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Abstract
In the setting of streaming interactive proofs (SIPs), a client (verifier) needs to compute a given

function on a massive stream of data, arriving online, but is unable to store even a small fraction of the
data. It outsources the processing to a third party service (prover), but is unwilling to blindly trust answers
returned by this service. Thus, the service cannot simply supply the desired answer; it must convince the
verifier of its correctness via a short interaction after the stream has been seen.

In this work we study “barely interactive” SIPs. Specifically, we show that two or three rounds of
interaction suffice to solve several query problems—including Index, Median, Nearest Neighbor Search,
Pattern Matching, and Range Counting—with polylogarithmic space and communication costs. Such
efficiency with O(1) rounds of interaction was thought to be impossible based on previous work.

On the other hand, we initiate a formal study of the limitations of constant-round SIPs by introducing
a new hierarchy of communication models called Online Interactive Proofs (OIPs). The online nature of
these models is analogous to the streaming restriction placed upon the verifier in an SIP. We give upper and
lower bounds that (1) characterize, up to quadratic blowups, every finite level of the OIP hierarchy in terms
of other well-known communication complexity classes, (2) separate the first four levels of the hierarchy,
and (3) reveal that the hierarchy collapses to the fourth level. Our study of OIPs reveals marked contrasts
and some parallels with the classic Turing Machine theory of interactive proofs, establishes limits on the
power of existing techniques for developing constant-round SIPs, and provides a new characterization of
(non-online) Arthur–Merlin communication in terms of an online model.
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1 Introduction

The surging popularity of commercial cloud computing services, and more generally outsourced
computations, has revealed compelling new applications for the study of interactive proofs with highly
restricted verifiers. Consider, e.g., a retailer (verifier) who lacks the resources to locally process
a massive input (say, the set of all its transactions), but can access a powerful but untrusted cloud
service provider (prover), who processes the input on the retailer’s behalf. The verifier must work
within the confines of the restrictive data streaming paradigm, using only a small amount of working
memory. The prover must both answer queries about the input (say, “how many pairs of blue jeans
have I ever sold?”), and prove that the answer is correct. We refer to this general scenario as verifiable
data stream computation.

http://dx.doi.org/10.4230/LIPIcs.CCC.2015.p


2 Verifiable Stream Computation and Arthur-Merlin Communication

It is useful to look at this computational scenario as “data stream algorithms with access to a
powerful (space-unlimited) prover.” As is well known, most interesting data streaming problems have
no nontrivial (i.e., sublinear space) algorithms unless one allows approximation. For instance, given
a stream σ of tokens from the universe [n] := {1,2, . . . ,n}, which implicitly defines frequencies f j

for each j ∈ [n], some basic questions we can ask about σ are the number of distinct tokens F0(σ),
the kth frequency moment Fk(σ) = ∑

n
j=1 f k

j , the median of the collection of numbers in σ , and the
very basic point queries where, given a specific j ∈ [n] after σ has been presented, we wish to know
f j. In each case, we would like an exact answer, not an estimate. With the trivial exception of
F1(σ)—which is just the length of σ—not one of these questions can be answered by a (possibly
randomized) streaming algorithm restricted to o(n) space. However, with access to a powerful prover,
things improve greatly: as shown in Chakrabarti et al. [9], point queries, median, and Fk (for integral
k > 0) can be computed exactly by a verifier using Õ(

√
n) space, while receiving Õ(

√
n) bits of “help”

from the prover.
Notably, the protocol achieving this Õ(

√
n) cost (space plus amount of help) is non-interactive:

the prover sends a single message to the verifier. Chakrabarti et al. [9] also showed that under this
restriction their protocol is optimal: a cost of Ω(

√
n) is required. In subsequent work, Cormode et

al. [15] considered streaming interactive proofs (SIPs), where the verifier may engage in several rounds
of interaction with the prover, seeking to minimize both the space used by the verifier and the total
amount of communication. They gave SIPs with 2k−1 rounds of interaction following the verifier’s
single pass over the input stream, achieving a cost of Õ(n1/(k+1)) for the above problems. This
generalizes the earlier set of results [9], which gave 1-round SIPs. Moreover, it achieves O(polylogn)
cost with O(logn/ log logn) rounds of interaction. In recent work, Klauck and Prakash [24] further
studied this kind of computation and generalized the 1-round lower bound, claiming that a (2k−1)-
round SIP must cost Ω(n1/(k+1)), even for very basic point queries.

However, we identify an implicit assumption in the Klauck–Prakash lower bound argument: it
applies only to protocols in which the verifier’s messages to the prover are independent of the input.
This happened to hold in all previous SIPs, which are ultimately descended from the sum-check
protocol of Lund et al. [27]. Furthermore, this assumption is harmless in the classical theory of
interactive proofs where public-coin protocols can simulate private-coin ones with just a polynomial
blowup in cost [16]. However, these simulation results fail subtly in the streaming setting, and we
show that this failure is intrinsic by giving a number of new upper bounds.

1.1 New Results: Exponentially Improved Constant-Round SIPs
We start by showing that even two-round SIPs are exponentially more powerful than previously
believed, on certain problems. For now we state our results informally, using the Õ-notation to
suppress “lower order” factors. We give formal theorem statements later in the paper, after all
definitions are in place.

I Result 1.1 (Formalized in Theorem 3.1). There is a two-round SIP with cost Õ(logn) for
answering point queries on a stream over the universe [n].

The SIP that achieves this upper bound is based on an abstract protocol that we call the polynomial
evaluation protocol. Crucially, unlike the sum-check protocols used in previous SIPs, it involves an
interaction where the verifier’s message to the prover depends on part of the input; specifically, it
depends on the query. Note that two rounds of interaction is likely unavoidable in practice even if
verifiability is not a concern: one round may be required for the verifier to communicate the query to
the prover, with a second round required for the prover to reply.

Adding a third round of interaction allows us to answer selection queries, of which an important
special case is median-finding.
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I Result 1.2 (Formalized in Theorem 3.7). There is a three-round SIP with cost Õ(logn) for
determining the exact median of a stream of numbers from [n].

We can in fact answer fairly complex queries with three rounds and polylogarithmic cost. For
instance, given a data set presented as a stream of points from a metric space, we can answer
exact nearest neighbor queries to the data set very efficiently, even in high dimensions. This is
somewhat surprising, given that even the offline version of the problem seems to exhibit a curse of
dimensionality.

I Result 1.3 (Formalized in Theorem 3.4). For data sets consisting of points from [n]d under
a reasonable metric, such as the Manhattan distance `d

1 or the Euclidean distance `d
2 , there is a

three-round SIP with cost poly(d, logn) allowing exact nearest neighbor queries to the data set.

We also give similarly efficient two-round SIPs for other well-studied query problems, such as
range counting queries (Theorem 3.6), where a stream of data points is followed by a query range and
the goal is to determine the number of points in the range that appeared in the stream, and pattern
matching queries (Theorem 3.8), where a streamed text is followed by a (short) query pattern.

Next, we work towards a detailed understanding of the subtleties of SIPs that caused the aforemen-
tioned Klauck–Prakash lower bound [24] not to apply. Our study naturally leads into communication
complexity, in particular to Arthur–Merlin communication, which we discuss next.

1.2 The Connection to Arthur–Merlin Communication
Like almost all previous lower bounds for data stream computations, prior SIP lower bounds [9, 24]
use reductions from problems in communication complexity. To model the prover in an SIP, the
appropriate setting is Arthur–Merlin communication, which we now introduce.

Suppose Alice holds an input x ∈ X , Bob holds y ∈ Y , and they wish to compute f (x,y) for some
Boolean function f : X ×Y → {0,1}, using random coins and settling for some constant probability
of error. Say this costs R( f ) bits of communication. Can an omniscient but untrusted Merlin, who
knows (x,y), convince “Arthur” (defined as Alice and Bob together) that f (x,y) = 1, keeping the
overall communication within o(R( f ))? For several interesting functions f the answer is “Yes” and
this is the general subject of Arthur–Merlin communication complexity, first considered in seminal
work by Babai, Frankl, and Simon [5].

The one-pass streaming restriction on the verifier in an SIP is modeled by requiring that Alice
not receive any communication from either Bob or Merlin. Thus the Alice–Bob communication is
one-way, though Bob and Merlin may interact arbitrarily. We refer to this restricted communication
setting as online Arthur–Merlin communication. It should be clear that a k-round SIP with cost C can
be simulated by an online Arthur–Merlin communication of cost C where Bob and Merlin interact
for k rounds. Thus, lower bounds on SIPs would follow from corresponding communication lower
bounds in the online Arthur–Merlin setting.

At this point let us recall that the classical Turing-Machine-based theory of interactive proofs
considers two different models of interaction between prover and verifier, corresponding to the
complexity classes IPTM,1 where the verifier is allowed private randomness, and AMTM, where he
may only use public randomness. Recall the following classic results about such interactive proofs.

Equivalence of private and public coins. Goldwasser and Sipser [16] proved that a k-round
private coin interactive proof (à la IPTM) can be simulated (with a polynomial blowup in com-
plexity) by a (k+ 2)-round public coin one (à la AMTM). Thus, in the resulting protocol, the
verifier can perform his interaction with the prover before even looking at the input!

1 Throughout this paper, we use the subscript “TM” to denote a Turing-machine-based complexity class, to resolve the
notation clash with the analogous communication complexity classes.
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4 Verifiable Stream Computation and Arthur-Merlin Communication

Round reduction. Babai and Moran [6] proved that a (k+ 1)-round interactive proof can be
simulated by a k-round interactive proof with a polynomial blowup in the verifier’s complexity.
Thus, a two-round (verifier→prover→verifier) interactive proof is just as powerful as any constant-
round one.

Interestingly, as we shall show in this work, neither of these phenomena holds for the online com-
munication complexity analogs of IPTM and AMTM. (Recall that “online” means that Alice does
not receive any communication from either Bob or Merlin.) This point appears to have been missed
in the Klauck–Prakash proof [24], which works in a “public coin” setting and thus applies only to a
restricted class of SIPs. The new SIPs we design in this work correspond to a “private coin” setting,
which allows the aforementioned exponential improvements.

Clearly there are nuances in online Arthur–Merlin communication complexity that do not arise in
classical interactive proofs. In particular, we seek a better understanding of the precise role of rounds
and of private randomness in the communication setting. This is the goal of our next batch of results.

1.3 New Results: Complexity Classes for Arthur–Merlin
Communication

As noted above, we can think of AMTM as a restricted interactive proof model where the verifier
must interact with the prover before looking at his input. We can then define a hierarchy of analogous
communication complexity models called OMA[k] (Online Merlin–Arthur), where Bob interacts with
Merlin in k rounds without looking at his input, and then Alice communicates with Bob one-way. We
defer precise definitions to Section 4. The aforementioned Klauck–Prakash lower bound essentially
says the following:

I Proposition 1.4 (Klauck and Prakash [24]). The INDEX problem—where Alice gets x ∈ {0,1}n,
Bob gets j ∈ [n] and Bob must output x j with high probability—requires Ω(n1/(k+1)) cost in the
OMA[2k] model.

We can also define a parallel hierarchy OIP[k] (Online Interactive Proof) of communication
analogs of IPTM. We now hit another subtlety. We could require the Bob–Merlin interaction to
happen before the Alice→Bob communication; this is how we shall define OIP[k]. Alternatively, we
could swap the order, so that Bob’s messages to Merlin could depend on Alice’s input as well; we
shall call the resulting (more powerful) model OIP[k]

+++ .
These communication models correspond to SIPs as follows. Every SIP designed prior to this

work falls into a restricted setting where the verifier’s messages are independent of the input, so it can
be simulated by an OMA[k] protocol with k being the number of rounds of interaction in the SIP. The
SIPs we design in this work apply to “query problems” with the data set appearing before the query,
and our verifier messages depend only on the query. Thus our SIPs are naturally simulable by OIP[k]

protocols. Finally, a general SIP, where verifier messages can depend on the entire input stream, is
simulable by an OIP[k]

+++ protocol.
Following Babai et al. [5], given a communication model C, we define a corresponding complexity

class, also denoted C, consisting of all problems that have polylogarithmic cost protocols in the
model C. We now have three parallel hierarchies of communication complexity classes: OMA[k],
OIP[k], and OIP[k]

+++ . For our next batch of results, we prove several inclusion and separation results
relating these newly defined classes to each other and to well-studied classes from earlier work in
communication complexity.

I Result 1.5 (Formalized over several theorems in Section 5). The following complexity class
inclusions and separations, given in Figure 1, hold.
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R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 1 The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that
C1 ⊆ C2. If the arrow is double-headed, then the inclusion is strict. Here k > 4 is an arbitrary constant. The
models R[t,A] (resp. R[t,B]) are standard t-round randomized communication with Alice (resp. Bob) starting. The
model MA[2,B] consists of a message from Merlin followed by Bob→Alice→Bob communication, while AM is
standard (see Section 5).

Notice that there are several two-way inclusions (i.e., equalities) amongst these communication
complexity classes. It is worth noting that with one exception (namely OIP[1] = OIP[1]

+++ ) none of these
equalities is trivial. For instance, consider the switch from the model R[2,B] to the model OIP[2]: Bob
loses the ability to send Alice a message before hearing from her, but gains access to Merlin. It is
not a priori clear that this switch in models will result in a complexity class that is even comparable
to R[2,B], and nontrivial simulation arguments (Theorems 5.3 and 5.6) are required to prove that
R[2,B] = OIP[2].

Many of our simulations incur some blowup in cost. All such blowups are at most quadratic, so
polylogarithmic costs remain polylogarithmic.

The OMA and OIP hierarchies behave quite differently from the classical AMTM and IPTM:

In contrast to the Goldwasser–Siper private-by-public-coin theorem, the class OIP[4] is strictly
more powerful than OMA[k] (in fact, even OIP[2] 6⊆OMA[k]), for every constant k.
In contrast to the Babai–Moran round reduction theorem, there are exactly four distinct levels
(not two) in the OIP[k] hierarchy, for constant k.

In the course of proving the separation results in Figure 1, we obtain concrete lower bounds for
explicit functions that are of interest in their own right. Let us highlight one of these.

I Result 1.6 (Formalized in Theorem 5.9). The set disjointness problem DISJ—where Alice and
Bob each get a subset of [n] and must decide whether they are disjoint—requires Ω(n1/3) cost in
the OIP[3] model and thus does not belong to the class OIP[3]. This lower bound is tight up to a
logarithmic factor.

This has implications for SIPs. We noted that all SIPs designed thus far (including the new ones
in this work) are simulable in the weaker OIP models. By a standard reduction [4] from DISJ to the
frequency moments problem Fk, it follows that unlike what we achieved for point queries and median
queries, based on currently known techniques, we cannot get a polylogarithmic cost three-round SIP
for Fk (k 6= 1).

Removing the qualifier “based on currently known techniques” above would require a similar
lower bound for OIP[3]

+++ . Unfortunately, at present we are unable to prove any nontrivial lower bounds

on OIP[2]
+++ , and doing so appears to be a rather difficult problem. Indeed, this inability is what led us

to study the weaker OIP model. Yet, because the OIP models are online, the separation results in
Figure 1 still morally capture the primary way in which SIPs, due to their streaming/online nature,
differ from classical interactive proofs.

CCC 2015
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Finally, our result AM = OIP[4] gives a novel characterization of AM in terms of online commu-
nication. This is surprising because online models, where no one talks to Alice, might be expected to
be too weak to capture AM. Proving lower bounds on AM is a longstanding and notoriously hard
problem in communication complexity [22, 23, 26]. We believe our new characterization of AM is of
independent interest, and may prove useful in establishing non-trivial AM lower bounds.

1.4 Related Work
1.4.1 Stream Computation
Early theoretical work on verifiable stream computation focused on non-interactive protocols, as in
the annotated data streams model of Chakrabarti et al. [9]. In our language, that model corresponds
to 1-round SIPs. Work in this model has established optimal protocols for several problems including
frequency moments and frequent items [9]; linear algebraic problems such as matrix rank [24]; and
graph problems like shortest s–t path [14]. Many of these protocols have subsequently been optimized
for streams whose length is much smaller than the universe size [8]. More recent protocols, such
as the Arthur–Merlin streaming protocols of Gur and Raz [8, 19] are “barely interactive” in the
sense that the prover and the verifier may exchange a constant number of messages. Meanwhile,
the fully general streaming interactive proof (SIP) model of Cormode et al. [13, 15] permits “many”
rounds of interaction. Cormode, Thaler, and Yi [15] showed that several general IPTM protocols can
be simulated in this model. These include the powerful, general-purpose protocol of Goldwasser,
Kalai, and Rothblum [18]. Given any problem in NCTM, the resulting protocol requires only
polylogarithmic space and communication while using polylogarithmic rounds of verifier–prover
interaction. Refinements and implementations of these protocols [13, 35, 36] have demonstrated
scalability and the practicality of this line of work.

Algebraic techniques lie at the core of almost all nontrivial protocols in the above models.
Specifically, a number of 1-round SIPs are inspired by the Aaronson–Wigderson MA communication
protocol for DISJ [2], which is in turn inspired by the classic sum-check protocol of Lund et al. [27].
The sum-check protocol is also the inspiration for the way that all previous multi-round SIPs make use
of interaction. The aforementioned protocol of Goldwasser et al. [18] also builds upon the sum-check
protocol.

The algorithmic results outlined in Section 1.1 have a rather different algebraic idea at their
core. They are based on the aforementioned polynomial evaluation protocol, which is obtained by
adapting a result of Raz [33] about IP/rpolyTM to a streaming setting; see the discussion at the start
of Section 2.1.

Early work on interactive proofs studied space-bounded verifiers (see the survey by Condon [12]),
but many protocols developed in this line of work require the verifier to store the input, and therefore
do not address verifiable stream computation, as we do here. Goldwasser et al. [17] studied inter-
active proofs with verifiers in the complexity class NC0

TM. Interestingly, they showed that private
randomness is necessary to obtain interactive proofs with verifiers in NC0

TM, unless the language in
question is already in NC0

TM. This is analogous to our finding that constant-round “public coin” SIPs
(where the verifier’s messages do not depend on the input) are exponentially weaker than general
constant-round SIPs.

1.4.2 Computationally Sound Protocols
Protocols for verifiable stream computation have also been studied in the cryptography community
[10, 32, 34]. These works only require soundness to hold against cheating provers that run in
polynomial time. In exchange for this weaker security guarantee, these protocols can achieve



A. Chakrabarti, G. Cormode, A. McGregor, J. Thaler, and S. Venkatasubramanian 7

properties that are impossible in the information-theoretic setting we consider. For example, they
typically achieve reusability, allowing the verifier to use the same randomness to answer many queries.
In contrast, our protocols only support “one-shot” queries, because they require the verifier to reveal
secret randomness to the prover.

Chung et al. [10] combine the GKR protocol with fully homomorphic encryption (FHE) to give
reusable, non-interactive protocols of polylogarithmic cost for any problem in NC. Papamanthou
et al. [32] give improved protocols for a class of low-complexity queries including point queries
and range search: their protocols avoid the use of FHE, and allow the prover to answer such queries
in polylogarithmic time (a similar property was achieved by Schröder and Schröder [34], but for a
simpler class of queries, and with unidrectional communication from the verifier to the prover on
each stream update). In contrast, prior work as well as our own requires the prover to spend time
quasilinear in the size of the data stream after receiving a query, even if the answer itself can be
computed in sublinear time (e.g., point queries, which can be solved with a single access to memory).
We note however that our most interesting protocols, such as those for nearest neighbor search and
pattern matching, are for problems that cannot be solved in sublinear time; hence, the quasilinear time
required by our protocols does not affect the prover’s runtime by more than logarithmic factors.

1.4.3 Communication Complexity
Seminal work by Babai et al. [5] introduced and studied the communication analogs of the major
Turing Machine complexity classes, including P, NP, ΣΣΣ2, ΠΠΠ2. They hinted at similar analogs of MA
and the AM hierarchy. Lokam [26] related the task of placing problems outside of the communication
class AM to notions of matrix rigidity. He also observed that the communication complexity classes
IP and AM behave similarly to their Turing Machine counterparts. In particular, noted theorems such
as IP = PSPACE, Toda’s Theorem, and Babai and Moran’s round reduction results [6] all hold in the
communication world (though not under online communication, as shown by this work).

Online (also known as one-round) randomized communication complexity was introduced in
the mid-1990s and considered by Ablayev [3], Kremer, Nisan, and Ron [25], and Newman and
Szegedy [29]. Aaronson [1] introduced online variants of Merlin–Arthur communication, in classical
and quantum flavors. Aaronson and Wigderson [2] gave an online MA communication protocol for
DISJ (more generally, for INNER-PRODUCT) with cost Õ(

√
n); this is nearly optimal, as shown by

a lower bound of Klauck [22] that applies to general MA protocols. More recently, Klauck [23]
performed a careful study of AM, MA, and its quantum analogue QMA. In particular, he gave a
promise problem PAPPMP separating QMA from AM; we shall eventually show that PAPPMP
separates OIP[3] from OIP[4].

2 The SIP Model and the Polynomial Evaluation Protocol

In a data stream problem, the input σ is a stream, or sequence, of tokens from some data universe U .
The goal is to compute or approximate some function g(σ), keeping space usage sublinear in the two
key size parameters: (1) the length of σ , and (2) the size of the universe |U|. Practically speaking, we
would also like to process each stream update (token arrival) quickly. All our data stream algorithms
will be randomized, and we shall allow them to err with some small constant probability on each input
stream. In the streaming interactive proofs (SIP) model, after processing σ , the algorithm (called
the “verifier”) may engage in k rounds of interaction with an oracle (the “prover”) who knows σ and
whose goal is to lead the verifier to output the correct answer g(σ). The verifier, being distrustful,
will output “⊥” (indicating “abort”) if he suspects the prover to be cheating.

All of the SIPs in this paper will work in the turnstile streaming model, where σ can contain
deletions of tokens from U , in addition to insertions. In this model it is best to think of the input as
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being a stream of integer updates to a vector x = (x1, . . . ,xn) ∈ Zn. Initially x = 0, and an update is a
tuple (i,c) ∈ [n]×Z, which has the effect of adding c to the entry xi. We will sometimes describe our
algorithms as they apply to the vanilla streaming model, but it will be straightforward to extend them
to the turnstile model.

We say that an SIP computes the function g with completeness error εc and soundness error εs if
for all inputs x there exists a prover strategy that will cause the verifier to output g(x) with probability
at least 1− εc, and no prover strategy can cause the verifier to output a value outside {g(x),⊥} with
probability larger than εs. In designing SIPs, our goal will be to achieve εc,εs ≤ 1/3; clearly the
theory remains unchanged if we replace 1/3 by another constant in (0,1/2). A SIP with εc = 0 is
said to have perfect completeness. The total length of the verifier–prover interaction is the help cost.
The space used by the streaming verifier is the space cost. The cost of an SIP is the sum of its help
cost and its space cost. When designing SIP protocols we will also discuss the time complexities
of the prover and the verifier. To keep things simple, we consider a model in which all arithmetic
operations on a finite field of size nO(1) can be executed in unit time.

2.1 The Polynomial Evaluation Protocol
We shall present a two-round SIP for an abstract data stream problem called “polynomial evaluation,”
where the input consists of a multivariate polynomial described implicitly, as a table of values,
followed by a point at which the polynomial must be evaluated. Without space constraints, this
problem simply amounts to interpolation followed by direct evaluation, but our goal is to obtain a
protocol where the verifier uses space roughly logarithmic in the size of the table of values, and is
convinced by the prover about the correct answer after a similar amount of communication. For ease
of presentation, we shall first consider a concrete special setting that is important in its own right: the
INDEX problem. In this problem, the input is a stream of n data bits x1, . . . ,xn, followed by a query
index j ∈ [n]. The goal is to output x j with error at most 1/3.

With very different motivations from ours, Raz [33] gave an interactive proof protocol placing
every language in IPTM/rpoly, the class of languages that have interactive proofs with polynomial-
time verifiers that take randomized advice, where the advice is kept secret from the prover. Our SIP
for INDEX can be seen as an adaptation of Raz’s interactive proof to the streaming setting.

I Theorem 2.1. The INDEX problem has a two-round SIP with cost O(logn log logn), in which the
verifier processes each stream token in O(logn) time and the prover runs in total time O(n logn).

Proof. Assume WLOG that n = 2b, for some integer b. Identify each integer z ∈ [n] with a Boolean
vector z = (z1, . . . ,zb) ∈ {0,1}b in some canonical way, such as by using the binary representation of
z. We can then view the data bits as a table of values for the Boolean function gx : {0,1}b→{0,1}
given by gx(z) = xz, and thus for the multilinear b-variate polynomial g̃x(Z1, . . . ,Zb) given by

g̃x(Z1, . . . ,Zb) = ∑
z∈{0,1}b

gx(z)χz(Z1, . . . ,Zb) , where (1)

χu(Z1, . . . ,Zb) =
b

∏
i=1

(
(1−ui)(1−Zi)+uiZi

)
(2)

is the indicator function of the vector u = (u1, . . . ,ub). We shall interpret g̃x as a polynomial in
F[Z1, . . . ,Zb] for a fixed “large enough” finite field F. With this interpretation, g̃x is called the
multilinear extension of gx to F. We define a line in Fb to be the range of a nonconstant affine
function from F to Fb. Every line contains exactly |F| points. Given such a line, `, we define its
canonical representation to be the degree-1 polynomial λ`(W ) ∈ Fb[W ] such that λ`(0) and λ`(1) are,
respectively, the lexicographically first and second points in `. We define the canonical restriction of
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a polynomial f (Z1, . . . ,Zb) to ` to be the univariate polynomial f (λ`(W )) ∈ F[W ], whose degree is at
most the total degree of f .

Using the above notations and conventions, our two-round SIP for INDEX works as shown in
Figure 2.

Input: Stream of data bits (x1, . . . ,xn) where n = 2b, followed by index j ∈ [n].
Goal: Prover to convince Verifier to output the correct value of x j.
Shared Agreement: Finite field F with 3b+1≤ |F| ≤ 6b+2; bijective map u ∈ [n]←→ u ∈
{0,1}b.

Initialization: Verifier picks r ∈R Fb uniformly at random, sets Q← 0.
Stream Processing: Upon reading xz, where z ∈ [n], Verifier updates Q← Q+ xzχz(r).
Query Handling: Upon reading the index j, Verifier interacts with Prover as follows:
1. If j = r, Verifier outputs Q as the answer. Otherwise, he sends Prover `, the unique line in Fb

through j and r.
2. Prover sends Verifier a polynomial h(W ) ∈ F[W ] of degree at most b, claiming that it is

the canonical restriction of the multilinear polynomial g̃x(Z1, . . . ,Zb) to the line `. That is,
Prover claims that h(W )≡ g̃x(λ`(W )).

3. Let w, t ∈ F be such that λ`(w) = j and λ`(t) = r. Verifier checks that h(t) = Q, aborting if
not. If the check passes, Verifier outputs h(w) as the answer.

Figure 2 A Two-Round Streaming Interactive Proof (SIP) Protocol for the INDEX Problem

To analyze this protocol, first note that after reading all the data bits, the verifier would have
computed Q = g̃x(r), by Eq. (1). Now the protocol is easily seen to have perfect completeness. Since
g̃x(Z1, . . . ,Zb) is multilinear, it follows that deg(g̃x(λ`(W )))≤ b, so the prover can always honestly
choose h(W ) = g̃x(λ`(W )). If he does so, then we will indeed have h(t) = g̃x(λ`(t)) = g̃x(r) = Q,
and the verifier’s check will pass. Finally, the verifier will output h(w) = g̃x(λ`(w)) = g̃x(j) = x j, the
correct answer to the INDEX instance.

Next, we analyze soundness. If the prover supplies a polynomial h(W ) 6≡ g̃x(λ`(W )), then, since
both polynomials have degree at most b, they agree at at most b points in F. From the prover’s
perspective after he receives the verifier’s message, r is uniformly distributed in ` \ {j}. Thus,
Prr[h(t) = Q]≤ b/(|F|−1)≤ 1/3.

Now we consider this protocol’s costs. The verifier maintains the random point r ∈ Fb and the
running sum Q ∈ F, using O(b log |F|) space. He sends the prover `, which is specified by two
elements of Fb, and receives a degree-b polynomial in F[W ]; both communications use at most
O(b log |F|) bits. Recalling that |F| ≤ 6b+2, we see that both space and communication costs are in
O(b logb) = O(logn log logn).

Finally, we consider the verifier’s and prover’s runtimes. The honest prover must send the
univariate polynomial g̃x(λ`(W )). Since g̃x has degree at most b, it suffices for the prover to specify
the evaluations of g̃x(λ`(W )) at b+ 1 = O(logn) points. A direct application of Eqs. (1) and (2)
shows that each evaluation can be done in O(n logn) time, resulting in a total runtime of O(n log2 n).
However, using now-standard memoization techniques (see e.g. [36, Section 5.1]), it is possible for
the prover to in fact perform each of these evaluations in just O(n) time, resulting in a total runtime
of O(n logn). The verifier can run in O(b) = O(logn) time per stream update, as each stream update
xz only requires the verifier to compute χz(r), and it follows from Eq. (2) that this can be done with
O(b) field operations. When interacting with the prover, the verifier first needs to determine the line
` through j and r, which he can do in O(b) = O(logn) time. To process the prover’s reply, he must
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10 Verifiable Stream Computation and Arthur-Merlin Communication

evaluate the polynomial h at the points t and w; these evaluations can be done in polylogn time. J

The above SIP protocol uses very little of the special structure of the INDEX problem. Let us
abstract out its salient features, so as to handle the general problem described at the start of this
section. First, note the protocol treats the data set given by (x1, . . . ,xn) as an implicit description of
the polynomial g̃x. Second, note that our soundness analysis did not require multilinearity per se, only
an upper bound on the total degree of g̃x. Finally, note that the specific form of Eqs. (1) and (2) is not
crucial either; all we used was that it allows the verifier an easy streaming computation. Thus, we
obtain the following generic result.

I Theorem 2.2 (Polynomial Evaluation Protocol). Suppose an input data stream implicitly
describes a v-variate polynomial g of total degree d over a field F, followed by a point j ∈ Fv.
Suppose this implicit description allows a streaming verifier to evaluate g at a random point r ∈R Fv

using space S. Then the technique of the protocol in Figure 2 gives a two-round SIP for computing
g(j), with the following properties: (1) perfect completeness; (2) soundness error bounded by
d/(|F|−1); (3) space usage in O(v log |F|+S); (4) help cost in O((d + v) log |F|). J

We shall refer to the abstract protocol given by Theorem 2.2 as the polynomial evaluation protocol.

3 Constant-Round SIPs for Query Problems

We shall now apply the polynomial evaluation protocol to design SIPs proving the various upper
bounds outlined in Section 1.1. The first application is immediate; later applications bring in additional
ideas.

3.1 Point Queries.
In the POINTQUERY problem, the input is a stream in the turnstile model, updating an initially-zero
vector x ∈ Zn, followed by a query j ∈ [n]. The goal is to output x j.

I Theorem 3.1. Suppose the input to POINTQUERY is guaranteed to satisfy |xi| ≤ q at end of the
data stream, for all entries of x, where the bound q is known a priori. Then there is a two-round SIP
for POINTQUERY with space and help costs in O(logn log(q+ logn)).

Proof. Assume WLOG that n = 2b for an integer b, and use a bijection u ∈ [n]←→ u ∈ {0,1}b as in
Theorem 2.1. The vector x resulting from the updates defines a multilinear polynomial g̃x(Z1, . . . ,Zb)

by Eq. (1), where gx(z) := xz. We can treat g̃x as a polynomial over any field we like, but to solve our
problem, we need to tell apart the 2q+1 possible values taken on by the entries of x (recall that q is
an upper bound on ‖x‖∞ at the end of the stream). For this it suffices to have char(F)≥ 2q+1.

Applying the polynomial evaluation protocol is now straightforward. The verifier starts with
r ∈R Fb and Q = 0. Upon receiving an update indicating “xi← xi + c,” he updates Q← Q+ cχi(r).
The other details are as in Figure 2. The space and communication costs are both in O(b log |F|) as
before.

To ensure a soundness error of at most 1/3, we let |F| > 3b as before. This and the earlier
condition on char(F) can both be satisfied by, e.g., taking F = Fp, for a prime p > 3b+ 2q. This
translates to cost bounds in O(logn log(q+ logn)), as claimed. J
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3.2 Nearest Neighbor Queries
Consider a “premetric” space2 (X ,D) given by a finite ground set X and distance function D :
X ×X → R+ satisfying D(x,x) = 0 for all x ∈ X . Let BD(z,r) = {x ∈ X : D(x,z)≤ r} denote the
corresponding ball of radius r ∈ R+ centered at z ∈ X . In the NEARESTNEIGHBOR problem, the
input consists of a stream 〈x(1), . . . ,x(m)〉 of m points from X , constituting the data set, followed by
a query point z ∈ X . The goal is to output x??? = argminx(i) D(x(i),z), the nearest neighbor of z in
the data set. We shall give highly efficient SIPs for this problem that handle rather general distance
functions D. To keep our statements of bounds simple, we shall impose the following structure on
(X ,D).

We assume that X = [n]d . We think of d as the dimensionality of the data, and [n]d as a very fine
“grid” over the ambient space of possible points.
For all x,y ∈ [n]d , D(x,y)≤ 1 is an integer multiple of a small parameter ε ≥ 1/nd .

Overall, this amounts to assuming that our data set has polynomial spread: the ratio between the
maximum and minimum distance. We proceed to give two SIPs for NEARESTNEIGHBOR. Our basic
SIP has cost roughly logarithmic in the stream length and the spread (and therefore linear in d but
only logarithmic in n). After we present it, we shall critique it and then give a more sophisticated SIP
to handle its faults.

I Theorem 3.2. Under the above assumptions on the premetric space (X ,D), the NEAREST-
NEIGHBOR problem has a three-round SIP with cost O(d logn log(m+ log(d logn))).

Proof. Let B = {BD(x, jε) : x ∈ X , j ∈ Z,0≤ j ≤ 1/ε} be the set of all balls of all radii between
0 and 1 (quantized at granularity ε). By our assumptions on the structure of (X ,D), we have
|B| ≤ nd/ε ≤ n2d . The input stream 〈x(1), . . . ,x(m)〉 defines a derived stream, consisting of updates to
a vector v indexed by the elements of B. We shall denote by v[βββ ] the entry of v indexed by βββ ∈ B.
The derived stream is defined as follows: the token x(i) increments v[βββ ] for every ball βββ that contains
x(i). The verifier runs the POINTQUERY protocol of Theorem 3.1 on this derived stream.

The verifier learns the query point z at the end of the stream. The prover then supplies a point
y claimed to be a valid nearest neighbor (note that there may be more than one valid answer). To
check this claim, it is sufficient for the verifier to check two properties: (1) that y did appear in the
stream, and (2) that the stream contained no point closer to z than y. The first property holds iff
v[BD(y,0)] 6= 0. The second property holds iff v[BD(z,D(y,z)−ε)] = 0. Clearly, these two properties
can be checked by two point queries over the derived stream.

Following the protocol of Theorem 3.1, the two point queries (executed in parallel) involve two
more rounds between the verifier and the prover, for an overall three-round SIP. Since the entries
of v never exceed m, each POINTQUERY protocol requires space and help costs O(d logn log(m+

log(d logn))). J

While the protocol of Theorem 3.2 achieves very small space and help costs, the prover’s and
verifier’s runtimes could be as high as Ω(nd), because processing a single stream token x(i) may
require both parties to enumerate all balls containing x(i). Ultimately, this inefficiency is because the
protocol assumes hardly anything about the nature of the distance function D and, as a result, does
not get to exploit any structural information about the balls in B.

2 This very general setting, which includes metric spaces as special cases, captures several important distance functions
such as the Bregman divergences from information theory and machine learning that satisfy neither symmetry nor
the triangle inequality.
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12 Verifiable Stream Computation and Arthur-Merlin Communication

To rectify this, we shall make the entirely reasonable assumption that the distance function D is
“efficiently computable” in the rather mild sense that membership in a ball generated by D can be
decided by a short (say, polynomial-length) formula. Accordingly, we shall express our bounds in
terms of a parameter that captures this notion of efficient computation.

I Definition 3.3. Suppose the distance function D on X satisfies the assumptions for Theorem 3.2.
Let ΦD : B×X → {0,1} be the ball membership function for D, i.e., ΦD(BD(z,r),x) = 1 ⇐⇒ x ∈
BD(z,r). Think of ΦD as a Boolean function of (3d logn)-bit inputs. We define the formula size
complexity of D, denoted fsize(D), to be the length of the shortest de Morgan formula for ΦD.

Since addition and multiplication of b-bit integers can both be computed by Boolean circuits in
depth logb (see, e.g., [31,37]), they can be computed by Boolean formulae of size poly(b). It follows
that for many natural distance functions D, including the Euclidean, Hamming, `1, and `∞ metrics
(and in fact `p for all suitably “small” positive p), we have fsize(D) = poly(d, logn).

I Theorem 3.4. Suppose the premetric space (X ,D) satisfies the assumptions made for The-
orem 3.2. Then NEARESTNEIGHBOR on (X ,D) has a three-round SIP, whose space and help
costs are both at most O(fsize(D) log(m+ fsize(D))), in which the verifier processes each stream
update in time O(fsize(D)), and the prover runs in total time m · poly(fsize(D)). In particular, if
fsize(D) = poly(d, logn), as is the case for many natural distance functions D, then the space and
help costs are both poly(d, logm, logn), the verifier runs in time poly(d, logn) per stream update,
and the prover runs in total time m ·poly(d, logn).

We defer a proof of Theorem 3.4 to the full version of the paper, but the high level idea that allows
us to avoid the high runtimes of the previous protocol is as follows. Essentially, the SIP of Theorem
3.2 ran our polynomial evaluation protocol on a multilinear extension of the vector v defined by the
derived stream. That SIP took v to be a completely arbitrary table of values. As a result, the verifier’s
computation—evaluating the multilinear extension at a random point—became costly. The honest
prover incurred similar costs. A closer examination of the nature of v reveals that if D is a “reasonable”
distance function, then v itself has plenty of structure. In particular, an appropriate higher degree
extension of v can in fact be evaluated much more efficiently (by both the verifier and the prover)
than the above multilinear extension.

3.3 Range Counting Queries
Let U be any data universe and R⊆ 2U a set of ranges. In the RANGECOUNT problem, the data
stream σ = 〈x(1), . . . ,x(m),R∗〉 specifies a sequence of universe elements x(i) ∈ U , followed by a
query or target range R∗ ∈R. The goal is to output |{i : x(i) ∈ R∗}|, i.e., the number of elements in
the target range that appeared in the stream.

We easily obtain a two-round streaming interactive proof for the RANGECOUNT problem with
cost bounded by O(log |R| log(|R|m)). The verifier simply runs a POINTQUERY on the derived
stream σ ′ defined to have data universeR. σ ′ is obtained from σ as follows: on each stream update
x(i) ∈ U , the verifier inserts into σ ′ one copy of each range R ∈R such that x(i) ∈ R. The range count
problem is equivalent to a POINTQUERY on σ ′, with the target item being R∗, and we obtain the
following theorem.

I Theorem 3.5. There is a two-round SIP with O(log |R| log(|R|m)) cost for RANGECOUNT.

In particular, for spaces of bounded shatter dimension ρ , log |R| = ρ logm = O(logm). The
above protocol also implies a three-round SIP for the problem of linear classification, a core problem
in machine learning. Just like the protocol for NEARESTNEIGHBOR invokes a two-round protocol for
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INDEX, an SIP for linear classification (find a hyperplane that separates red and blue points) verifies
that the proposed hyperplane is empty of red points on one side and blue points on the other using the
above two-round RANGECOUNT protocol.

The prover and verifier in the protocol of Theorem 3.5 may require time Ω(|R|) per stream
update. This could be prohibitively large. However, we can obtain savings analogous to Theorem 3.4
if we make a mild “efficient computability” assumption on our ranges. Specifically, suppose there
exists a (poly(S)-time uniform) de Morgan formula Φ of length S that takes as input a binary string
representing a point x(i) ∈ U , as well as the label of a range R ∈R and outputs a bit that is 1 if and
only if x(i) ∈ R. We then obtain the following more practical SIP.

I Theorem 3.6. Suppose membership in ranges from R can be decided by de Morgan formulas
of length S as above. Then there is a two-round SIP for RANGECOUNT on R, with costs at most
O(S log(m+S)), in which the verifier runs in time O(S) per stream update, and the prover runs in
total time m ·poly(S).

3.4 Median and Selection Queries
We give a three-round SIP for SELECTION, of which MEDIAN is a special case. In the SELECTION

problem, defined over data universe U = [n], the data stream σ = 〈x(1), . . . ,x(m),ρ〉 is a sequence of
elements from [n], followed by a desired rank ρ ∈ [m]. For i ∈ [n], let fi := { j : x( j) = i} denote the
number of times element i appears in the stream. Given a desired rank ρ ∈ [m], the goal is to output
an element j ∈ [n] such that

∑
k< j

fk < ρ and ∑
k> j

fk ≤ m−ρ. (3)

MEDIAN is the special case of SELECTION when ρ = bm/2c.
Our three-round SIPs for SELECTION essentially work by reducing to the RANGECOUNT problem,

but an extra round is required for the prover to send the desired element j to the verifier.

ITheorem 3.7. There is a three-round SIP for SELECTION with cost at most O(logn log(m+ logn))
in which the verifier runs in time poly(logn, logm) per update, and the prover runs in total time
m ·poly(logn, logm).

The proof of Theorem 3.7 is deferred to the full version of the paper.

3.5 Pattern Matching Queries
In the pattern matching with wildcards problem, denoted PMW, we are given a stream σ representing
text T = (t1, . . . , tm) ∈ {0,1,∗}m followed by a pattern P = (p1, . . . , pq) ∈ {0,1,∗}q. The wildcard
symbol ∗ is interpreted as “don’t care”, and the pattern P is said to occur at location i in t if, for
every position j in P, either p j = ti+ j or at least one of p j and ti+ j is the wildcard symbol. The PMW

problem is to determine the number of locations at which P occured in T . PATTERNMATCHING refers
to the special case where “don’t care” symbols are not permitted. We focus on a binary alphabet;
a larger alphabet U can be handled by replacing each character in U with its binary representation,
growing the parameter q by a factor of log |U|.

Pattern matching, both with and without wildcards, has been extensively studied within the
algorithmic literature, with applications ranging from internet search to computational genetics (see
e.g. [11, 20] and the references therein). Verifiable protocols for pattern matching enable searching in
the cloud, and complements work on searching in encrypted data within the cloud (e.g. [7]). Cormode
et al. [13] described and implemented an SIP for PMW that required roughly Θ(log2 m) rounds and
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14 Verifiable Stream Computation and Arthur-Merlin Communication

had space help costs bounded by Θ̃(log2 m); Concretely, their implementation required well over
1,000 rounds, even for quite small streams (of length 217). In stark contrast, our new protocol requires
the optimal number of rounds: two.

ITheorem 3.8. There is a 2-round SIP for PMW with space and help costs at most O(q log(q+m)),
in which the verifier runs in time O(q) per stream update, and the prover runs in total time m ·poly(q).

The proof of Theorem 3.8 is deferred to the full version of the paper. We remark that the PMW

protocol of Theorem 3.8 can be run even if the verifier only knows an upper bound on the length q
of the pattern. This is because, for any q′ ≤ q, a pattern P′ ∈ {0,1,∗}q′ is equivalent to the pattern
P ∈ {0,1,∗}q obtained from P′ by concatenating q−q′ wildecard symbols to P′.

4 Communication Protocols and Complexity Classes

We now turn to the study of communication complexity classes motivated by a desire to understand
streaming interactive proofs (SIPs) from a complexity-theoretic viewpoint. In this section, we lay out
the necessary definitions and terminology to rigorously discuss the notions outlined in Section 1.3. In
the next section we prove the many parts of Result 1.5.

4.1 Definitions
Communication problems arise naturally out of data stream problems if we suppose Alice holds a
prefix of the input stream, and Bob the remaining suffix. The primary goal of such reductions is
to obtain space lower bounds on data stream algorithms, so we are free to split the stream at any
place we like. For example, most data stream problems in Section 3 are query problems, where
the input consists of a streamed data set, S, followed by a query, q, to apply to S. In this case, it
would be natural to split the input by giving S to Alice and q to Bob. Communication problems that
will play an important role in this paper include the index problem INDEX : {0,1}n× [n]→ {0,1}
where [n] := {1, . . . ,n} and INDEX(x, j) = x j, the set-intersection and set-disjointness problems
INTER, DISJ : {0,1}n×{0,1}n → {0,1} where INTER(x,y) = ¬DISJ(x,y) =

∨n
i=1(xi ∧ yi), and the

median relation MED : [n]m× [n]m→ [n], where inputs x,y ∈ [n]m× [n]m are interpreted as two halves
of a list of numbers, and the valid output(s) corresponds to the median(s) of the combined list.

4.1.1 Communication Complexity Classes
All our communication models provide random coins and allow two-sided error probability up
to a constant; when unspecified, this constant defaults to 1/3. Given a communication model C,
we denote the corresponding complexity measure of a problem f by C( f ). Following Babai et
al. [5], we also denote by C the corresponding complexity class, defined as the set of all functions
f : {0,1}n×{0,1}n→{0,1} such that C( f ) = (logn)O(1), i.e., functions that are “easy” in the model
C.

We let R[k,A] denote the model of randomized communication complexity where Alice and Bob
exchange k ≥ 1 messages in total with Alice sending the first; R[k,B] is similar, except that Bob starts.
In the MA model, the super-player Merlin, who sees all of the input, broadcasts a message at the start,
following which Alice and Bob run a (two-way, arbitrary-round) randomized “verification” protocol.
The MA[k,A] and MA[k,B] models are restrictions of MA where Merlin speaks only to Bob 3 and

3 Our definition breaks symmetry between Alice and Bob because our eventual goal is to study online protocols.
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the verification protocol following Merlin’s single message is restricted to lie in R[k,A] and R[k,B]

respectively.
The MA model (indeed, its restriction MA[1,A]) allows us to simulate 1-round SIPs in an obvious

way: Merlin sends Bob the prover’s message, and Alice sends Bob the verifier’s memory contents
after it has processed her prefix of the stream. Notice that the order of the two messages is not
important, modulo one crucial consideration: Alice must have a private channel to Bob and the
random coins used to generate the message from Alice to Bob must be hidden coins, invisible to
Merlin but shared between Alice and Bob (which is why we called them “hidden coins” rather than
“private coins”).

The models OMA[k], OIP[k], and OIP[k]
+++ , for k≥ 1, are obtained by extending MA[1,A] to simulate

k-round SIP protocols. These communication models work as follows. In each case, Alice and Bob
first toss some hidden coins. Then, upon receiving the input, two things happen: (1) Merlin and Bob
interact for k rounds, with Merlin sending the last message in the interaction, and (2) Alice sends Bob
a message, randomized using the hidden coins. After these actions are completed, Bob produces an
output in {0,1}. The differences between the three series of models are as follows.

In OMA[k], (1) happens before (2) and Bob must interact with Merlin before looking at his input.
This is directly analogous to AMTM; see the discussion in Section 1.2.
In OIP[k], (1) happens before (2) and Bob may look at his input before talking to Merlin.
Finally, OIP[k]

+++ is like OIP[k] except that (2) happens before (1). Thus, Bob’s messages may
depend on Alice’s actual message to Bob, not just on Bob’s input and the hidden coins.

In the AM model, the parties first choose a public random string, then Merlin broadcasts a message
to Alice and Bob, who then run a deterministic communication protocol to arrive at a Boolean output.
Since Merlin can in fact predict the exact transcript that Alice and Bob will generate following his
message, we can assume without loss of generality that after Merlin’s message, Alice and Bob output
one bit each indicating whether or not they accept Merlin’s prediction.

4.1.2 Cost and Value of Protocols
Let P be a protocol in a model C involving Merlin. For each input (x,y), P defines a game between
Merlin and Arthur (recall that Alice and Bob together constitute Arthur), wherein Merlin’s goal is to
make Arthur output 1. We define the value VP(x,y) to be Merlin’s probability of winning this game
with optimal play. Given a Boolean function f , we say that P computes f with soundness error εs

and completeness error εc if, for all x,y we have

f (x,y) = 0 ⇒ VP(x,y)≤ εs , and f (x,y) = 1 ⇒ VP(x,y)≥ 1− εc . (4)

When the above holds with εc = 0, we say that P computes f with perfect completeness.
The verification cost of P , denoted vc(P), is the (worst-case) number of bits sent by Alice plus

the number of hidden coin tosses; its help cost hc(P) is the number of bits communicated between
Merlin and Bob; its communication cost cc(P) = hc(P)+ vc(P). For a problem f , we define its
complexity C( f ) = min{cc(Q) : Q is a C protocol that solves f with max{εs,εc} ≤ 1/3}.

4.2 Relations Among Communication Complexity Classes
We prove a number of inclusion and separation results among our “new” communication complexity
classes and relate them to previously studied classes. These are summarized in Figure 1, replicated
below.

Our results shed light on the landscape of online communication complexity in general.
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R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 3 The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that C1 ⊆C2.
If the arrow is double-headed, then the inclusion is strict. Within the figure, k is an arbitrary constant larger than
4.

The simplest online communication model is R[1,A], a.k.a. one-way randomized communication.
The result OIP[1] =OIP[1]

+++ =R[1,A] establishes that in the world of online communication, introducing
the omniscient but untrusted Merlin into the model is not enough to obtain super-polynomial efficiency
improvements, if interaction with Merlin is not permitted. The stronger result that OMA[k] = R[1,A]

for all constants k > 0 (this is the full statement of Theorem 5.20) establishes that in the “public coin”
setting, the addition of Merlin is not enough to obtain super-polynomial speedups even if interaction
with Merlin is permitted.

The result that OIP[2] = R[2,B] (see Corollary 5.7) establishes that in the “hidden coin” setting, the
addition of Merlin to the communication model can yield super-polynomial efficiency improvements,
even if only the barest amount of interaction with Merlin is permitted. However, note that R[2,B] is
the simplest non-online communication model. Thus the combination of hidden coins and a minimal
amount of interaction is enough to simulate only the simplest of the non-online communication
protocols.

The result that OIP[4] = OIP[4]
+++ = AM (see Corollary 5.14) shows that in the “hidden coin”

setting, the addition of Merlin to the communication model permits the simulation even of non-online
interactive proofs, as soon as four rounds of interaction with Merlin are permitted.

This in turn explains the somewhat puzzling result that the OIP and OIP+++ hierarchies collapse to
the fourth level: both Goldwasser–Sipser [16] and Babai–Moran [6] break down in the OIP and OIP+++

worlds because their transformations do not preserve online-ness: they will turn an OIP[2] protocol
into a “public coin” one, but require Merlin to send a message to Alice. However, as soon as four
rounds of interaction with Merlin are permitted, even online interactive proofs can simulate non-online
ones. At this point, the phenomena of classical interactive proofs kick in, and the hierarchies collapse.

5 A Communication Complexity Zoo

We now study our central communication models OIP[k] and OIP[k]
+++ , and prove the web of relation-

ships given in Figure 3. Our results are of two types: (1) establishing separations or collapses between
levels of the OIP and OIP+++ hierarchies, as the case may be, and (2) relating these hierarchies to other
previously studied communication complexity classes. We shall first characterize every finite level
of the OIP hierarchy (the vertical bidirectional arrows in Figure 3). Next, in Sections 5.4 and 5.5,
we separate the first four levels of the hiearchy (the horizontal double-headed arrows in the figure).
Finally, in Section 5.5, we separate the OIP and OMA hierarchies.

Throughout Section 5, f will denote an arbitrary communication problem given by a Boolean
function f : X ×Y → {0,1}, and n will parametrize its “instance size” up to a constant factor, i.e.,
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we will have log |X |+ log |Y| = Θ(n). We shall use big-O and big-Ω notation to hide constants
independent of f , |X | and |Y|. We shall use the term “ordinary protocol” to mean a randomized
communication protocol involving Alice and Bob alone (and no Merlin).

The first level of the hierarchy is easy to characterize.

I Theorem 5.1. We have OMA[1] = OIP[1] = OIP[1]
+++ = MA[1,A] = R[1,A].

Proof. The definitions immediately show that the first four classes are identical (syntactically) and
include R[1,A], because one can always choose to ignore Merlin. The reverse inclusion MA[1,A] ⊆
R[1,A] follows from previous work: Chakrabarti et al. [9] show that for all f we have R[1,A]( f ) =
O
(

MA[1,A]( f )2
)
. J

5.1 A Characterization of OIP[2]

The main goal of this subsection is to prove that OIP[2] = R[2,B]. We start with the following
communication analog of Theorem 2.2, which was proven in a streaming setting.

I Lemma 5.2 (Polynomial Evaluation Protocol, Communication Version). Suppose Alice holds a
v-variate polynomial g of total degree d over a field F, and Bob holds a point j∈ Fv. Assume |F|> 4d.
Then there is an OIP[2] protocol with communication cost O((v+d) · log |F|) for evaluating g(j). In
particular, OIP[2](INDEX) = O(logn log logn), so that INDEX ∈OIP[2].

Proof. Using the notation established in the description of the polynomial agreement protocol of
Section 2.1, we simply note that the hidden coins shared between Alice and Bob determine r. Bob
can send Merlin (the canonical representation of) the line ` that passes through j and r without having
to hear from Alice, since ` is determined entirely by r and Bob’s input j. Merlin can send Bob the
polynomial h(W ) claimed to equal g restricted to the line `, and Alice can send Bob g(r) within the
stated cost bounds. Bob performs the same check as the verifier in Theorem 2.2, and the completeness
and soundness analysis is unchanged. J

The just-proved fact that INDEX ∈OIP[2] is striking: combined with the well-known lower bound
R[1,A](INDEX) = Ω(n), it shows that introducing Merlin into the picture while keeping the one-way
restriction on the Alice/Bob communication lowers cost exponentially. It is now natural to ask whether
OIP[2] allows such exponential savings for harder problems, such as DISJ. Our next result—a lower
bound on OIP[2] complexity—implies that it does not.

I Theorem 5.3. Let P be an OIP[2] protocol computing f . Then hc(P)vc(P) = Ω(R[2,B]( f )). In
particular, OIP[2]( f ) = Ω

(
R[2,B]( f )1/2

)
, which implies OIP[2] ⊆ R[2,B].

Proof. After appropriate parallel repetition, we may assume that the soundness and completeness
errors of P at most 1/12 each. In general, P takes the following shape: (1) hidden coins are
tossed, generating random string r according to distribution D; (2) Bob sends Merlin a message
mB = mB(y,r); (3) Merlin responds with a message mM = mM(x,y,mB); (4) Alice sends Bob a
message mA = mA(x,r); (5) Bob outputs a bit given by a function outP(y,mM,mA).

Let Dm be D conditioned on the event {mB(y,r) = m}. Note that the distribution Dm depends on
both y and m. Since Bob knows y, Bob can determine the distribution Dm for any value of m (this is
not, however, true for Alice, because Alice does not know y).

With this notational setup, we now describe (in Figure 4) a two-message ordinary protocol Q that
we claim computes f .
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1. Bob samples r ∼D, computes m = mB(y,r), then sends Alice i.i.d. sam-
ples r(1), . . . ,r(h) ∼Dm, where h = 36(hc(P)+4).

2. Alice sends Bob mA
(
x,r(1)

)
, . . . ,mA

(
x,r(h)

)
.

3. Bob outputs 1 iff ∃mM : |{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}|> h/2.

Figure 4 The R[2,B] protocol Q, which simulates the OIP[2] protocol P .

To analyze this protocol, let us first define the weight Wx,y(m) of a Bob-message m to be the
probability that Merlin, playing optimally after receiving m, convinces Bob to output 1. That is,

Wx,y(m) = max
mM

Pr
r∼Dm

[
outP(y,mM,mA(x,r)) = 1

]
. (5)

Then, with m∼ mB(y,D), the expected weight Em[Wx,y(m)] is at least 11/12 when f (x,y) = 1 and at
most 1/12 when f (x,y) = 0.
Correctness on 111-inputs: Fix (x,y) ∈ f−1(1). We shall proceed assuming that the specific Bob-
message m chosen in Step 1 of Q satisfies Wx,y(m) > 2/3 = 1− 4(1/12); by Markov’s inequality,
this fails to happen with probability at most 1/4. Studying Eq. (5) tell us that there exists a specific
Merlin-message m∗M such that Prr[outP(y,m∗M,mA(x,r)) = 1] > 2/3. Therefore, according to the
strategy in Steps 2 and 3, the size of the set {i ∈ [h] : outP(y,m∗M,mA(x,r(i))) = 1} is a sum of h
i.i.d. indicators and exceeds 2h/3 in expectation. By standard Chernoff bounds (e.g., [28, Theorem
4.4]), the probability that Bob outputs 0 is 2−Ω(h). Thus, overall, the probability that Q outputs 0 on
input (x,y) is at most 1/4+2−Ω(h) < 1/3.
Correctness on 000-inputs: Fix (x,y) ∈ f−1(0). We shall proceed assuming that the specific Bob-
message m chosen in Step 1 ofQ satisfies Wx,y(m)< 1/3; by Markov’s inequality, this fails to happen
with probability at most 1/4. For each specific Merlin-message mM , define

size(mM) =
∣∣∣{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}

∣∣∣ .
Then size(mM) is a sum of h i.i.d. indicators and has expectation below h/3. By standard Chernoff
bounds, Pr[size(mM)> h/2]≤ e−h/36. By a union bound over all possible Merlin-messages mM , the
probability that Bob outputs 1 is at most 2hc(P)e−h/36 < 2−4, using our choice of h. Adding in the
1/4 from our Markov argument earlier, the overall probability that Q outputs 1 on input (x,y) is at
most 1/4+2−4 < 1/3.
Communication Cost: By definition of the OIP[2] model, we have |r| ≤ vc(P) and |mA| ≤ vc(P).
Thus, each of the two messages in Q costs at most h ·vc(P) = O(hc(P)vc(P)) bits. J

The above proof exploits a key property of OIP[2] protocols: Bob can sample from the conditional
distribution Dm. This is possible because mB = mB(y,r) is independent of Alice’s message mA, a
property not satisfied in the stronger OIP[2]

+++ model. This explains why Theorem 5.3 does not apply

to OIP[2]
+++ , and indeed we shall later give an exponential separation between OIP[2] and OIP[2]

+++ in
Corollary 5.19.

Theorem 5.3 implies a number of lower bounds for specific problems. We begin with DISJ.

I Corollary 5.4. We have Ω(n1/2)≤ OIP[2](DISJ)≤ O(n1/2 logn). In particular, DISJ /∈OIP[2].

Proof. For the lower bound, we combine Theorem 5.3 with the fact that R[2,B](DISJ)≥ R(DISJ) =

Ω(n), the last step being a celebrated lower bound [21]. The upper bound follows from the Aaronson–
Wigderson protocol [2] for DISJ, which is in fact an MA[1,A] protocol. J
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We remark that we may replace DISJ in Theorem 5.4 with IP2, the “inner product mod 2” function.
Indeed, the Aaronson–Wigderson protocol also applies to IP2, and R(IP2) = Ω(n).

Recall that MED is a relation on inputs in [n]m× [n]m. Corollary 5.5 below establishes a lower
bound of Ω(m1/4) on the cost of any OIP[2] protocol for MED (the proof is deferred to the full version
of the paper). This justifies our use of three rounds in the polylogarithmic cost SIP for MEDIAN we
gave in Theorem 3.7, as it implies that any 2-round SIP for median based on known techniques must
have polynomial cost.

I Corollary 5.5. We have Ω(m1/4)≤ OIP[2](MED)≤ O(m1/2 log3/2 n).

We have now seen that up to polynomial (specifically, quadratic) blowup, OIP[2] is no more
powerful than ordinary R[2,B]. We now show that up to another quadratic blowup this is in fact a
characterization.

I Theorem 5.6. For all f , we have OIP[2]( f ) = O
(

R[2,B]( f )2
)
. In particular, OIP[2] ⊇ R[2,B].

Proof. Let Q be an R[2,B] protocol for f with cost C and error at most 1/6. Assume WLOG that
C ≥ 5 and that each of the two messages in Q is a string in {0,1}C. We shall treat Alice’s messages
as elements of the field F= F2C via an agreed-upon bijection.

We design an OIP[2] protocol P for f , based on Q. Given an input (x,y), P begins by choosing
a (hidden) random string r shared between Alice and Bob exactly as Q would have. From now
on, think of x,y,r as fixed. This then fixes a message mB that Bob would have sent Alice in Q,
as well as a function mA : {0,1}C → F specifying Alice’s response to each Bob-message. Let
m̃A(Z1, . . . ,ZC) ∈ F[Z1, . . . ,ZC] be the multilinear extension of this function mA. In P , Alice needs to
send a message to Bob that allows him to determine mA(mB) = m̃A(mB) with Merlin’s help. This is
an instance of polynomial evaluation, so we solve it by applying the OIP[2] polynomial evaluation
protocol (PEP) from Lemma 5.2.

The polynomial m̃A is C-variate and has total degree C. Therefore, PEP has communication cost
O(C log |F|) = O(C2), as does P . Next, PEP has perfect completeness, so an honest Merlin can cause
P to output 1 whenever the choice of r would have caused Q to output 1. Finally, PEP has soundness
error at most C/(|F|−1) =C/(2C−1)< 1/6, so a dishonest Merlin can cause P to differ in output
from Q with probability at most 1/6. Using the error bound of 1/6 on Q, we conclude that P has
completeness error at most 1/6 and soundness error at most 1/6+1/6 = 1/3. J

I Corollary 5.7. For all f , we have Ω
(

R[2,B]( f )1/2
)
≤OIP[2]( f )≤O

(
R[2,B]( f )2

)
. Thus, OIP[2] =

R[2,B].

Proof. Combine Theorems 5.3 and 5.6. J

5.2 A Characterization of OIP[3]

The main goal of this subsection is to prove that OIP[3] = MA[2,B]. Theorem 5.8 below gives a lower
bound that builds on the argument in Theorem 5.3 (the proof is deferred to the full version of the
paper). Just as before, we can then derive a lower bound for the specific problem DISJ.

I Theorem 5.8. Let P be an OIP[3] protocol computing f . Then there is an MA[2,B] protocol
Q computing f with hc(Q) ≤ hc(P) and vc(Q) = O(hc(P)vc(P)). In particular, OIP[3]( f ) =
Ω
(

MA[2,B]( f )1/2
)
, which implies OIP[3] ⊆MA[2,B].

I Corollary 5.9. We have Ω(n1/3)≤ OIP[3](DISJ)≤ O(n1/3 logn). In particular, DISJ /∈OIP[3].
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Proof. Klauck [22] proved that MA(DISJ) = Ω(n1/2). Applying Theorem 5.8 to this result gives
the non-tight bound OIP[3](DISJ) = Ω(n1/4). But we observe that Klauck’s proof shows some-
thing stronger: namely, if an MA protocol Q computes DISJ, then hc(Q)vc(Q) = Ω(n). Combin-
ing Theorem 5.8 with this result, we conclude that if an OIP[3] protocol P computes DISJ, then
hc(P)2 vc(P) = Ω(n), and therefore hc(P)+vc(P) = Ω(n1/3).

For the upper bound, we note that Aaronson and Wigderson [2] also gave an online MAMA
protocol for DISJ of cost O(n1/3 logn). Every online MAMA protocol admits a simulation in
OIP[3]. J

As with Theorem 5.4, we may replace DISJ in the above result with IP2. Indeed, Klauck’s
result [22] implies that MA(IP2) = Ω(n1/2), and Aaronson and Wigderson’s MAMA protocol also
applies to IP2.

As we did for the second level in the OIP hierarchy, we give an upper bound that applies to the
third level and gives a characterization that is tight up to a quadratic blowup.

ITheorem 5.10. For all f , we have OIP[3]( f ) = O
(

MA[2,B]( f )2
)
. In particular, OIP[3] ⊇MA[2,B].

Proof sketch. We build on the argument in Theorem 5.6 exactly as the proof of Theorem 5.8 builds
on Theorem 5.3. Given an MA[2,B] protocol Q of cost C, the verification strategy used by Alice
and Bob in Q is an R[2,B] protocol of cost C, which we can replace with an OIP[2] protocol of cost
O(C2), by Theorem 5.6. After this replacement we have an OIP[3] protocol. The remaining analysis
is routine. J

I Corollary 5.11. For all f , Ω
(

MA[2,B]( f )1/2
)
≤ OIP[3]( f ) ≤ O

(
MA[2,B]( f )2

)
. Thus, OIP[3] =

MA[2,B].

Proof. Combine Theorems 5.8 and 5.10. J

5.3 A Characterization of OIP[4] and Beyond
The fourth level of the OIP hierarchy turns out to have surprising power. It can capture all of AM, a
model that lies at the frontier of our current understanding of communication complexity classes in
the sense that we do not know any nontrivial AM lower bounds. Thanks to this surprising power, we
can show that all constant-height levels of the OIP hierarchy collapse to the fourth level.

I Theorem 5.12. For all f , we have OIP[4]( f ) = O(AM( f ) logAM( f )). In particular, OIP[4] ⊇
AM.

Proof. Suppose AM( f ) = C. WLOG, there is a protocol Q for f with the following shape: Bob
tosses coins to generate a random string r and sends it to Merlin, who responds with a message m,
where |r|+ |m| ≤C. Bob then sends (r,m) to Alice, who responds with a single bit, after which Bob
announces the output.

The interaction between Bob and Alice is an R[2,B] protocol (in fact, it is deterministic) of cost
C. Theorem 5.6 shows that it can be replaced with an OIP[2] protocol of cost O(C2). Performing
this replacement gives us an OIP[4] protocol for f . The cost bound can be improved to O(C logC) by
revisiting the analysis of the polynomial evaluation protocol used to prove Theorem 5.6 and using the
fact that Alice’s message in Q is just a single bit. J

I Theorem 5.13. For each k > 0, there exists a constant ck > 0 such that for all f , OIP[k]
+ ( f )≥

Ω
(

AM( f )ck
)
. In particular, for every constant k, we have OIP[k]

+++ ⊆ AM.
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Proof. Let C = OIP[k]
+ ( f ) and let P be an OIP[k]

+++ protocol with cost C that computes f . By definition,
P uses a hidden random string and Merlin learns about this string only indirectly, from Bob’s
computed messages. We apply the Goldwasser–Sipser set lower bound technique [16] to convert P
into a protocol where all random coins are directly revealed. Specifically, we can convert P into an
AMAM · · ·AM protocol Q′, where k+3 messages are sent in total: Merlin’s messages are broadcast
and after his final message Alice sends a message to Bob, who announces the output. We have
cc(Q′) = O(Cak) for some constant ak ≥ 1.

We apply Babai and Moran’s round elimination techniques [6] to turn Q′ into a standard AM
protocol Q of cost at most O(cc(Q′)bk) for some constant bk ≥ 1. The result follows by taking
ck = 1/(akbk). J

I Corollary 5.14. For all f , Ω
(

AM( f )c4
)
≤ OIP[4]( f ) ≤ O(AM( f ) logAM( f )), where c4 is the

constant from Theorem 5.13. In particular, OIP[4] = AM, and in fact OIP[k] = AM for every constant
k ≥ 4.

Proof. Combine Theorems 5.12 and 5.13, noting that OIP[k] ⊆OIP[k]
+++ for every k ≥ 4. J

Here is an interesting point worth contemplating. On the one hand, our transformations in the
proof of Theorem 5.13 perform round reduction at the expense of destroying online-ness: the final
protocol Q is no longer online, i.e., we cannot require communications to go to Bob alone. On the
other hand, the transformation in the proof of Theorem 5.12 “restores” onlineness at only a “slight”
expense of requiring four rounds, whereas AM uses only two. Overall, we have a collapse of the OIP
hierarchy to its fourth level.

We have also noted earlier that we (regretfully) do not yet know how to place a concrete problem
outside OIP[2]

+++ . Nevertheless, Theorems 5.12 and 5.13 together establish a weakness of OIP[2]
+++ : up to

polynomial factors this model is no more powerful than OIP[4].

5.4 Exponential Separations in Our Complexity Zoo
Among the first four levels of the OIP hierarchy, we can now show that every pair of adjacent levels
is exponentially separated. The next three results make this precise. Recall that INTER = ¬DISJ is the
set intersection problem.

I Theorem 5.15. We have OIP[1](INDEX) = Ω(n1/2) whereas OIP[2](INDEX) = O(logn log logn).

Proof. Combine Theorems 5.1 and 5.2, and then the known results that MA[1,A]( f )=Ω
(

R[1,A]( f )1/2
)

for all f [9] (see also Theorem 5.20 in Section 5.5), and that R[1,A](INDEX) = Ω(n) [3]. J

I Theorem 5.16. We have OIP[2](INTER) = Ω(n1/2) whereas OIP[3](INTER) = O(log2 n).

Proof. For the lower bound, use R[2,B](INTER) ≥ R(INTER) = R(DISJ) = Ω(n) and then apply
Theorem 5.3.

For the upper bound, note that INTER has a nondeterministic protocol with cost O(logn), wherein
Alice and Bob guess an element in the intersection of their respective sets and they verify membership.
In particular this gives MA[2,B](INTER) = O(logn); in fact, Bob need not send anything to Alice in
the MA[2,B] protocol. Now apply Theorem 5.10. J

While we do not know of a total Boolean function that separates OIP[3] from OIP[4], we do know
of a partial Boolean function whose OIP[3] communication complexity is exponentially larger than
its OIP[4] communication complexity. Specifically, Klauck [23, Corollary 3] gives a promise problem
he calls PAPPMP which has Quantum Merlin-Arthur (QMA) communication complexity Ω(n1/6)
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and AM communication complexity O(logn). Since Theorem 5.8 shows that any OIP[3] protocol
can be transformed into an equivalent MA[2,B] protocol with a quadratic blowup in cost, and MA[2,B]

protocols are simply restricted versions of QMA protocols, Klauck’s lower bound on the QMA cost
of PAPPMP implies that OIP[3](PAPPMP) = Ω(n1/12).

Meanwhile, Theorem 5.12 shows that any AM communication protocol can be transformed into
an equivalent OIP[4] protocol with a logarithmic blowup in costs. Thus, Klauck’s upper bound on the
AM communication complexity of PAPPMP implies that OIP[4](PAPPMP) = O(logn log logn).

ITheorem 5.17. We have OIP[3](PAPPMP)=Ω(n1/12) whereas OIP[4](PAPPMP)=O(logn log logn).

Next, we show that, up to polynomial factors, OIP[2]
+++ is at least as powerful as R[3,A], the class of

three-message randomized communication protocols in which Alice speaks first. This will enable us
to exhibit an explicit function f on domain {−1,1}n×{−1,1}n such that OIP[2]( f ) = Ω(

√
n/ logn),

while OIP[2]
+ ( f ) = O(log2 n).

I Theorem 5.18. For all f , we have OIP[2]
+ ( f ) = O

(
R[3,A]( f )2

)
.

Proof. Let Q be any three-message randomized communication protocol of cost C, with Alice
speaking first. We show how to convert Q into an OIP[2]

+++ protocol P of cost O(C2).

We think of Q as consisting of one message m(1)
A from Alice to Bob, followed by a two-message

communication protocol Q′ in which Bob speaks first. Theorem 5.6 shows how to transform Q′ into
an equivalent OIP[2] protocol P ′ of cost O(C2) (note this OIP[2] protocol depends on m(1)

A ).
Thus, we obtain an OIP[2]

+++ protocol P as follows. Alice’s message to Bob in P consists of two

parts. The first specifies m(1)
A , and the second is the message she would have sent to Bob in P ′. Bob,

who learns m(1)
A from the first part of Alice’s message, now knows what OIP[2] protocol P ′ to execute,

and simply behaves the same as he would in P ′. J

Exponential separations between R[3,A] and R[2,B] are known. In particular, consider the k-step
(bipartite) pointer jumping function PJk, which interprets each of Alice and Bob’s inputs as a list
of N = Θ(n/ logn) pointers, a pointer being a (logN)-bit integer. Each pointer in a player’s list is
interpreted as pointing to (i.e., indexing) a pointer in the other player’s list. The goal is to follow
these pointers, starting at the first pointer in Alice’s list, and output the kth pointer encountered.
For example, if Alice’s input is x = (00,01,10,00) and Bob’s input is y = (01,10,11,00), then
PJ1(x,y) = 01, PJ2(x,y) = 01, PJ3(x,y) = 10, and so on. To turn PJk into a Boolean function BPJk, we
take the parity of the (logN)-bit output of PJk.

I Corollary 5.19. We have OIP[2](BPJ2) = Ω(
√

n/ logn), while OIP[2]
+ (BPJ2) = O(log2 n).

Proof. Nisan and Wigderson [30] showed that R[k,B](BPJk) = Ω(N/k2− k logN). In particular, any
two-message randomized communication protocol in which Bob speaks first has cost Ω(N). Hence,
Theorem 5.3 implies that OIP[2](BPJ2) = Ω(

√
n/ logn).

To prove the upper bound on OIP[2]
+ (BPJ2), note that there is a trivial three-message protocol for

PJ2 (and hence for BPJ2) of cost O(logn) in which Alice speaks first. Now apply Theorem 5.18. J

5.5 An Exponential Separation Between OIP[2] and OMA[k]

Theorem 5.20 establishes that for any function f , OMA[2k]( f ) = Ω
(

R[1,A]( f )1/(k+1)
)
. An essentially

identical lower bound was proven by Klauck and Prakash for a closely related (though not identical)
communication model; the full version of the paper provides a detailed proof for completeness, and
in the process identifies the crucial details of the communication model that enable the lower bound
to hold.
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I Theorem 5.20. For any function f and constant k, OMA[2k]( f ) = Ω
(

R[1,A]( f )1/(k+1)
)
.

The main property of the OMA[k] communication model exploited in our proof of Theorem 5.20
is the following: in any OMA[k] protocol P , for all i≤ k, Alice can determine Bob’s ith message to
Merlin in P on her own. In particular, the same lower bound would apply to any variant of online
Arthur-Merlin communication models in which Bob’s messages to Merlin must be independent of his
input y. This is the intuitive reason why the OIP[2] model is exponentially more powerful than the
OMA[k] model for any constant k: in the OIP[2] model, Bob’s message to Merlin may depend on his
input y, while this is not allowed in the OMA[k] model.

Combining Theorem 5.20 with Theorem 5.2, which says that OIP[2](INDEX) = O(logn log logn),
we obtain an exponential separation between OIP[2] and OMA[k] for any constant k > 0.

I Corollary 5.21. For every constant k > 0, we have OIP[2] 6⊆OMA[k]. J

6 Conclusion

Our primary objects of study in this paper were constant-round interactive protocols for verifying
outsourced streaming computations. Our main algorithmic contributions were to give constant-round
streaming interactive proofs for a large class of “query” problems. Our protocols are exponentially
more efficient than what was believed possible based on prior work, and demonstrate that in the
streaming setting, “hidden” coins are exponentially more powerful than public coins.

We also introduced new “online” communication hierarchies, OIP+++ and OIP, which can be seen
as restricted variants of the standard Arthur-Merlin communication model. The flow of information
in the OIP+++ and OIP models is severely restricted (neither Bob nor Merlin can speak to Alice), yet
OIP+++ is still powerful enough to simulate any streaming interactive proof, and OIP powerful enough
to simulate all known streaming interactive proofs. Our study revealed that the online nature of these
communication models leads them to behave very differently from classical interactive proofs, and
allowed us to establish strong limitations on the power of existing techniques for developing constant-
round SIPs. It also yielded a surprising characterization of the communication complexity class
AM in terms of online communication models (namely, AM = OIP[4] = OIP[4]

+++ ). We believe this
characterization may prove useful in establishing non-trivial AM lower bounds, a problem that has
been identified [23] as an important “first step” toward resolving the ΠΠΠ222 6= ΣΣΣ222 problem in two-party
communication complexity, one of the most important problems left open by Babai et al. [5].

Many questions remain for future work, but here we highlight just one: proving a superlogarithmic
lower bound on the OIP[2]

+++ communication cost of an explicit function. Progress on this question
would yield the first superlogarithmic lower bounds on the cost of two-round SIPs. Moreover, we
have shown that standard techniques easily establish that OIP[2]

+++ is a subset of AM, but have been

unable to prove any superlogarithmic lower bounds against OIP[2]
+++ protocols. Proving OIP[2]

+++ lower
bounds therefore represents an important (and potentially tractable) “zeroth step” toward resolving
ΠΠΠ222 6= ΣΣΣ222.
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