
Iterative Hessian Sketch in Input Sparsity Time

Graham Cormode Charlie Dickens
University of Warwick, UK

Abstract

Scalable algorithms to solve optimization and regression tasks even approximately,
are needed to work with large datasets. In this paper we study efficient techniques
from matrix sketching to solve a variety of convex constrained regression problems.
We adopt “Iterative Hessian Sketching” (IHS) and show that the fast CountSketch
and sparse Johnson-Lindenstrauss Transforms yield state-of-the-art accuracy guar-
antees under IHS, while drastically improving the time cost. As a result, we obtain
significantly faster algorithms for constrained regression, for both sparse and dense
inputs. Our empirical results show that we can summarize data roughly 100x faster
for sparse data, and, surprisingly, 10x faster on dense data! Consequently, solutions
accurate to within machine precision of the optimal solution can be found much
faster than the previous state of the art.

1 Introduction

Growing data sizes have prompted the adoption of approximate methods for large-scale constrained
regression which complement exact solutions by offering reduced time or space requirements at the
expense of tolerating some (small) error. “Matrix sketching” proceeds by working with appropriate
random projections of data matrices, and can give strong randomized approximation guarantees.
Performance is enhanced when the sketch transformations can be applied quickly, due to enforced
structure in the random sketches. In this work, we focus on convex constrained regression, and show
that a very sparse (and hence fast) approximate second-order sketching approach can outperform
other methods.

In our notation, matrices are written in upper case and vectors in lower case. A convex constrained
least squares problem is specified by a sample-by-feature data matrix A ∈ Rn×d with associated
target vector b ∈ Rn and a set of convex constraints C. The error metrics will be expressed using the
Euclidean norm ‖ · ‖2 and the prediction (semi)norm ‖x‖A = 1√

n
‖Ax‖2. The task is to find

xOPT = argminx∈C f(x), f(x) = 1
2‖Ax− b‖22. (1)

Within this family of convex constrained least squares problems are popular data analysis tools such
as ordinary least squares (OLS, C = Rd), and penalised regression: C = {x : ‖x‖p ≤ t, p = 1, 2}
as well as as Elastic Net and SVM. For OLS or LASSO (penalised regression with p = 1), the
time complexity of solving the optimisation problem is O(nd2). We assume that n � d so that
solving (1) exactly is not possible with the resources available. A requirement to solve (1) exactly is
computing ATA in time proportional to nd2 for system solvers. However, this dependence on n and
d is sufficiently high that we must exploit some notion of approximation to solve (1) efficiently.

The Iterative Hessian Sketching (IHS) approach exploits the quadratic program formulation of (1)
and uses random projections to accelerate expensive computations in the problem setup. The aim
here is to follow an iterative scheme which gradually refines the estimate in order to descend to the
true solution of the problem, via steps defined by (2) by sampling a random linear transformation
S ∈ Rm×n from a sufficiently well-behaved distribution of matrices with m� n.

xt+1 = argmin
x∈C

1
2‖St+1A(x− xt)‖22 − 〈AT (b−Axt), x− xt〉 (2)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

The benefit of this approach is that (2) is a special instance of a quadratic program where the norm
term is computed by obtaining an approximate Hessian matrix for f(x). IHS exploits random
approximations to ATA by the quadratic form (SA)TSA. Any further access to A is for matrix-
vector products. The per-iteration time costs comprise the time to sketch the data, Tsketch, the time to
construct the QP, TQP and the time to solve the QP, Tsolve. In our setting, we bound Tsolve by O(d3) for
the cost of quadratic programming. Given a sketch ofm rows, we compute ‖SAx‖22 = xTATSTSAx
(for variable x) in time O(md2), Thus we can generate the QP in time TQP = O(md2 + nd) to
construct the approximate Hessian and for all inner product terms. This is a huge computational
saving when we compute the quadratic form since SA hasm = poly(d)� n rows. We may have that
Tsketch = O(mnd) for a fully dense sketch matrix, such as Gaussian sketches (Section 2), resulting in
no substantial computational gain. Instead, we consider sketching techniques that can be computed
more quickly.

Through the expansion of the norm term above, we see that this is a sequence of Newton-type
iterations with a randomized approximation to the true Hessian, ATA. Using an approximate Hessian
which is sufficiently-well concentrated around its mean, ATA, ensures that the iterative scheme
enjoys convergence to the optimal solution of the problem.

We assume the standard Gaussian design for our problems, which states that b = Ax∗ + ω. Here,
the data A is fixed and there exists an unknown ground truth vector x∗ belonging to some compact
C0 j C, while the error vector ω has entries drawn by ωi ∼ N(0, σ2). The IHS approach proposed
by Pilanci and Wainwright (2016) takes the iterative approach of (2) to output an approximation
which returns an ε-solution approximation: ‖x̂ − xOPT ‖A ≤ ε‖xOPT ‖A. After t = Θ(log 1/ε)
steps, the output approximation, x̂ = xt achieves such approximation.

Our focus is to understand the behavior of sparse embedding to solve constrained regression problems,
in terms of time cost and embedding dimension. While the potential use of sparse embeddings is
mentioned in the conclusion of Pilanci and Wainwright (2017), their use has not been studied in the
IHS model (or its later variations). Our contributions are (i) to show that sparse random projections
can be used within the IHS method; (ii) an empirical demonstration of sparse embeddings compared
to previous state-of-the-art, highlighting their efficacy; (iii) a series of baseline experiments to justify
the observed behavior. Our experimental contribution demonstrates the practical benefits of using
CountSketch: often IHS with CountSketch converges to machine precision before the competing
methods have completed even two iteration steps.

2 Sketching Results

We define random linear projections S : Rn → Rm mapping down to a projection dimension m.

Gaussian sketch: Sample a matrix G whose entries are iid normal, Gij ∼ N(0, 1), and define the
sketch matrix S by scaling S = G/

√
m.

Subsampled Randomized Hadamard Transform (SRHT) (Ailon and Chazelle, 2006): Define S =

PHD by: diagonal matrix D with Dii
iid∼ {±1} with probability 1/2; H is the recursively defined

Hadamard Transform; and P is a matrix which samples rows uniformly at random.

CountSketch (Woodruff, 2014): Initialise S = 0m,n and for every column i of S choose a row h(i)
uniformly at random. Set Sh(i),i to either +1 or −1 with equal probability.

Sparse Johnson-Lindenstrauss Transform (SJLT) (Kane and Nelson, 2014): The sparse embedding
S with column sparsity (number of nonzeros per column) parameter s is constructed by row-wise
concatenating s independent CountSketch transforms, each of dimension m/s× n.

Both CountSketch and SJLT will collectively be referred to as sparse embeddings.

Definition 2.1. A matrix S ∈ Rm×n is a (1 ± ε)-subspace embedding for the column space of a
matrix A ∈ Rn×d if for all vectors x ∈ Rd, ‖SAx‖22 ∈ [(1− ε)‖Ax‖22, (1 + ε)‖Ax‖22)].

Each family of random matrices defined above provide subspace embeddings with at least constant
probability for m large enough, summarized subsequently. However, their time/space complexities
vary, and this motivates our empirical exploration. Our main result (Theorem 2.2) is that we can beat
this cost by avoiding a dense subspace embedding but still make good progress in each step of IHS.

2

Space Complexity. While the ε dependence of projection dimension m for all methods to achieve a
subspace embedding is the same (ε−2), the behavior as a function of d is variable (Woodruff, 2014).
Each of Gaussian, SJLT and SRHT require m to be (at worst) d poly log d, while the CountSketch,
although faster to apply, depends on d2. This suggests that CountSketch would not be preferred as
the dimension d increases. Moreover, the failure probability of CountSketch depends linearly upon
δ whereas both Gaussian and SRHT depend on log 1/δ. If this behavior is observed in practice, it
could make CountSketch inferior to other sketches, since we typically require δ to be very small. In
our subsequent empirical evaluation, we evaluate the impact of these two parameters, and show that
we nevertheless obtain very satisfactory error behavior, and extremely high speed.

Time Complexity of sketching methods: Each of the described random projections defines a linear
map from Rn → Rm which naively would take O(mnd). Despite this, only the Gaussian sketch
incurs the dense matrix multiplication time cost. Implementing SRHT exploits the fast Hadamard
transform which takes O(nd log d)1 time as it is defined recursively, while applying P and D take
time O(n). The CountSketch can be applied by streaming through the matrix A: upon observing
a (non-zero) entry Aij , the value of a hash bucket defined by the function h is then updated with
either ±Ah(i),j . Thus the time to compute a CountSketch transform is proportional to nnz(A) and
s · nnz(A) for the general sparse embedding.

From the subspace embeddings we are now able to present the main theorem which states that the
IHS with sparse embeddings approximates the solution in the same sense as with previously used
random projections. Formal proofs to support this claim are provided in the Appendix. We introduce
the tangent cone K = {v ∈ Rn : v = tA(x− xOPT), t ≥ 0, x ∈ C}. Let X = K ∩ Sn−1 where
Sn−1 is the set of n-dimensional vectors which have unit Euclidean norm. The quantities whose
distortion must be understood are Z1 = infu∈X ‖Su‖22 and Z2 = supu∈X |uTSTSv − uT v|.
Theorem 2.2. Let A ∈ Rn×d, b ∈ Rn and C be a set of convex constraints which define a convex
constrained least squares problem whose solution is xOPT . Fix an initial error tolerance ε0 ∈ [0, 1/2).
Conditioned on the event that Z1 ≥ 1 − ε0 and Z2 ≤ ε0/2 for every iteration 1 ≤ i ≤ N , then
the IHS method returns an estimate with ‖x̂− xOPT ‖A ≤ εN0 ‖xOPT ‖A. Consequently, an error of
εN0 = ε can be achieved by choosing N = Θ(log(1/ε)). In addition, all iterations can be performed
in time proportional to O(nnz(A)).

3 Experimental results on LASSO

We study the empirical performance of our algorithms on instances of LASSO2. In what follows,
we write RP(γ) to denote the random projection method RP with projection dimension m = γd.
For example, SRHT(10) is an SRHT projection with projection dimension m = 10d. Details of the
datasets we test can be found in Appendix B. Also given in Appendix B is an example of the baseline
experiments which justify the observed performance of, in particular, the CountSketch. For the fairest
comparison with SRHT we take 10 independent trials with 2blog2(n)c samples chosen uniformly at
random. In summary, for data with n� d, the CountSketch returns an embedding of comparable
accuracy up to 100x faster than the dense methods on sparse data. At a fixed projection dimension,
observing comparable accuracy with the CountSketch is unexpected given its theoretical dependence
on O(d2) for a subspace embedding.

Experimental Setup. We fix λ = 5.0 and use this to define an instance of LASSO regression
xOPT = argminx∈Rd

1
2‖Ax− b‖22 + λ‖x‖1. This choice of λ ensures that all solutions xOPT are

bounded away from zero so that the algorithm cannot report zero as a viable approximation. Each
iteration builds a smaller quadratic program (in terms of n) which is solved exactly, akin to Gaines
et al. (2018). We tested 10 independent runs of the algorithm and plot mean error against wall
clock time. Our choice of projection dimension m is guided by our theoretical analysis (which
requires ε < 1

2) and calibration experiments which suggest appropriate accuracy can be obtained
when m ≥ 5d. The SJLT was initialised with column sparsities s = 1 and s = 4 and we compare to
SRHT and Gaussian transforms.

Results. Faster convergence is seen when sketch sizes are larger. Sparse sketches have only a mild
increase in the summary time when the projection dimension m is increased. Hence, one should aim

1See Woodruff (2014) for details on the improvement from O(nd logn) to O(nd log d)
2Code available at https://github.com/c-dickens/sketching_optimisation

3

https://github.com/c-dickens/sketching_optimisation

0.5 1.0 1.5 2.0 2.5

Time / seconds

−14

−12

−10

−8

−6

−4

−2

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

)
w4a

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

(a) w4a

0.5 1.0 1.5 2.0 2.5

Time / seconds

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

)

w6a

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

(b) w6a

0.5 1.0 1.5 2.0 2.5

Time / seconds

−16

−14

−12

−10

−8

−6

−4

−2

0

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

)

w8a

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

(c) w8a

0.5 1.0 1.5 2.0 2.5

Time / seconds

−14

−12

−10

−8

−6

−4

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

) Abtaha

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

(d) Abtaha

0.05 0.25 0.50 0.75 1.00

Time / seconds

−16

−14

−12

−10

−8

−6

−4

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

) Specular

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

(e) Specular

0.5 1.0 1.5 2.0 2.5

Time / seconds

−1

0

1

2

3

lo
g(
‖x̂
−
x
O
P
T
‖2 A
/n

)

Years

Gaussian5

Gaussian10

SRHT5

SRHT10

CountSketch5

CountSketch10

SJLT5

SJLT10

(f) YearPredictionsMSD

Figure 1: IHS Methods: Solution Error vs Time on 6 data sets

to tradeoff with making the sketch as large as possible while not inhibiting the number of iterations
that can be completed. For the smalllest sketch size m = 5d, there is less difference between the
competing methods. For larger sketches, CountSketch is much faster to reduce error, since we can
perform more iterations in the same time. While sketch size has limited impact on iteration cost,
larger sketches have lower error so descend to the optimum faster.

The wna (n = 4, 6, 8) are training sets of increasing size taken from a single dataset (Platt, 1998).
When possible (w4a, w6a), the SRHT makes a small number of high quality iterations and has
comparable performance to the sparse embeddings but as n grows it becomes less competitive
(as seen in all other examples). We see that more progress is made in fewer iterations using the
SRHT (when this is possible). Even for the smallest instance, the cost of applying Gaussian random
projections is prohibitively slow. In contrast, both the sparse methods with m = 10d achieve similar
error to SRHT(10). On w6a (Figure 1b) we see a marked improvement in the error behaviour of the
sparse sketches at a projection dimension of m = 10d. On the w8a dataset we see that using the
SRHT becomes uncompetitive on large sparse datasets.

Large and sparse datasets. To see how the sketches perform as we encounter very large and sparse
data we also repeat the experiment on the Specular dataset. Figure 1e shows that yet again the
sparse embeddings dominate the dense projections in terms of error. Rapid convergence is seen
with CountSketch(10) which reaches machine precision and terminates in 0.25 seconds. Very similar
behaviour is seen with CountSketch(5) as almost all of the progress is made in 0.25 seconds. The
SJLT(10) performs similarly to CountSketch(5) in terms of error decay. However, when m = 5d
we begin to notice a slight deterioration in performance of the SJLT(5) compared to CountSketch(5)
and CountSketch(10): the marginally increased sketch time costs to generate the SJLT now begins
to play a role as the CountSketches have complete more iterations in a given time and hence made
further progress. Similarly, the SJLT(5) incurs slightly higher per-iteration error than the SJLT(10) so
less progress is made in the allotted time. In spite of this, both CountSketch(·) and SJLT(·) perform
significantly better than the dense methods for which the data is so large that operating on the dense
arrays becomes infeasible.

Conclusion. We have shown the Iterative Hessian Sketch (IHS) framework can be used effectively
for scenarios with large n, and n� d, using fast sparse embeddings. A consequence of this is much
faster descent towards the optimal solution than the state of the art, on data both sparse and dense.
CountSketch tends to be the overall fastest method to converge on a solution, despite having weaker
theoretical guarantees. SJLT has to do more work per iteration to build the sketch, and so the saving
in the number of iterations to converge is not quite enough to compensate. An interesting direction
is to reduce the need for access to the data, and to aim for making just a single pass over the data.

4

Acknowledgment

The work of G. Cormode and C. Dickens is supported by European Research Council grant ERC-
2014-CoG 647557 and The Alan Turing Institute under the EPSRC grant EP/N510129/1.

References
Nir Ailon and Bernard Chazelle. 2006. Approximate nearest neighbors and the fast Johnson-

Lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing. ACM, 557–563.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.

Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml.

Brian R Gaines, Juhyun Kim, and Hua Zhou. 2018. Algorithms for fitting the constrained lasso.
Journal of Computational and Graphical Statistics just-accepted (2018).

Daniel M Kane and Jelani Nelson. 2014. Sparser johnson-lindenstrauss transforms. Journal of the
ACM (JACM) 61, 1 (2014), 4.

Mert Pilanci and Martin J. Wainwright. 2016. Iterative Hessian sketch: Fast and Accurate solution
approximation for constrained least-squares. The Journal of Machine Learning Research 17, 1
(2016), 1842–1879.

Mert Pilanci and Martin J Wainwright. 2017. Newton sketch: A near linear-time optimization
algorithm with linear-quadratic convergence. SIAM Journal on Optimization 27, 1 (2017), 205–
245.

John Platt. 1998. Sequential minimal optimization: A fast algorithm for training support vector
machines. (1998).

John C Platt. 1999. 12 fast training of support vector machines using sequential minimal optimization.
Advances in kernel methods (1999), 185–208.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML: Networked
Science in Machine Learning. SIGKDD Explorations 15, 2 (2013), 49–60. https://doi.org/
10.1145/2641190.2641198

David P. Woodruff. 2014. Sketching as a tool for numerical linear algebra. Foundations and Trends R©
in Theoretical Computer Science 10, 1–2 (2014), 1–157.

5

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198

A Technical Results

A.1 IHS with Sparse Embeddings

Throughout, we consider instances of overconstrained regression (1) given in the form of a data
matrix A ∈ Rn×d, target vector b ∈ Rn with n� d and convex constraints C. Our aim is to provide
solution approximation guarantees for this system as given in Definition A.1. Let f(x) = 1

2‖Ax−b‖22
for input parameters (A, b) and let xOPT denote the optimal (constrained) solution of our instance.
The IHS approach performs a sequence of sketching steps via (2) to approximate xOPT .

Definition A.1. An algorithm which returns x̂ such that ‖xOPT − x̂‖A ≤ ε‖xOPT ‖A is referred to
as a ε-solution approximation algorithm, where ‖x‖A = 1√

n
‖Ax‖2.

Time Costs. The time taken for each approach is similar, and is determined by the combination of the
sketch time Tsketch and the time to solve a smaller problem in the ‘sketch space’, Tsolve. We typically
project data to a Õ(d)× d size matrix, so Tsolve is Õ(d3)3. For the IHS method, we typically require
O(log 1/ε) iterations to reach convergence.

We next outline the technical arguments needed to use CountSketch and SJLT in IHS. We make use
of the following result regarding subspace embeddings.

Theorem A.2 (Woodruff (2014)). Let A ∈ Rn×d have full column rank. Let S ∈ Rm×n be sampled
from one of the Gaussian, SRHT, or CountSketch distributions. Then to achieve the subspace
embedding property with probability 1− δ we require m = O(ε−2(d+ log(1/δ))) for the Gaussian
and SJLT sketches; m = Ω(ε−2(log d)(

√
d+
√
n)2) for the SRHT; and m = O(d2/(δε2)) for the

CountSketch.

A.1.1 Instantiating the Iterative Hessian Sketch

First we need that the sketches are zero mean and have identity covariance E[STS] = In which
is shown in Lemma A.7. Note that for SJLT with s > 1 we need to normalise by the number of
nonzeros to ensure identity covariance. Two further properties are required for the error bounds of
the IHS. These are given in Equation (4). However, to define these properties, we first introduce
Definition A.3, after which we can present the proof of Theorem 2.2.

Definition A.3. The tangent cone is the following set:

K = {v ∈ Rd : v = tA(x− xOPT), t ≥ 0, x ∈ C} (3)

We note that the residual error vector for an approximation x̂ belongs to this set as u = A(x̂−xOPT).
Let X = K ∩Sn−1 where Sn−1 is the set of n-dimensional vectors which have unit Euclidean norm.
The quantities we must analyze are:

Z1 = inf
u∈X
‖Su‖22 and Z2 = sup

u∈X
|uTSTSv − uT v|. (4)

Here, v denotes a fixed unit-norm n-dimensional vector. We assume S is a subspace embedding for
the column space of A.

Proof of Theorem 2.2. We focus separately on the cases when S is an SJLT or a CountSketch.
Observe that when S is a subspace embedding for the column space of A, we have for u ∈ K ⊆
col(A) that ‖Su‖22 = (1 ± ε)‖u‖22 = (1 ± ε). Therefore, Z1 ≥ 1 − ε. Recalling Theorem A.2,
we see that this is achieved for the SJLT with m = Õ(d log d) provided the column sparsity s is
sufficiently greater than 1. In contrast, for s = 1, CountSketch has m = Õ(d2) (here, Õ suppresses
the dependency on ε).

Next we focus on achieving Z2 ≤ ε/2 for both sketches. If s = Ω(1/ε) then the SJLT immediately
satisfies (4) by virtue of being a JLT. Note that this matches the lower bound on the column sparsity as
stated in Remark A.4. In light of the column sparsity lower bound, we appeal to a different argument
in order to use CountSketch within the IHS.

3If we take the O(d2) projections for CountSketch to give a subspace embedding, then Tsolve is Õ(d4).

6

We invoke the approximate matrix product with sketching matrices for when S ∈ Rm×n is a subspace
embedding for col(A) (Theorem 13 of Woodruff (2014) restated from Kane and Nelson (2014)).
Define the matrices U, V ∈ Rn×d whose first rows are u and v, respectively, followed by n − 1
rows of zeros. Now apply the CountSketch S to each of U and V which will be zero except on
the first row. Hence, the product UTSTSV contains 〈Su, Sv〉 at (UTSTSV)1,1 and is otherwise
zero; likewise UTV contains only 〈u, v〉 at (UTV)1,1. The approximate matrix product result gives
‖UTSTSV − UTV ‖F ≤ 3ε‖U‖F ‖V ‖F for ε ∈ (0, 1/2); from which desired property follows
after rescaling ε by a constant. The definitions of U, V, u, v mean ‖U‖F = 1, ‖V ‖F = 1 and
hence the error difference UTSTSV − UTV has exactly one element at (i, j) = (1, 1). This is
exactly |uTSTSv − uT v| and hence Z2 ≤ ε after rescaling. Coupled with the fact that the rows of
a CountSketch matrix S are sub-Gaussian (Section A.2), we are now free to use the CountSketch
within the IHS framework.

Remark A.4. A lower bound on the column sparsity, namely s = Ω(d/ε) nonzeros per column,
is needed to achieve a Johnson-Lindenstrauss Transform (JLT) (Kane and Nelson, 2014). It was
also shown that if s = Ω(1/ε) then an SJLT will return a JLT. Hence, if S is an SJLT subspace
embedding with s large enough, then the requirement on Z2 is immediately met. However, for s = 1,
the CountSketch does not in general provide a full JLT due to the Ω(d/ε) lower bound. This result
prevents the CountSketch, which has only a single nonzero in every column, from being a JLT, unless
the data satisfies some strict requirements (Ailon and Chazelle, 2006).

Iteration Time Costs. The iterations require computing a subspace embedding at every step. The
time cost to do this with sparse embeddings is: O(snnz(A)) for sketching A. Additionally we
require (i) O(md2) to compute the approximate Hessian and (ii) O(nnz(A)) for the inner product
terms in order to construct the intermediate quadratic program as in Equation (2). Solving the QP
takes poly(d) = Õ(d3) when m = Õ(d) for the SJLT (the Õ suppresses small log factors). For
CountSketch, m = Õ(d2), we require poly(d) = Õ(d4). Overall, this is O(nnz(A) + d3) for SJLT
and O(nnz(A) + d4) for CountSketch.

To summarize, we have shown that every iteration of the IHS can be completed in time proportional
to the number of nonzeros in the data. with some (small) additional overhead to solve the QP at
that time. Although there is some (small) additional overhead to solve the QP which is larger for
the CountSketch than the SJLT, in practice, this increased time cost is not observed on the datasets
we test. In comparison to previous state of the art, the per-step time cost using the SRHT will be
O(nd log d+ d3) and O(nd2 + d3) for the Gaussian random projection.

A.2 Subgaussianity of CountSketch

Lemma A.5. Let S be a CountSketch matrix. Let Ni denote the number of nonzeros in row Si. Then
SST is a diagonal matrix with (SST)ii = Ni and hence distinct rows of S are orthogonal.

Proof. The entries of matrix SST are given by the inner products between pairs of rows of S.
Consequently, we consider the inner product 〈Si, Sj〉. By construction S has exactly one non-zero
entry in each column. Hence for distinct rows i 6= j, 〈Si, Sj〉 = 0. Meanwhile, the diagonal entries
are given by ‖Si‖22 =

∑n
j=1 S

2
ij , i.e. we simply count the number of non-zero entries in row Si,

which is Ni.

Lemma A.6. E[SST] = n
mIm

Proof. Continuing the previous analysis, we have that (SST)ij = 〈Si, Sj〉, the inner product between
rows of S. Taking the expectation, E[Si · Sj] =

∑n
k=1 E[SikSjk]. By Lemma A.5, we know that

for i 6= j then 〈Si, Sj〉 = 0 and hence E[Si · Sj] = 0. Otherwise, i = j and we have a sum of
n random entries. With probability 1

m , S2
ik = 1, coming from the two events Sik = −1 with

probability 1
2m , and Sik = 1, also with probability 1

2m . Then by linearity of expectation we have
E[Si · Si] =

∑n
k=1 ES2

ik = n/m.

Lemma A.7. The covariance matrix is an identity, E[STS] = In×n

7

Table 1: Summary of datasets.
Dataset Size (n, d) Density Source
Abtaha (37932, 330) 1% Davis and Hu (2011)

Specular (477976, 50) 1% Vanschoren et al. (2013)
W4A (7366, 300) 4% Platt (1999)
W6A (17188, 300) 4% Platt (1999)
W8A (49749, 300) 4% Platt (1999)

YearPredictionsMSD (515344, 90) 100% Dheeru and Karra Taniskidou (2017)

Cou
nt

Sk
et

ch
SJ

LT

SR
H
T

G
au

ss
ia
n

0.1

0.2

S
ke

tc
h

in
g

E
rr

or

(a) Empirical Sketching Error for w8a dataset

Cou
nt

Sk
et

ch
SJ

LT

SR
H
T

G
au

ss
ia
n

10−3

10−2

10−1

100

S
ke

tc
h

in
g

T
im

e

w8a

γ =1

γ =2

γ =4

γ =8

γ =10

(b) Sketching time

Figure 2: Empirical measurements for w8a dataset (Legend refers to both plots)

Proof. Observe that E[STS]ij = 〈ST
i , S

j〉 = 〈Si, Sj〉 so now we consider dot products betwen
columns of S. Recall that each column Si is a basis vector with unit norm. Hence for i = j,
〈Si, Si〉 = 1. For i 6= j, the inner product is only non-zero if Si and Sj have their non-zero entry
in the same location, k. The inner-product is 1 when Ski and Skj have the same sign, and −1
when they have opposite signs. The probability of these two cases are equal, so the result is zero in
expectation. In summary then, E[STS]ij = 1 if i = j and 0 otherwise which is exactly the n× n
identity matrix.

Definition A.8 (Pilanci and Wainwright (2016)). A zero-mean random vector s ∈ Rn is sub-Gaussian
if for any u ∈ Rn we have ∀ε > 0,P[〈s, u〉 ≥ ε‖u‖2] ≤ exp(−ε2/2).

The definition of a subgaussian random vector associates the inner product of a random vector and a
fixed vector to the definition of sub-Gaussian random variables in the usual sense.
Lemma A.9 (Rows of CountSketch are sub-Gaussian). Let S be an m× n random matrix sampled
according to the CountSketch construction. Then any row Si of S is 1-sub-Gaussian.

Proof. Fix a row Si of S and let X = 〈Si, u〉. If either Si or u is a zero vector then the inequality in
the sub-Gaussian definition is trivially met, so assume that this is not the case. We need Bernstein’s
Inequality: when X is a sum of n random variables X1, . . . , Xn and |Xj | ≤M for all j then for any
t > 0

P(X > t) ≤ exp

(
− t2/2∑

j EX2
j +Mt/3

)
. (5)

Now consider X =
∑n

j=1 Sijuj , which is a sum of zero-mean random variables. We have |Xj | =
|Sijuj | ≤ ‖u‖2 for every j and EX2

j = u2j/m. Taking t = ε‖u‖2 in Equation (5) and cancelling

‖u‖22 terms gives P(X > ε‖u‖2) ≤ exp
(
− ε2/2

1/m+ε/3

)
. The RHS is at most exp(−ε2/2) whenever

1/m+ ε/3 ≤ 1, which bounds ε ≤ 3−3/m. Imposing m > 1, this is satisfied for all ε ∈ (0, 1).

B Data and Baselines

The properties of the datasets used for experiments is shown in Table 1. Figure 2 shows the mean
empirical sketch error ‖ATSTSA − ATA‖F /‖ATA‖F , and the sketch time baseline over ten
independent trials on the w8a dataset. Similar performance is observed on the other datasets listed in
Table 1.

8

	Introduction
	Sketching Results
	Experimental results on LASSO
	Technical Results
	IHS with Sparse Embeddings
	Instantiating the Iterative Hessian Sketch

	Subgaussianity of CountSketch

	Data and Baselines

