queries to give
an answer that is accurate over the whole range. Our actions
are different depending on whether we want to answer Sum
di or Union di queries. For Sum di queries, we must ensure
that all edges are treated as distinct, and so we will insert
a value (n ∗ i + j) into our data structure to encode this.
For Union di queries, we do not want to count the same
destination j multiple times, and so we insert the value j
instead. The full update algorithm is illustrated in Figure 4.
It makes use of an indicator variable, sumdi, which is 1 if
the goal is Sum di queries, and 0 for Union di. It calls the
function PointUpdate from Figure 2. Note that for Union
di queries in particular we faced a non-trivial challenge, since
we cannot simply sum the results of the dyadic range queries:
this will over-count nodes that are linked to by multiple
dyadic ranges. Instead, we must make crucial use of the
properties of the distinct range counters and so require a
careful analysis.

In order to compute the approximate Union di, we com-
pute the union of the estimators for the range [j, k]. Just
as in the point query case, we go to the estimators for the
query, but this time we have at most 2 log n places to probe
(at most two per value of β). We take all the correspond-
ing estimators at probe points, and merge them together (as
mentioned in Section 2, merging approximate distinct coun-
ters is supported by many implementations). The result
is a single distinct element counter that contains the value
of interest, plus some error due to other items which were
mapped to the same counters. The expected error from col-
lisions under hash functions can again be bounded in terms
of m, n, and the number of buckets, b. We adjust the pa-
rameters to get the necessary bounds: since we are taking
up to 2 log n individual estimators, the error can potentially
increase by this factor. We counteract this by increasing the
number of buckets by this factor also. However, we do not



need to adjust the approximation factor of the distinct coun-
ters, since they give a relative error guarantee. Formally, we
show the bounds as follows:

Theorem 6. With space O( 1
ε3 log3 n), and update time

O(log3 n), we can answer Distinct Range Union di queries
with error at most εm with high probability.

Proof. Let E denote the set of edges and let the queried
range be represented by 2 log n (possibly empty) dyadic ranges,
DR[αβ,l, β] and DR[αβ,r, β] for β = 0 . . . log n/2. We will
write � for the right shift operator where x � y = b x

2y c.
Our estimate is given by:

(1± ε)| ∪log n/2
β=0 {y|(i, y) ∈ E, f(i � β) = fβ(αβ,l)

∨ f(i � β) = fβ(αβ,r)}|
= (1± ε)| ∪log n/2

β=0 {y|(i, y) ∈ E, j ≤ i ≤ k}|
∪{y|(i, y) ∈ E, fβ(i � β) = fβ(αβ,l)

∨ fβ(i � β) = fβ(αβ,r)}|
= (1± ε)Uj,k

+(1± ε)
Plog n/2

β=0 |{y|(i, y) ∈ E, fβ(i � β) = fβ(αβ,l)}|
+ |{y|(i, y) ∈ E, fβ(i � β) = fβ(αβ,r)}|

= (1± ε)Uj,k + (1± ε)
Plog n/2

β=0 2m/b

= (1± ε)Uj,k + (1± ε) 4m log n
b

By setting the number of distinct element counters for
each value of β to be b = 10 log n

ε
and applying the Markov

inequality, the total error is more than εm with probability
at most 2

5
(1 + ε). Because ε < 1, this is bounded by a

constant.
Since there are log n values of β to consider and each

requires b log n = O(log n/ε) distinct counters each of size
O( 1

ε2 log n), the total space required is O(( log n
ε

)3). The time

for each update is O(log2 n) for each sketch structure and
the time to query the data structure is the same as the up-
date time, O(log3 n). 2

The analysis for Distinct Range Sum di queries is similar:

Theorem 7. With space O( 1
ε3 log3 n), and update time

O(log3 n), we can answer Distinct Range Sum di queries
with error at most 2εm with high probability.

Heuristic approaches for Distinct Range Sums. One
can easily generate heuristic methods to compare against,
by again using dyadic ranges, but using a method such as
the LossyCounting heuristic to compute the values for each
range, and summing these. This may perform badly for
Union di queries, since the same destination may be counted
multiple times when it should only be counted once. For
similar reasons, note that the solution of using the Min-
wise Hash based sampling to draw a uniform sample of the
edges and then estimating the result based on the fraction
of the sample that is within the queried range does not give
an estimator that is correct in expectation; so this gives an
alternate heuristic approach.

Applications to quantile tracking. A direct application
of the Distinct Range Sum queries is to answering quantile
queries over the degrees of nodes. For example, one problem
is to find the median node, which is the one for which half the
edges are from nodes less than it, and half from nodes greater
than it (under the ordering of the node identifiers). More
generally, one can specify an arbitrary quantile value φ and

ask to find the node with φm edges below it. This is solved
by observing that this can be rephrased as a Distinct Range
Sum Query (as in [10]) to find the node k such that the
range sum [0, k] = φm. The Union and Sum variants give
different semantics: Sum corresponds to the standard notion
of equi-depth histograms, whereas Union can be thought
of as generating the boundaries for equi-width histograms.
Our result then follows from the above theorems on distinct
range sums:

Corollary 3. With space O( 1
ε3 log3 n) we can answer

quantile queries with error at most εm with high probability.

This problem has application to a different setting: in
sensor networks, we wish to compute quantiles over sets of
values observed at different sites. If we model the sites by dp

and the values by sp, then we can capture this in terms of our
multigraph model. A standard approach in sensor networks
to aggregate computation is synopsis diffusion [29], where
synopses of individual sensors are sent around the network
and merged with others to build an overall summary. For
simple aggregates such as the minimum value, this approach
is simple and resilient to the order and number of merges,
since the combining process is idempotent: we can repeat-
edly merge two values by taking their minimum, and this is
resilient to repetitions of the same summary being merged in
at different points. Our summaries are also idempotent, so
they can be used to solve the quantile computation problem.

6. EXPERIMENTS
We implemented the key methods for M2 estimation and

approximating degrees of nodes in multigraphs. Both of
these methods are vital for subsequent mining tasks, such as
finding nodes of high degree, and computing distinct range
sums. The implementation used C, and experiments were
run on a 2.4GHz desktop machine.

We experimented on a variety of real and synthetic datasets
representing massive multigraphs by a stream of edges. The
real data sets were drawn from networking scenarios, and
consisted of a set of 2.2 million phone calls and 600,000
Internet connections for one day from the Internet Traffic
Archive [25, 30]. In each case, we represented the dataset
as a series of (source, destination) pairs: (calling local ex-
change, dialed local exchange) in the telephone case, and
(source IP, destination IP) in the network case. We ana-
lyzed the induced graphs offline, and saw that there were
over 1 million distinct edges in the phone data, and 35,000
in the network case. In both cases, the data displayed no-
ticeable skew, with some nodes have degrees of thousands
or tens of thousands, and many more having degree close to
one.

To generate the synthetic data, we adopted a generalized
Zipfian distribution, where the ith largest degree is propor-
tional to 1/iz, where z is the Zipfian parameter. Hence,
to generate the data we repeatedly performed the follow-
ing procedure: create the jth (directed) edge as (i, j) where
i is selected from a Zipfian distribution with parameter z.
We then applied a hash function on the source and des-
tination nodes of each edge to mask the structure. Thus,
the degree sequence of the nodes follows a Zipfian distri-
bution. Such skewness of degree sequences has been ob-
served in many network settings, including communication
and social networks [23]. Hence, this allows us to gener-
ate an unbounded sized multigraph that resembles realistic
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Figure 5: Experiments on M2 Estimation

communication networks. Note that this method does not
generate multiple copies of the same edge. However, all of
our methods are invariant under repetitions of an edge: if an
edge is added which has been observed before, then in every
case the data structure does not change. So for testing the
accuracy of our methods we only have to use graph streams
with no repeats.

6.1 M2 Estimation
We carried out a set of experiments on computing M2 on

multigraph streams. We computed the exact result so we
could empirically evaluate the quality of approximations of
the two techniques, the guaranteed bounds of the min-wise
hashing approach and the heuristic of using an AMS sketch
with distinct item counters. In our experiments, we always
allocated the same amount of space to the sketch approach
and the min-wise hashing approach. Throughout, we used
the Flajolet-Martin data structure (“FM sketches”) to im-
plement the approximate distinct counter [16]. We set the
number of FM estimators in each FM sketch to be 20 and L,
the number of repetitions of our estimators, to be 5. Increas-
ing these values did not improve the quality of the output
significantly. We then experimented with varying the re-
maining parameters: for synthetic data, the Zipf skewness
parameter, z, and for real data the amount of space dedi-
cated to the approximation task.

Our first results are shown in Figure 5. We plotted the
observed error on one million edges drawn from a Zipfian
distribution in Figure 5 (a). We show here the importance
of keeping track of the number of distinct edges incident
on a node exactly when it is small: we have also plotted
the accuracy observed if we always used approximate dis-
tinct counters as “approx min hash”. We see that when the
distribution is more uniform (z < 1), keeping exact counts
when possible brings significant gains, when many counts
are small. Above z = 1, there is no difference, since the
largest degrees dominate the computation of M2, and these
must be approximated. Using the heuristic sketch method
is always worse than the min-wise sampling, averaging 30%
error for z > 1. For z < 1, the sketch method is so inaccu-
rate that its error is sometimes many orders of magnitude
wrong. Meanwhile, for skewed data, the min-wise hashing
approach achieves an error that is mostly less than 10%.
We argue that this skew, with z between 1 and 1.5, is that
most commonly seen in network data [23]. Indeed, on the
real data (Figure 5 (b)), we see that the min-wise hashing

achieves good accuracy, while the sketch approach is much
more variable, with accuracy improving as more space is
given to the estimation procedure. Note that each plotted
point is a single experiment rather than averaging or other-
wise trying to smooth out the variability of these methods.

We examined the effect of increasing the number of edges,
up to 10 million, on the observed accuracy. This is shown in
Figure 5 (c). Our analysis shows that the space required to
give ε accuracy is O( 1

ε4

√
n). Although this looks off-putting,

we have seen that with a relatively small amount of space
— in this case, 130KB — the Min-wise hashing approach is
accurate within a few percentage points. By fixing the space
and increasing n, our bound suggests that ε should grow as
n1/8. That is, for every factor of 10 increase in n, the error
should grow by 101/8, an increase of approximately a third.
Although it is hard to be precise about how the error is
growing in the figure, one can see a weak trend of increasing
error over the whole domain.

The main drawback of the approach based on min-wise
hashing is its speed, compared to the sketching heuristic
which consistently takes about 10 seconds to process one
million edges, irrespective of the distribution. For distri-
butions with small skew, the min-wise hashing cost is low,
comparable to the fast update cost of making a sketch. How-
ever, as the skew increases above 1, the update cost rises,
roughly linearly, to around 300 seconds for a million edges.
This is because of the algorithm: for each edge (i, j) and each
node currently in the sample vk,l, we test whether i = vk,l.
For skewed distributions, the chance that i is sampled rises
much higher, and so we incur the cost of updating the dis-
tinct counters. For less skewed distributions, the node gets
sampled by few if any of the hash functions, and so has less
chance of requiring an update to a distinct counter method.
This leaves as a challenge for future work to combine the
accuracy of the min-wise hashing approach with the greater
update speed of the sketching approach.

6.2 Degree Estimation
In order to give good quality results for finding the nodes

with largest degree, and approximating distinct range sums
both require at heart high quality estimators for the degree
of a single node. Hence, we evaluate our algorithms for
both the problems based on the accuracy that individual
degrees are approximated. We set the size of FM sketches
to be 10 repetitions, and L = 5 throughout. To measure
accuracy, we computed the 20 nodes with largest degree, and
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Figure 6: Experiments on Degree Estimation

found the error in each, as a fraction of m, the sum of the
degrees, and returned the average error (Computing error
on nodes with small degree is not very meaningful: because
the approximations are measured as a fraction of m, nodes
with low degree have their degrees well approximated by 0).

Figure 6 (a) shows the accuracy when all methods — the
sketch based method, using min-wise hashing to draw a sam-
ple, and the heuristic of augmenting Lossy Counting with
approximate distinct counters — are allocated 175KB of
space. For Lossy Counting, which has a pessimistic bound
on the amount of space required, we instead adjusted its
parameter ε until the amount of space used closely matched
that of the other methods. We see very low error with low
skew (below z = 0.8), but this is not meaningful, since no
counts are very high, and approximating all counts with
zero achieves similar error. The most interesting region is
between z = 1.0 and 2.0, where sampling based on min-
wise hashing gets the best results, around half as much as
sketching and lossy counting. Similar results are seen on
real network data as we increase the amount of space avail-
able for approximation (Figure 6 (b)). For sufficiently large
space, the error of min-wise hashing is up to four times less
than that observed for the other two methods.

As the number of edges increases, min-wise hashing still
wins out (Figure 6 (c)). There seems little to choose be-
tween Lossy Counting and Sketching in terms of accuracy,
although one could perhaps argue that the Lossy Counting
heuristic is more variable. In terms of time taken, the cost of
the min-wise hashing is again apparent. The costs for min-
wise hashing and sketching do not vary much as the skewness
increases, but the hashing technique is almost two orders of
magnitude slower. Sketching costs consistently 3 seconds for
a million edges for all values of the zipf parameter. For the
Lossy Counting heuristic, the cost is 10–15 seconds for most
data, although this cost drops for extremely skewed data to
a few seconds for a million edges.

7. EXTENSIONS AND RELATED RESULTS

7.1 Distributed Computation
Our analysis so far has implicitly assumed that all updates

are observed at one single location, so that the esimates can
be built in a centralized fashion. In general network sce-
narios, this is not always the case: typically, the relevant
multigraph streams are observed at a variety of locations,
and of course it is not practical to send these observations

to a central site since this would overload the network. How-
ever, a common feature of all the algorithms described here
is that two data structures created with the same parame-
ters (eg., the same L, K and choice of hash functions) can
be merged to give the summary of the union of the streams
that created the contents of each data structure. The merg-
ing procedure follows from the semantics of the data struc-
ture. In our sketch-based solutions, one combines the two
data structures by taking pairs of corresponding distinct el-
ements counters and merging their contents, as discussed in
Section 2. For min-wise hashing based solutions, the method
is a little more involved. For each estimator, if the two values
of mink,l are different, then we simply retain the informa-
tion from the one of the two with the lowest value of mink,l.
If they are the same, then we merge the information from
the two sets of edges: we compute the union of the sets of
exact edges, and the union of the approximate distinct coun-
ters. The result is identical to that which would have been
obtained had all streams been observed at a single location.
We omit complete details of the merging procedure.

7.2 Other Cascaded Aggregates
A generalization of this work is to study pairs of cascaded

aggregates P (Q), meaning we compute one aggregate—Q—
over a data set (such as a graph, matrix, set of values) and
then compute P over the vector of values of Q. The prob-
lems we have studied here use the distinct elements (number
of non-zeros) aggregate on rows (corresponding to nodes)
and then further aggregates on the vector of values, i.e. our
problem of M2 computation can be written as the cascaded
aggregate F2(F0). In general, we are interested in arbitrary
P (Q) estimation. The table below gives the streaming space
complexity for constant factor, constant probability approx-
imations of various pairings of P (rows) and Q (columns)
(we use L2 =

√
F2 and Freq denotes the problem of find-

ing values greater than φF1(Q) for some constant φ.) The
bold entries follow from this paper and those marked “?”
are unknown and open. In particular, computing F2(F2)
and F1(L2) remain to be fully understood.

F0 F1 F2 L2

F0 Ω(n) Ω(n) Ω(n) Ω(n)
F1 O(1) O(1) O(1) ?

F2 O(n1/2) O(1) ? O(1)
Freq O(1) O(1) O(1) ?



Hardness for M0. A particular cascaded aggregate of in-
terest is M0, which corresponds to approximating the num-
ber of distinct degrees in the underlying graph. By contrast
to the above positive results, M0 cannot be computed in
sublinear space. One can prove that Ω(n) bits are required
by reducing to the Disjointness problem:

Theorem 8. Approximating M0 requires space Ω(n).

A similar lower bound holds for several related functions
of the dis in a graph or multigraph model. For example,
M0 of the d2

i values, (equivalently, F0(F2(F0))), and more
strongly F0(F2) both require as much space, linear in the
size of the input graph.

7.3 Sliding Window Computations
In many settings, we do not wish to compute a function

over the entire history of observed data, but rather we are
only interested in things that happened recently: say, the
last week’s data, or the last billion transactions. This gives
the notion of a “sliding window”, dropping the old values
which fall outside of the window as it moves to cover new
updates. A simple solution is to keep summaries at coarse
granularity — one for each day, or one for every ten million
transaction — and to combine the most recent of these to
make a summary for the window of interest. It is a simple
observation that one can combine the results of min-wise
hashing or sketches estimators over different time windows,
provided that they use the same hash functions. For ex-
ample, for min-wise hash functions, if both estimators are
monitoring the same node v, then we merge the additional
information being kept; if not, then we just keep the most
recent estimator. However, this requires that we fix the
granularity of windows to track a priori. With some extra
space, we can achieve a stronger result for sliding windows.
We show an example below; similar results can be obtained
for other multigraph aggregates we have studied in this pa-
per.

Corollary 4. We can compute an approximation of M2

over windowed multigraph streams. In order to approxi-
mate M2 of the last w < W items, we use (expected) space
O( 1

ε4

√
n log n log W ).

Proof. Our approach relies on observations made by [12]
in the context of tracking the number of infrequently occur-
ring items observed in a data stream. We make some minor
changes to our algorithm from Section 3.2. Instead of keep-
ing details about just the v that achieves the smallest hash
value, we keep details for a queue of values of v, with asso-
ciated D and E for each item in the queue. Thus, we add
edges (v, j) to the record of distinct edges for every entry in
the queue that is monitoring v. Every time we see a new
edge, we compute its hash value h(ni+j). If this is less than
the current value of min(h) for the most recent item(s) in
the queue, we replace the most recent item(s) in the queue,
and continue as usual. However, if the hash value is larger
than the currently monitored item, we add the new item to
the queue as the most recent item. We also check the age of
the least recent item in the queue, and remove it from the
queue if its age exceeds the size of the window, W .

Note that, at any time, we can retrieve exactly the estima-
tor that we would have computed over just the last window
of size w: it is the oldest surviving item in the queue that

was added less than w steps before, since its hash value is
smallest over that range. Hence, in order to prove the corol-
lary, we just have to demonstrate that the size of the queue is
not too large. Using Lemma 3 from [12], we have with high
probability that the length of the queue is Ω(ln Dom(h)),
where Dom(h) is the domain of the min-wise hash func-
tion h. Hence, with high probability the space required is
bounded by O(log n). 2

Other bounds are similar, for example:

Corollary 5. We can compute approximate heavy hit-
ters of windowed multigraph streams for arbitrary windows
up to size W using (expected) space O( 1

ε2 log(1/ε) log n log W ).

7.4 Edge Deletions
The interpretation of a deletion of an edge is it counteracts

a previous (or future) insertion of the same edge. Hence, the
net occurrence of an edge is the number of insertions of that
edge, less the number of deletions of it. We now must count
the degree of nodes as the number of edges incident on that
node that have non-zero count. Our sketch based algorithms
can be modified to work with deletions as well. To accom-
plish this, we use an approximate distinct counter that is
capable of processing deletions, such as [16, 9]. A deletion
of an edge is processed as the inverse of an insertion: we hash
the edge to a set of counters, and subtract its effect from the
distinct counter. The result is equivalent to the state if the
corresponding insertion of the edge had never occurred. In
particular, for the algorithm of Section 4.2, it follows that
estimates given by the PointQuery routine of degrees of
nodes have the same accuracy bounds as previously stated.
In summary:

Theorem 9. We can estimate any di with error at most
εm following a stream of edges with insertions and deletions.
The space required is O( 1

ε3 log2 n).

8. CONCLUDING REMARKS
Our results are amongst the first known for multigraph

computations on streams with small space usage. Many
open problems remain: improved space and time bounds;
results in the insert and delete models (we have given a so-
lution for approximating the dis in such a model, but the
problem for Mks remains open); statistics on multigraphs
such as subgraph counts. Another direction is to look for
multigraph properties such as spanners or diameter in the
semi-streaming model. We have mentioned the applicabil-
ity of our cascaded summaries to distributing summaries in
sensor networks because of their idempotent properties; it
remains to fully understand their applications in that do-
main.
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