
Small Synopses for Group-By Query Verification on
Outsourced Data Streams

KE YI

Hong Kong University of Science and Technology

FEIFEI LI

Florida State University

GRAHAM CORMODE and MARIOS HADJIELEFTHERIOU

AT&T Labs - Research

GEORGE KOLLIOS

Boston University

and

DIVESH SRIVASTAVA

AT&T Labs - Research

Due to the overwhelming flow of information in many data stream applications, data outsourc-
ing is a natural and effective paradigm for individual businesses to address the issue of scale.
In the standard data outsourcing model, the data owner outsources streaming data to one or
more third-party servers, which answer queries posed by a potentially large number of clients on
the data owner’s behalf. Data outsourcing intrinsically raises issues of trust, making outsourced
query assurance on data streams a problem with important practical implications. Existing so-
lutions proposed in this model all build upon cryptographic primitives such as signatures and
collision-resistant hash functions, which only work for certain types of queries, e.g., simple selec-
tion/aggregation queries.

In this paper, we consider another common type of queries, namely, “GROUP BY, SUM” queries,
which previous techniques fail to support. Our new solutions are not based on cryptographic
primitives, but instead use algebraic and probabilistic techniques to compute a small synopsis on
the true query result, which is then communicated to the client so as to verify the correctness of
the query result returned by the server. The synopsis uses a constant amount of space irrespective
of the result size, has an extremely small probability of failure, and can be maintained using no
extra space when the query result changes as elements stream by. We then generalize our synopsis
to allow some tolerance on the number of erroneous groups, in order to support semantic load
shedding on the server. When the number of erroneous groups is indeed tolerable, the synopsis
can be strengthened so that we can locate and even correct these errors. Finally, we implement
our techniques and perform an empirical evaluation using live network traffic.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; H.2 [Database Management]: Security and integrity

General Terms: Algorithms, Security, Verification

Additional Key Words and Phrases: Synopses, Data streams, Outsourcing

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 ·

verification request

synopsis

. . .

outsourced stream

query

query result

Fig. 1. System architecture.

1. INTRODUCTION

A large number of industrial and academic Data Stream Management Systems
(DSMS) have been developed recently [Chandrasekaran et al. 2003; Hammad et al.
2004; Arasu et al. 2003; Cranor et al. 2003; Carney et al. 2003; Abadi et al. 2005].
The need for such DSMSs is mainly driven by the continuous nature of the data
being generated by a variety of real-world applications, like telephony and network-
ing. Providing fast and reliable querying services on the streaming data to clients is
central to many businesses. However, due to the overwhelming data flow observed
in most data streams, many companies do not possess the necessary resources for
deploying a DSMS, and are not willing to acquire them. Hence, in these cases
outsourcing the data stream and the desired computations to a third-party server
is the only alternative. Outsourcing also solves the issue of scale: as there are more
clients, the data owner can simply employ more mirroring servers. In addition,
this can often lead to faster query responses, since these servers can be closer to
the clients than a single centralized server. However, data outsourcing and remote
computations intrinsically raise issues of trust. As a consequence, outsourced query
verification on data streams is a problem with important practical implications.

Consider a setting where the data owner (e.g., a stock broker) with limited re-
sources, such as memory and bandwidth, outsources its data stream to one or more
remote, untrusted servers (that can be compromised, malicious, running faulty soft-
ware, etc.). Clients register continuous queries on one of the servers and receive
results upon request (Figure 1). Note that very often, the data is not private in-
formation, the data owner chooses to outsource mainly due to the high resource
consumption associated with maintaining these continuous queries. Assuming that
the server charges the data owner according to the computation resources consumed
and the volume of traffic processed for answering the queries, the server then has an
incentive to deceive the owner and the client for increased profit. Furthermore, the
server might have a competing interest to provide fraudulent answers to a particular
client. Hence, a passive malicious server could drop query results or provide ran-
dom answers in order to reduce the computation resources required for answering
queries, while a compromised or active malicious server might be willing to spend
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 3

additional computational resources to provide fraudulent results (by altering, drop-
ping, or introducing spurious answers). In other cases, incorrect answers might
simply be a result of faulty software, or due to load shedding strategies, which are
essential tools for dealing with bursty streaming data [Tatbul and Zdonik 2006;
Arasu and Manku 2004; Babcock et al. 2004; Tatbul et al. 2003].

Ideally, the data owner and the client should be able to verify the integrity of the
computation performed by the server using significantly fewer resources than hav-
ing the query answered directly, i.e., the data owner evaluates the query locally and
then transmits the entire query result to the client. We aim at designing a synopsis
or certificate which can verify correctness: the output of a simple function which
can easily be computed on both the input and output of the computation in order
to verify that the result is correct. Further, the client should have the capability
to tolerate errors caused by load shedding algorithms or other non-malicious oper-
ations, while at the same time being able to identify mal-intended attacks which
have a significant impact on the result.

The present work concentrates on “GROUP BY, COUNT” and “GROUP BY, SUM”
queries. Such queries are especially common on data streams. For example, in
network monitoring applications, often one would like to compute the total number
of packets originated and destined to certain IP addresses. This problem has been
studied extensively in the networking domain, and a variety of solutions, based on
designing custom hardware or fast approximate counters, have been proposed; see
e.g. [Zhao et al. 2006]. Also notice that the “GROUP BY, COUNT” query is equiva-
lent to computing the frequencies of the tuples in a stream, and this problem has
received a lot of attention in the data streaming literature. Indeed, most streaming
algorithms deal with either the frequencies directly [Cormode and Muthukrishnan
2005] or their relatives, such as frequency moments [Alon et al. 1996; Indyk and
Woodruff 2005], heavy hitters [Cormode and Muthukrishnan 2003; Karp et al. 2003;
Metwally et al. 2006], quantiles [Gilbert et al. 2002; Greenwald and Khanna 2001],
inverse frequencies [Cormode et al. 2005], etc. All theses works focus on computing
the answers to these queries but not their verification.

In this article, we develop solutions for verifying “GROUP BY, COUNT” and “GROUP
BY, SUM” queries on any type of grouping imposed on the input data. First, we
provide a solution for verifying the absolute correctness of queries in the presence of
any error, and second, an algorithm for supporting semantic load shedding, which
allows the server to drop tuples in a selected small number of groups. In the
latter case we design techniques that can tolerate a small number of inconsistent
answers while guaranteeing that the rest are correct. Furthermore, we strengthen
the scheme so that we can determine not only whether there are some errors but also
where they are, and correct them if necessary, which is important in many critical
applications. We also discuss the hardness of supporting random load shedding,
where small errors are allowed for a wide range of answers.

There is considerable work on query authentication in an outsourced database
[Hacigumus et al. 2002; Devanbu et al. 2003; Martel et al. 2004; Bertino et al.
2004; Pang and Tan 2004; Pang et al. 2005; Li et al. 2006] or an outsourced data
stream [Li et al. 2007; Papadopoulos et al. 2007]. However, most of these works
consider simple selection/aggregation queries, and to the best of our knowledge,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



4 ·

none of the existing techniques can support “GROUP BY, COUNT” and “GROUP BY,
SUM” queries, in spite of their importance. Interestingly, unlike all the prior works
that are based on cryptographic primitives such as digital signatures and collision-
resistant hash functions, our solutions use algebraic and probabilistic techniques to
compute a small synopsis on the true query result, which is then communicated
to the client so as to verify the correctness of the query result returned by the
server. Therefore we use the word “verification” as opposed to “authentication” to
differentiate our techniques with the existing ones. In addition to the differences
with respect to the techniques, there are also some subtle yet interesting differences
between the security guarantees provided by “verification” and “authentication”.
We will defer the discussion on these issues to Section 8.

If a client wants to verify the query results with absolute confidence, the only
solution is for the data owner to evaluate the query exactly and transmit the entire
result to the client, which obviates the need of outsourcing. Hence, we provide high-
confidence probabilistic solutions with arbitrarily minuscule probability of error,
and develop verification algorithms that incur minimal resources, in terms of both
the memory consumption of the data owner and the data owner-client network
bandwidth.

Towards this goal the contributions of this work are:

(1) A randomized synopsis (Section 4.1), which we call PIRS, that raises an alarm
with very high confidence if there exists at least one error in the query results.
Specifically, the data owner maintains a constant-sized synopsis (three machine
words) of the current query result, and transmits the synopsis to the client
(via a secure channel) upon a verification request. The client then can verify
the query result returned by the server using only this small synopsis (see
Figure 1). The data owner can maintain the synopsis using constant space
and low processing cost per tuple in the stream (O(1) for count queries and
O(log n) or O(log µ) for sum queries, where n is the number of possible groups
and µ is the update amount per tuple). We also give a theoretical analysis of
the algorithm that proves its space optimality on the bits level. In addition,
we show the following.
—A strong result stating that the same synopsis can be used for verifying

multiple simultaneous queries with the same aggregate attribute but different
group-by partitionings (Section 4.2). The size of the synopsis is the same as
that for verifying a single query.

—A rigorous analysis on the security guarantee of the proposed scheme under
multiple attacks of the server with unlimited computing power (Section 4.3).

—An adaption of the basic scheme to support queries on sliding windows (Sec-
tion 4.4).

(2) A variety of generalizations of the PIRS synopsis, which use the basic synopsis
as a building block to create new schemes including:
—PIRSγ (Section 5.1), a generalization of PIRS for raising alarms when the

number of errors exceeds a predefined threshold. This synopsis thus allows
some room of error for the server (e.g. using semantic load shedding): As long
as there are not too many errors (less than γ), the server is still considered
to be trustworthy.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 5

—PIRSγ∗ (Section 5.2), a strengthened version of PIRSγ so that when the
number of errors is tolerable, we can also locate and even correct these errors.
Therefore, PIRSγ∗ also acts as an error-correcting code, which guarantees
that the complete and correct query results can be delivered to the client
(provided the number of errors is less than γ).

—PIRS±γ (Section 5.3), an approximate version of PIRSγ that has a much
reduced size.

—FM-PIRS (Section 5.4), a synopsis that can be used to estimate the actual
number of errors accurately. FM-PIRS is a parameter-free version of PIRS±γ

in the sense that it does not depend on γ. In particular, when the number
of errors exceeds γ, PIRS±γ simply raises an alarm, while FM-PIRS also
reports an estimate of the actual number of errors. FM-PIRS has a smaller
size than PIRS±γ for large enough γ.

(3) Hardness results, including:
—A discussion of the difficulty behind supporting random load shedding and

some simple heuristics (Section 6.1).
—Some lower bound results on the hardness of verifying some other related

queries, such as joins (Section 6.2).
(4) Finally, an extensive empirical evaluation (Section 7) of the techniques designed

in this paper using live network traffic, showing that our algorithms not only
provide strong theoretical guarantees, but also work extremely well in practice
and are very simple to implement.

2. PROBLEM FORMULATION

The queries examined in this work have the following structure:

SELECT G_1, ..., G_M, AGG(A_1), ..., AGG(A_N) FROM T
WHERE ... GROUP BY G_1, ..., G_M

Note also that GROUP BY aggregate queries have wide applications in monitoring and
statistical analysis of data streams (e.g., in networking and telephony applications).
Previous work has addressed exactly these types of queries from various aspects (see
[Zhang et al. 2005] and related work therein) other than outsourcing. For example,
a query that appears frequently in network monitoring applications is the following:

SELECT source_ip, destination_ip, SUM(packet_size) FROM IP_Trace
GROUP BY source_ip, destination_ip (*)

In the rest of the paper we will use this query as our main motivating example and
concentrate on sum and count. Other aggregates that can be converted to these
two (e.g., average, standard deviation, etc.) can be easily supported, by verifying
each component separately (i.e., verifying the sum and the count in the case of
average). We will focus on verifying this query as a continuous query; adaptations
to sliding windows are discussed in Section 4.4.

Data stream model. Following the example query (*), the “GROUP BY” predicate
partitions the streaming tuples into a set of n groups, computing one sum per
group. The data stream can be viewed as a sequence of additions (or subtractions)
over a set of items in [n] = {1, . . . , n}. Denote this data stream as S and its

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



6 ·

τ -th tuple as sτ = (i, uτ ), an update of amount uτ to the ith group. Formally,
the query answer can be expressed as a dynamic vector of non-negative integers
vτ = [vτ

1 , . . . , vτ
n] ∈ Nn, containing one component per group aggregate. Initially,

v0 is the zero vector. A new tuple sτ = (i, uτ ) updates the corresponding group i
in vτ as vτ

i = vτ−1
i + uτ . We allow uτ to be either positive or negative, but require

vτ
i ≥ 0 for all τ and i. When count queries are concerned, we have uτ = 1 for all

τ . We assume that the L1 norm of vτ is always bounded by some large m, i.e.,
at any τ , ‖vτ‖1 =

∑n
i=1 vτ

i ≤ m. Our streaming model is the same as the general
Turnstile model of [Muthukrishnan 2003], and our algorithms are designed to work
under this model. The readers are referred to two excellent papers [Muthukrishnan
2003; Babcock et al. 2002] for detailed discussions of data stream models.

Problem definition. The problem of Continuous Query Verification on data
streams (CQV) is defined as follows:

Definition 2.1. Given a data stream S, a continuous query Q and a user defined
parameter δ ∈ (0, 1

2 ), design a synopsis X of v such that for any τ , given any wτ

and using X (vτ ), we: 1. raise an alarm with probability at least 1− δ if wτ 6= vτ ;
2. shall not raise an alarm if wτ = vτ .

Here wτ , for example, could be the answer provided by the server, while X (vτ ) is
the synopsis communicated to the client from the data owner for verifying vector
vτ .

With this definition we raise an alarm with high probability if any component
(or group answer) vτ

i is inconsistent. Consider a server that is using semantic load
shedding, i.e., dropping tuples from certain groups, on bursty stream updates. In
this scenario the aggregate of a certain, small number of components will be incon-
sistent without malicious intent. We would like to design a technique that allows
a certain degree of tolerance in the number of erroneous answers contained in the
query results, rather than raising alarms indistinctly. The following definition cap-
tures the semantics of Continuous Query Verification with Tolerance for a Limited
Number of Errors (CQVγ):

Definition 2.2. For any w,v ∈ Nn, let E(w,v) = {i | wi 6= vi}. Then define
w 6=γ v iff |E(w,v)| ≥ γ and w =γ v iff |E(w,v)| < γ. Given a data stream S,
a continuous query Q, and user defined parameters γ ∈ {1, . . . , n} and δ ∈ (0, 1

2 ),
design a synopsis X of v such that, for any τ , given any wτ and using X (vτ ), we:
1. raise an alarm with probability at least 1− δ, if wτ 6=γ vτ ; 2. shall not raise an
alarm if wτ =γ vτ .

Note that CQV is the special case of CQVγ with γ = 1. Similarly, we would
like to design techniques that can support random load shedding, i.e., which can
tolerate small absolute or relative errors on any component irrespective of the total
number of inconsistent components. The following definition captures the semantics
of Continuous Query Verification with Tolerance for Small Errors (CQVη):

Definition 2.3. For any w,v ∈ Nn, let w 6≈η v iff there is some i such that
|wi − vi| > η, and w ≈η v iff |wi − vi| ≤ η for all i ∈ [n]. Given a data stream
S, a continuous query Q, and user defined parameters η and δ ∈ (0, 1

2 ), design a
synopsis X of v such that, for any τ , given any wτ and using X (vτ ), we: 1. raise
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 7

an alarm with probability at least 1− δ, if wτ 6≈η vτ ; 2. shall not raise an alarm if
wτ ≈η vτ .

Note that the definition above requires the absolute errors for each vτ
i to be no

larger than η. It is also possible to use relative errors, i.e., raise an alarm iff there
is some i such that |wτ

i − vτ
i |/|vτ

i | > η. Thus CQV is also a special case of CQVη

with η = 0.
Related definitions are also possible. For example, one may wish to bound the

sum of the absolute errors, or bound both the number and the size of the errors.
We do not discuss these variations in detail, since they are for the most part similar
to the ideas we outline subsequently.

We will work under the standard RAM model. Under this model, it is assumed
that addition, subtraction, multiplication, division, or modular arithmetic opera-
tions involving two words take one unit of time. We also assume that n/δ and m/δ
fit in a word. In the rest of the paper, we drop the superscript τ when there is no
confusion.

3. POSSIBLE SOLUTIONS

This section presents some intuitive solutions and discusses why they are not suffi-
cient for solving the CQV problem. We focus on count queries only; the discussion
extends to sum queries since count is a special case of sum. Abusing notations, we
use |v| to denote the number of non-zero entries of v.

A näıve solution. A näıve solution to our problem is for the data owner to always
maintain v exactly, using Θ(|v| log m) bits of space. When it receives a verification
request from a client, it computes a collision-resistant hash function (e.g., SHA0
or SHA1) of v and transmits the hash to the client. Although this simple solution
incurs a small network overhead, it has two major drawbacks. First, the owner’s
memory consumption is linear in |v|, which is too large when there are a large
number of groups or when there are multiple queries that need to be supported.
In fact, all streaming algorithms strive to use space substantially smaller than
linear. Second, whenever the data owner receives a verification request from some
client, unless v has not changed since the last request, the hash of v needs to be
recomputed, taking O(|v|) time. For many queries like the example query (*), |v|
could easily go up to the order of millions.

Since space complexity is the most important measure for all streaming algo-
rithms, in the rest of the paper we only consider algorithms that require sublinear
space. One might think of the following two simple solutions to reduce the high
space requirement of this näıve algorithm.

Random sampling. A first attempt is random sampling. Assuming a sampling
rate r, the client randomly chooses rn groups. If w 6= v, this method will raise an
alarm if the error in w is one of the sampled groups, which happens with probability
r. In order to satisfy the problem statement requirements we need to set r = 1− δ.
For CQVγ , if the server modifies exactly γ answers, then the probability of raising
an alarm is only roughly rγ , which is obviously too small for practical r’s and γ’s.
Thus, random sampling that guarantees δ failure probability can at most reduce
the space cost by a small fraction.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



8 ·

Sketches. Recent years have witnessed a large number of sketching techniques
(e.g. [Alon et al. 1996; Cormode and Muthukrishnan 2005; Bar-Yossef et al. 2002;
Flajolet and Martin 1985]) that are designed to summarize high-volume streaming
data with small space. It is tempting to maintain such a sketch K(v) for the
purpose of verification. When the server returns some w, we compute K(w), which
is possible since w exactly tells us what the elements have appeared in the stream
and what their frequencies are. Then we check if K(v) = K(w). Below, let us
consider the two well-known AMS sketches from the work of Alon et al. [1996] to
see whether they work, and if so, how large they are.

The F0 sketch uses a pairwise independent random hash function r and computes
the maximum number of trailing zeros in the binary form of r(i) for all tuples in
the stream. This sketch is oblivious to the number of times a tuple appears, so
will not detect any errors as long as w and v have the same set of locations on
the groups with nonzero entries. Simple extensions, such as counting the number
of occurrences of each value of r(i), blow up the space used by a logarithmic factor
but give no useful guarantee.

The F2 sketch does look like a promising approach. It computes the sum Y (v) =∑n
i=1 h(i)vi, where h : {1, . . . , n} → {−1, 1} is chosen randomly from a family

of 4-wise independent hash functions. This process is repeated over independent
choices of the hash functions to improve the accuracy. If v = w, we obviously
have Y (v) = Y (w), so the sketch does not have any false positives. If v 6= w,
then the L2 norm of ‖v − w‖22 is nonzero. From [Alon et al. 1996] we know that
(Y (v −w))2 = (Y (v) − Y (w))2 is an unbiased estimator of ‖v −w‖22. If w 6= v,
‖v − w‖22 > 0, and the sketch will raise an alarm unless Y (v) = Y (w), or this
estimator is 0. This means that we will miss the alarm only if this estimator is off
by ‖v −w‖22. By using 4 independent estimators and taking the average, we can
bound this probability from above by 1/2. Therefore, in order to guarantee a 1− δ
overall success probability, the data owner needs to maintain 4 · log 1

δ independent
copies. Since each copy requires three words (one for Y (v) and two for the 4-wise
independent hash function h), the total size of the synopsis will be 384 words for
δ = 2−32. Later we will see that our solution achieves the same security guarantee
using merely three words, which can also be maintained in O(1) time.

The analysis above shows that 4 · log 1
δ copies of the sketch are guaranteed to

work, but one may ask if they are really necessary. Below we will present a concrete
adversarial construction showing that the analysis above is almost tight and using
less copies will indeed compromise the security guarantee.

For concreteness, suppose we adopt the BCH4 scheme (c.f. [Rusu and Dobra
2007]) to construct a 4-wise independent random hash function f : [n] → {0, 1},
and then set h(i) = 2f(i) − 1. Note that

∑n
i=1 h(i)(vi − wi) = 2

∑n
i=1 f(i)(vi −

wi)−
∑n

i=1(vi−wi). Below we will construct a w 6= v such that
∑n

i=1(vi−wi) = 0,
but

∑n
i=1 f(i)(vi − wi) = 0 is likely to happen.

Without loss of generality we assume n = 2r−1. Let S0 and S1 be two random r-
bit integers. The BCH4 scheme computes f(i) as f(i) = (S0�i)⊕(S1�i3), where ⊕
is the vector dot product over the last r bits evaluated on Z2, i.e., assuming the last
r bits of x (resp. y) is x1, . . . , xr (resp. y1, . . . , yr), then x⊕ y = (

∑r
i=1 xiyi) mod 2.

We construct w as follows. For all odd i and for i = 2r−1, we set wi = vi; for even
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 9

i 6= 2r−1, we set vi−wi = −1 if i < 2r−1, and vi−wi = 1 if i > 2r−1. It is clear that∑n
i=1(vi − wi) = 0. We will show that if S0 < 2r−1, then

∑n
i=1 f(i)(vi − wi) = 0.

Consider any odd i < 2r−1, and j = i + 2r−1. We have

f(j) = (S0 � j)⊕ (S1 � j3)
= (S0 � (i + 2r−1))⊕ (S1 � (i + 2r−1)3)
= (S0 � i)⊕ (S1 � (i + 2r−1)3),

where the last equality is due to the fact that the first bit of S0 is zero. On the
other hand, for even i, since

(i + 2r−1)3 = i3 + 3 · i2 · 2r−1 + 3 · i · 22r−2 + 23r−3

≡ i3 ( mod 2r),

we have f(i) = f(j). Thus, the pair f(i)(vi − wi) and f(j)(vj − wj) cancel out,
and we have

∑n
i=1 f(i)(vi − wi) = 0. So when S0 < 2r−1, which happens with

probability 1/2, the sketch will miss this erroneous w. This means that in order to
guarantee a 1− δ overall success probability, indeed Θ(log 1

δ ) copies are necessary.
One can evaluate other possible sketching techniques. In general, they have the

common feature that in order to give a suitably small probability of failure, a
significant amount of space is required, asymptotically worse than the O(1) words
of space our solution uses.

4. PIRS: POLYNOMIAL IDENTITY RANDOM SYNOPSIS

4.1 The Basic Synopses

This section presents our basic synopsis, called Polynomial Identity Random Syn-
opses (PIRS) and denoted by X (v), for solving the CQV problem (Definition 2.1).
The synopsis, as the name suggests, is based on testing the identity of polynomi-
als by evaluating them at a randomly chosen point. The technique of verifying
polynomial identities can be traced back to the seventies [Freivalds 1979]. It has
found applications in e.g. verifying matrix multiplications and pattern matching
[Motwani and Raghavan 1995]. PIRS has two variants, named PIRS-1 and PIRS-2,
respectively.

PIRS-1. Let p be some prime such that max{m/δ, n} < p. For the space analysis,
let p ≤ 2 max{m/δ, n} — according to Bertrand’s Postulate [Nagell 1981] such a
p always exists. We will work in the field Zp, i.e., all additions, subtractions, and
multiplications are done modulo p. For the first PIRS, denoted PIRS-1, we choose
α from Zp uniformly at random and compute X (v) incrementally from X (vτ−1)
and sτ = (i, uτ ) as:

X (vτ ) = X (vτ−1)(α− i)uτ

,

where we define X (0) = X (v0) = 1. Consequently, we have

X (v) = (α− 1)v1 · (α− 2)v2 · · · · · (α− n)vn .

We assume that n, m, δ, p are publicly known to the data owner and all the clients.
Then the data owner picks α secretly and maintains X (v). Upon a verification
request, the data owner returns PIRS to the client, which consists of only two

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



10 ·

words: α and X (v). Given any w returned by the server, the client can use PIRS
to check if w = v with high probability, by computing

X (w) = (α− 1)w1 · (α− 2)w2 · · · · · (α− n)wn .

We first check if
∑n

i=1 wi > m, if so we reject w immediately. Otherwise, if
X (w) = X (v), then we declare that w = v; else we raise an alarm. It is easy to
see that we never raise a false alarm. Therefore we only need to show that we miss
a true alarm with probability at most δ.

Theorem 4.1. Given any w 6= v, PIRS raises an alarm with probability at least
1− δ.

Proof. Consider the polynomials fv(x) = (x − 1)v1(x − 2)v2 · · · (x − n)vn and
fw(x) = (x− 1)w1(x− 2)w2 · · · (x− n)wn . Since a polynomial with 1 as its leading
coefficient, i.e., the coefficient of the term with the largest degree, is completely
determined by its zeroes (with multiplicities), we have fv(x) ≡ fw(x) iff v = w. If
v 6= w, since both fv(x) and fw(x) have degree at most m, fv(x) = fw(x) happens
at no more than m values of x, due to the fundamental theorem of algebra. Since
we have p ≥ m/δ choices for α, the probability that X (v) = X (w) happens is at
most δ over the random choice of α.

We now analyze the update time to maintain X (v) as new updates are observed.
For count queries, each tuple increments one of the vi’s by one, so the update
cost is constant (one subtraction and one multiplication). For sum queries, a tuple
s = (i, u) increases vi by u, so we need to compute (α − i)u, which can be done
in O(log u) (exponentiation by repeated squaring) time. To perform a verification
with w, we need to compute (x− i)wi for each nonzero entry wi of w, which takes
O(log wi) time, so the time needed for a verification is O(

∑
log wi) = O(|w| log m

|w| ).
Since both X (v) and α are smaller than p, the space complexity of the synopsis is
O(log m

δ + log n) bits, or O(1) words.

Theorem 4.2. PIRS-1 occupies O(log m
δ + log n) bits of space, spends O(1)

(resp. O(log u)) time to process a tuple for count (resp. sum) queries, and O(|w| log m
|w| )

time to perform a verification.

Some special care is needed when u is negative (or handling deletions for count
queries), as the field Zp is not equipped with division. We need first to compute
(α− i)−1, the multiplicative inverse of (α− i) in Zp, in O(log p) time (using Euclid’s
gcd algorithm [Knuth 1997]), and then compute (α− i)−1·|u|.

PIRS-2. When n � m we can actually do slightly better in terms of the space
usage, in a scheme we refer to as PIRS-2. Now we choose the prime p between
max{m,n/δ} and 2max{m,n/δ}. For α chosen uniformly at random from Zp, we
compute

X (v) = v1α + v2α
2 + · · ·+ vnαn.

Note that this is also straightforward to maintain over a stream of updates, by
adding on uαi in response to update s = (i, u). By considering the polynomial
fv(x) = v1x + v2x

2 + · · · + vnxn, the proof outline of Theorem 4.1 holds in this
case, and the above choice of p ensures that the desired δ guarantee is maintained.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 11

But now PIRS-2 has an O(log n) update cost for both count and sum queries, since
we need to compute uαi for a tuple (i, u) in the stream. Without repeating the
details, we conclude with the following.

Theorem 4.3. PIRS-2 occupies O(log m + log n
δ ) bits of space, spends O(log n)

time to process a tuple, and O(|w| log n) time to perform a verification.

Since the space complexities of PIRS-1 and PIRS-2 are comparable and PIRS-1
has a better update time for count queries, we recommend using PIRS-1 unless n
is small compared to m and typical u.

An important property of (either variant of) PIRS is that the verification can
also be performed in one pass of w using a constant number of words of memory.
This is especially useful when |w| is large. The client will be able to receive w in a
streaming fashion, verifies it online, and either forward it to a dedicated server for
further processing, or a network storage device for offline use.

Space optimality. Below we give a lower bound showing that PIRS is space-
optimal on the bits level for almost all values of m and n.

Theorem 4.4. Any synopsis solving the CQV problem with error probability at
most δ has to keep Ω(log min{m,n}

δ ) bits.

Proof. We will take an information-theoretic approach. Assume that v and w
are both taken from a universe U , and letM be the set of all possible memory states
the synopsis might keep. Any synopsis X can be seen as a function f : U →M; and
if X is randomized, it can be seen as a function randomly chosen from a family of
such functions F = {f1, f2, . . .}, where fi is chosen with probability p(fi). Without
loss of generality, we assume that p(f1) ≥ p(f2) ≥ · · ·. Note that X needs at least
log |M| bits to record the output of the function and log |F| bits to describe the
function chosen randomly from F .

For any w 6= v ∈ U , let Fw,v = {f ∈ F | f(w) = f(v)}. For a randomized
synopsis X to solve CQV with error probability at most δ, the following must hold
for all w 6= v ∈ U : ∑

f∈Fw,v

p(f) ≤ δ. (1)

Let us focus on the first k = dδ · |F|e + 1 functions f1, . . . , fk. It is easy to see
that

∑k
i=1 p(fi) > δ. Since there are a total of |M|k possible combinations for the

outputs of these k functions, by the pigeon-hole principle, we must have

|U| ≤ |M|k (2)

so that no two w 6= v ∈ U have fi(w) = fi(v) for all i = 1, . . . , k; otherwise we
would find w,v that violate (1).

Taking log on both sides of (2), we have

log |U| ≤ (dδ · |F|e+ 1) log |M|.

Since v has n entries whose sum is at most m, by simple combinatorics, we have
|U| ≥

(
m+n

n

)
, or log |U| ≥ min{m,n}. We thus obtain the following tradeoff:

|F| · log |M| = Ω(min{m,n}/δ).
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



12 ·

If log |F| ≤ (1−ε) log(min{m,n}/δ) (i.e., |F | ≤ (min{m,n}/δ)1−ε) for any constant
ε ∈ (0, 1), then X has to use super-polylogarithmic space log |M| = Ω((min{m,n}/δ)ε);
else X has to keep log |F| ≥ log (min{m,n}/δ) random bits.

Therefore, when m ≤ n, PIRS-1 is optimal as long as log n = O(log m
δ ); when

m > n, PIRS-2 is optimal as long as log m = O(log n
δ ). Our bounds are not tight

when log m
δ = o(log n) or log n

δ = o(log m).

Practical issues. The theoretical analysis above focuses on the bit-level space
complexity. When implemented, however, both PIRS-1 and PIRS-2 use three words
(p, α, and χ(v)), and thus do not seem to have any difference. Nevertheless, there
are some technical issues to be considered in practice.

First, we shall choose p to be the maximum prime that fits in a word, so as to
minimize δ. Note that δ = m/p for PIRS-1 and δ = n/p for PIRS-2. For instance
if we use 64-bit words and m < 232, then δ is at most 2−32 for PIRS-1, which
makes any error highly unlikely (1 in four billion). If speed is a key consideration,
careful choice of p can allow faster implementation: for example, choosing p to
be a Mersenne prime (p is of the form p = 2` − 1 for some `) allows the modulo
arithmetic to be performed using simple addition and subtraction operations. Such
tricks are well known in the literature (see [Thorup 2000]), so we do not discuss
them further.

Second, since we need to extract the group id i from each incoming tuple directly,
without the use of a dictionary (which would blow up the memory cost), the size
of the group space, n, needs to be large for certain queries. For example, the query
(*) of Section 2 has a group space of n = 264 (the combination of two IP addresses),
although the actual number of nonzero entries |v| may be much less than n. In this
case, since m is typically much smaller, PIRS-1 would be the better choice.

Synchronization. In the discussion above we have assumed that the data owner
and the servers have a synchronized view of the stream in order to apply PIRS
correctly. Such a synchronization is hard to maintain without substantial overhead.
Below we present an idea to get around this issue. The observation is that the
client does not need to, and in fact unable to, verify the query results at every time
instance. Typically one would just like to verify the results every now and then.
We can use the following scheme to accomplish such a task.

When the data owner outsources the data stream, he/she attaches a timestamp
to each tuple accordingly to his/her own clock. When the client wants to verify
the query results at a certain time t, he/she will send such a request to the owner
shortly before time t. Meanwhile he/she also asks the server to provide the query
results at time t. When the server receives the first tuple with a timestamp after t,
it will then return to the client the up-to-date query results. Note that the server
never uses its own clock. The data owner, on the other hand, also returns to the
client the PIRS synopsis when his/her clock reaches t. Now the query results and
the synopsis are synchronized (unless the server cheats and returns the results for
a different t), and the client can perform the verification when both arrive.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 13

4.2 Handling Multiple Queries

The discussion so far focused on handling a single query per PIRS synopsis. Our
techniques though can be used for handling multiple queries simultaneously. Con-
sider a client who registers at the data owner a number of aggregate queries on a
single attribute (e.g., packet size) but with different partitioning on the input tu-
ples (e.g., source/destination IP and source/destination port), and wishes to verify
all of them. Let Q1, . . . ,Qk be k such queries, and let the i-th query partition
the incoming tuples into ni groups for a total of n =

∑k
i=1 ni groups. A simple

solution for this problem would be to apply the PIRS algorithm once per query,
using space linear in k. But by treating all the queries as one unified query of n
groups we can use one PIRS synopsis to verify the combined vector v. The time
cost for processing one update increases linearly in k, since each incoming tuple is
updating k components of v at once (one group for every query in the worst case):

Corollary 4.5. PIRS-1 for k queries occupies O(log m
δ + log n) bits of space,

spends O(k) (resp. O(k log u)) time to process a tuple for count (resp. sum) queries,
and O(|w| log m

|w| ) time to perform a verification.

Clearly, this is a strong result, since we can effectively verify multiple queries with
a few words of memory and communication.

4.3 Information Disclosure on Multiple Attacks

Theorem 4.1 bounds the success rate for detecting a single attack attempted by
the server. After an error has been detected, the client can choose to disclose
this information to the server. If the error is not reported, then Theorem 4.1
will continue to hold. However, errors can occur due to faulty software or bad
communication links, and may not be intentional. In this case we would like to
give a warning to the server. Since an adversary can extract knowledge from this
warning (e.g., it knows at least that the same response on the same data will always
fail), the guarantee of Theorem 4.1 does not strictly hold. In order to restore the
1− δ success rate after a reported attack, the synopsis has to be recomputed from
scratch, which is impossible in a streaming setting. Hence, it is important to
rigorously quantify the loss of guarantee after a series of warnings have been sent
out without resetting the synopsis.

Let ek = 1 if the k-th attack goes undetected and ek = 0 otherwise. Let pk be the
probability that the server succeeds in its k-th attack after k−1 failed attempts, i.e.,
pk = Pr[ek = 1 | e1 = 0, . . . , ek−1 = 0]. From Theorem 4.1 we know that p1 ≤ δ. In
what follows we upper bound pk with respect to the most powerful server, denoted
as Alice, to demonstrate the strength of PIRS. We assume that Alice: 1. Knows how
PIRS works except its random seed, α; 2. Maximally explores the knowledge that
could be gained from one failed attack; and 3. Possesses unbounded computational
power.

Next, we precisely quantify the best Alice could do to improve pk over multiple
attacks. Denote by R the space of seeds used by PIRS. For any w,v denote the
set of witnesses W(w,v) = {r ∈ R | PIRS raises an alarm on r} and the set of
non-witnesses W(w,v) = R−W(w,v). Note that |W(w,v)| ≤ δ|R| if w 6= v, and
W(w,v) = R if w = v. Suppose the seed PIRS uses is r. If Alice returns a correct

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



14 ·

answer w = v, she cannot infer anything about r. If she returns some w 6= v and
gets a warning, it is possible that Alice can determine r /∈ W(w,v). However, even
if we assume that Alice has enough computational power to compute both the sets
of witnesses and non-witnesses, it is impossible for her to infer which witness PIRS
is using as r. After k − 1 failed attacks using w1, . . . ,wk−1, the set of seeds that
Alice has ruled out is

⋃k−1
i=1 W(wi,vi), whose cardinality is at most (k − 1)δ|R|.

Thus, we have:

Lemma 4.6. pk ≤ δ
1−(k−1)δ .

Proof.

pk =
|set of non-witnesses|
|set of remaining seeds|

=
|W(wk,vk)|

|R −
⋃k−1

i=1 W(wi,vi)|
≤ δ

1− (k − 1)δ
.

Theorem 4.7. Assuming that Alice has made a total of k attacks to PIRS for
any k, the probability that none of them succeeds is at least 1− kδ.

Proof. This probability is

Pr[e1 = 0 ∧ · · · ∧ ek = 0]

=
k∏

i=1

(1− Pr[ei = 1 | e1 = 0, . . . , ei−1 = 0])

≥
k∏

i=1

(
1− δ

1− (i− 1)δ

)
=

k∏
i=1

1− iδ

1− (i− 1)δ

=
1− δ

1
· 1− 2δ

1− δ
· · · · · 1− kδ

1− (k − 1)δ
= 1− kδ.

Theorem 4.7 shows that PIRS is very resistant towards coordinated multiple
attacks even against an adversary with unlimited computational power. For a typical
value of δ = 2−32, PIRS could tolerate millions of attacks before the probability of
success becomes noticeably less than 1. Most importantly, the drop in the detection
rate to 1− kδ occurs only if the client chooses to disclose the attacks to the server.
Such disclosure is not required in many applications.

4.4 Handling Sliding Windows

In this section we discuss how to extend PIRS to support sliding windows. We will
focus on PIRS-1 for count queries only; the same arguments apply to sum queries,
as well as to PIRS-2, PIRSγ , and PIRS±γ .

An important property of PIRS-1 is that it is decomposable, i.e., for any v1,v2,X (v1+
v2) = X (v1) · X (v2). (For PIRS-2, we have X (v1 + v2) = X (v1) + X (v2)) This
property allows us to extend PIRS for periodically sliding windows using standard
techniques [Datar et al. 2002]. Using our earlier example, one such sliding window
query might be the following.

SELECT SUM(packet_size) FROM IP_Trace

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 15

GROUP BY source_ip, destination_ip
WITHIN LAST 1 hour SLIDE EVERY 5 minutes

In this case, we can build a PIRS-1 for every 5-minute period, and keep it in
memory until it expires from the sliding window. Assume that there are k such
periods in the window, and let X (v1), . . . ,X (vk) be the PIRS for these periods. In
addition, the data owner maintains the overall PIRS X (v) =

∏k
i=1 X (vi). When

a new PIRS X (vk+1) completes, we update X (v) as X (v) := X (v) · X (vk+1) ·
(X (v1))−1. The following result is immediate.

Corollary 4.8. For a periodically sliding window query with k periods, our
synopsis uses O(k(log m

δ + log n)) bits of space, spends O(1) time to process an
update, and O(|w| log m

|w| ) time to perform a verification.

If various window sizes consisting of between 1 to k periods are to be supported,
we decompose the k periods into a number of dyadic intervals. For simplicity assume
that k is a power of 2. We organize these intervals into ` = log k levels. On level 0,
there are k intervals each consisting one period; on level i, 1 ≤ i ≤ `− 1, there are
k/2i intervals, each spanning 2i periods. Note that there are a total of 2k− 1 such
dyadic intervals. We build one PIRS for each interval, so the total size of the entire
synopsis is still O(k(log m

δ +log n)). Since a PIRS at level i+1 can be computed in
constant time from two PIRS’s at level i, the amortized update cost remains O(1).
Upon a verification request with a window size of q periods, we can decompose the
window into at most O(log k) dyadic intervals, and combine those corresponding
PIRS’s together to form the correct synopsis for the query window.

Corollary 4.9. To support sliding window queries with various window sizes of
up to k periods, our synopsis uses O(k(log m

δ +log n)) bits of space, spends O(1) time
to process an update, and O(log k) time to assemble the required synopsis upon a
verification request. The client spends O(|w| log m

|w| ) time to perform a verification.

5. TOLERANCE FOR FEW ERRORS

This section presents a synopsis for solving the CQVγ problem (Definition 2.2).
Let γ be the number of components in v that are allowed to be inconsistent. First,
we present a construction that gives an exact solution that satisfies the require-
ments of CQVγ , and requires O(γ2 log 1

δ log n) bits of space. This synopsis can be
strengthened so that we can also locate and even correct these errors. But this ex-
act solution uses space quadratic in γ, so we next provide an approximate solution
which uses only O(γ log 1

δ (log m+log n)) bits. Finally, we present another synopsis
that can estimate the number of errors. This estimator uses polylogarithmic space
and does not depend on γ. All the solutions use PIRS as a black box, and there-
fore can choose either PIRS-1 or PIRS-2. We state all the results using PIRS-1
for count queries. The corresponding results for sum queries and PIRS-2 can be
obtained similarly.

5.1 PIRSγ : An Exact Solution

By using PIRS as a building block we can construct a synopsis that satisfies the
requirements of CQVγ . This synopsis, referred to as PIRSγ , consists of multiple

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



16 ·

layers, where each layer contains k = c1γ
2 buckets (c1 ≥ 1 is a constant to be

determined shortly). Each component of v is assigned to one bucket per layer, and
each bucket is represented using only its PIRS synopsis (see Figure 2). PIRSγ raises
an alarm if at least γ buckets in any layer raise an alarm. The intuition is that if
there are fewer than γ errors, no layer will raise an alarm, and if there are more
than γ errors, at least one of the layers will raise an alarm with high probability
(when the γ inconsistent components do not collide on any bucket for this layer).
By choosing the probability of failure of the individual PIRS synopsis carefully, we
can guarantee that PIRSγ achieves the requirements of Definition 2.2.

{v4, v6}{v1, v3}

{v3} {v2, v5}

{v2, v5}

{v1, v4, v6}

X22

X13X11 X12

X21 X23

Fig. 2. The PIRSγ synopsis.

Algorithm 1: PIRSγ-initialize(Prime p, Threshold γ)

c = 4.819, k = dcγ2e1

Generate x and y uniformly at random from Zp2

for ` = 1, . . . , dlog 1/δe do3

Layer L` = [X1(v) := 0, · · · ,Xk(v) := 0]4

// Xj(v) is a PIRS synopsis with δ′ = 1/cγ

Algorithm 2: PIRSγ-update(Tuple s = (i, u))

for ` = 1, . . . , dlog 1/δe do1

b`(i) = xi + y mod k + 12

Update L`.Xb`(i)(v) using s3

Algorithm 3: PIRSγ-verify(Vector w)

for ` = 1, . . . , dlog 1/δe do1

Layer M` = [X1(w) := 0, · · · ,Xk(w) := 0]2

// Xj(w) is a PIRS synopsis with δ′ = 1/cγ
for i = 1, . . . , n do3

b`(i) = xi + y mod k + 14

Update M`.Xb`(i)(w) by s = (i, wi)5

if |{j | Li.Xj(v) 6= Mi.Xj(w), 1 ≤ j ≤ k}| ≥ γ then Raise an alarm6

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 17

Concentrating on one layer only, let b be a pairwise independent hash function
which maps the range {1, . . . , n} uniformly onto {1, . . . , k}. PIRSγ assigns vi to
the b(i)-th bucket, and for each bucket computes the PIRS synopsis of the assigned
subset of vi’s with probability of failure δ′ = 1/(c2γ) (c2 ≥ 1 is a constant to be
determined shortly). According to Theorem 4.2 each of these k synopses occupies
O(log m

δ′ +log n) = O(log m+log n) bits. Given some w =γ v, since there are fewer
than γ errors, the algorithm will not raise an alarm. We can choose constants c1

and c2 such that if w 6=γ v, then the algorithm will raise an alarm with probability
at least 1/2 for this layer. In this case there are two cases when the algorithm will
fail to raise an alarm: 1. There are fewer than γ buckets that contain erroneous
components of w; 2. There are at least γ buckets containing erroneous components
but at least one of them fails due to the failure probability of PIRS. We show that
by setting constants c1, c2 = 4.819 either case occurs with probability at most 1/4.
Consider the first case. Since the vi’s are assigned to the buckets in a pairwise inde-
pendent fashion, we can guarantee that the mapping of the γ erroneous components
onto the k buckets is injective with probability

1−
(

1− 1
k

) γ(γ−1)
2

(3)

≤ 1−
(

1− 1
c1γ2

)γ2/2

≤ 1− 2−1/c1 ≤ 1
4
,

where the last inequality holds by our choice of c1. Next, consider the second case.
The probability that some of the γ buckets that are supposed to raise an alarm fail
is:

1− (1− δ′)γ = 1−
(

1− 1
c2γ

)c2γ/c2

≤ 1− 2−
2

c2 <
1
4
, (4)

which holds as long as c2 ≥ 4.819.
Therefore, using one layer PIRSγ will raise an alarm with probability at least 1/2

on some w 6=γ v, and will not raise an alarm if w =γ v. By using log 1
δ layers and

reporting an alarm if at least one of these layers raises an alarm, the probability is
boosted to 1− δ.

Theorem 5.1. For any w 6=γ v, PIRSγ raises an alarm with probability at least
1− δ. For any w =γ v, PIRSγ will not raise an alarm.

In addition to the k log 1
δ PIRS synopses, we also need to generate the hash

function b mapping updates to buckets. This can be done by picking x and y
uniformly at random from Zp, and computing b(i) = xi + y mod p mod k. This
generates a function that is pairwise-independent over the random choices of x and
y [Motwani and Raghavan 1995]. To perform a verification, we can compute for
all the layers in parallel while making one pass over w. The detailed initialization,
update and verification algorithms for PIRSγ appear in Algorithms 1, 2, and 3.
The next theorem bounds both the space and time complexity of PIRSγ .

Theorem 5.2. PIRSγ requires O(γ2 log 1
δ (log m + log n)) bits, spends O(log 1

δ )
time to process a tuple in the stream, and O(|w|(γ + log m

|w| ) log 1
δ ) time to perform

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



18 ·

a verification.

With careful analysis a smaller constant in the big-O above can be achieved in
practice. For a given γ, we choose the minimum k such that (3) is at most 1/2, and
choose 1/δ′ very large (close to the maximum allowed integer) so that (4) is almost
zero. For instance if γ = 2 and 3, then 2 log 1

δ and 6 log 1
δ words suffice, respectively.

For arbitrary γ, the storage requirement is 2γ2 log 1
δ words in the worst case.

5.2 PIRSγ∗: Locating and Correcting Errors

When there are a small number of errors (at most γ), PIRSγ will not raise an
alarm, which gives some leeway to the server. This is often necessary so that the
server can cope with large volumes of incoming data using some semantic load
shedding strategies. However, in some critical applications, if the client demands
complete correctness, PIRSγ is not sufficient, since it only tells the client if there
are < γ errors but not where they are. In this subsection, we present PIRSγ∗, a
strengthened version of PIRSγ that is able to identify which groups are affected
by errors, and even compute the correct sums for the affected groups. The idea is
to take advantage of a technique based on the binary decomposition of the group
identifier: this idea has been used in different contexts, such as finding frequent
items in data streams [Cormode and Muthukrishnan 2003; Cormode et al. 2005].
Here, we need to embed the PIRS summary into this decomposition.

Applying the binary decomposition to PIRSγ , we increase the amount of infor-
mation kept about each bucket. In addition to keeping a PIRS synopsis of all
items which fall into a given bucket, we additionally keep 2dlog ne PIRS synopses,
arranged as a two-dimensional array A of size dlog ne × 2. When an update to
group i is placed into bucket b(i), we also update the PIRS in A[j, bit(i, j)], for all
1 ≤ j ≤ dlog ne, where bit(i, j) denotes the jth bit in the binary representation of
i.

To perform a query verification, we compare the array A of PIRS synopses com-
puted for both v and w for each bucket. If all corresponding entries match, then
(with high probability) there is no erroneous components in the bucket. If, for any
j, the PIRS in both A[j, 0] and A[j, 1] do not match, then this indicates that there
is more than one erroneous component in this bucket, because a single erroneous i
cannot contaminate both A[j, 0] and A[j, 1]. Otherwise, there must be exactly one
erroneous component falling in this bucket. Our above analysis indicates that this
will indeed be the case for all erroneous components with high probability, provid-
ing that there are at most γ such components. In this case, for each j, exactly one
of A[j, 0] and A[j, 1] will not match. If it is A[j, 1], this indicates that the jth bit
of the identifier i of the erroneous group is 1; else it is 0. Using all dlog ne pairs of
PIRS, the identifier can therefore be recovered exactly.

Now the client can locate all the erroneous components wi in the result w returned
by the server. Moreover, we have enough information to recover each true vi for
each wrong result. Consider each bucket at a certain layer ` that contains exactly
one error. Suppose the error is vi. From the process above we can identify each
such bucket and also the index i. Note that the data owner will return Xb`(i)(v) =∏

j(α− j)vj . Since only vi is unknown in this equation, we can in principle find vi

by solving the equation, although this requires computing the discrete logarithm,
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 19

for which efficient algorithms are not known. Nevertheless, if we plug in PIRS-2,
the equation becomes as Xb`(i)(v) =

∑
j vjα

j . Thus, vi can be found efficiently
using field subtractions and divisions.

In PIRSγ∗, we replace each PIRS in PIRSγ with an array of O(log n) PIRS, so
the space and time increases by an O(log n) factor.

Theorem 5.3. PIRSγ∗ requires O(γ2 log 1
δ log n(log m+log n)) bits, spends O(log 1

δ log n)
time to process a tuple in the stream, and O(|w|(γ+log m

|w| ) log 1
δ log n) time to per-

form a verification. For any w 6=γ v, PIRSγ∗ raises an alarm with probability 1−δ;
for any w =γ v, PIRSγ∗ will not raise an alarm but correctly identify and recover
all the errors in w with probability 1− δ.

Note that when the number of errors, say λ, is no more than γ, PIRSγ∗ can recover
all the errors with high probability, which is a very strong guarantee. When λ > γ,
there are too many errors to expect a complete recovery of all the query results
(like any error-correcting code cannot recover the data when there are too many
errors). Nevertheless, we show that PIRSγ∗ can still recover a good proportion of
the results. For this analysis, we use precision and recall to measure the performance
of the synopsis. Precision refers to the probability that an identified error is truly
an actual error. Since PIRS does not have false positives, precision is always 1.
Recall, on the other hand, is the percentage of the actual errors that have been
recovered, or equivalently, the probability that any one error has been captured by
the synopsis. From the previous discussions, we know that for any given error E , if it
falls into a bucket by itself in any of the layers, then PIRSγ∗ can correctly recover it.
For a particular layer, because the errors are distributed into the buckets pairwise-
independently and there are c1γ

2 buckets, the probability that the bucket containing
E is the same as the bucket for any of the other λ − 1 errors is at most λ/(c1γ

2)
following the union bound. Since the log 1

δ layers are mutually independent, the

probability that this collision happens in all layers is
(

λ
c1γ2

)log 1
δ

= δΩ(log(γ2/λ)).

Theorem 5.4. When there are λ > γ errors, PIRSγ∗ raises an alarm with prob-
ability 1− δ and recovers the errors with a recall of 1− δΩ(log(γ2/λ)).

5.3 PIRS±γ : An Approximate Solution

The exact solution works well when only a small number of errors can be tolerated.
In applications where γ is large, the quadratic space requirement is prohibitive.
If we relax the definition of CQVγ to allow raising alarms when approximately γ
errors have been observed, we can design more space-efficient algorithms. This
approximation is often acceptable since when γ is large, users probably will not
concern too much if the number of errors detected deviates from γ by a small
amount. This section presents such an approximate solution, denoted with PIRS±γ ,
that guarantees the following:

Theorem 5.5. PIRS±γ : 1. raises no alarm with probability at least 1−δ on any
w =γ− v where γ− = (1 − c

ln γ )γ; and 2. raises an alarm with probability at least
1−δ on any w 6=γ+ v where γ+ = (1+ c

ln γ )γ, for any constant c > − ln ln 2 ≈ 0.367.

Note that this is a very sharp approximation; the multiplicative approximation
ratio 1± c

ln γ is close to 1 for large γ.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



20 ·

PIRS±γ also contains multiple layers of buckets, where each bucket is assigned
a subset of the components of v and summarized using PIRS (Figure 2). Focusing
on one layer only, our goal is, for any w =γ− v, to not to raise an alarm with
probability at least 1/2 + ε for some constant ε ∈ (0, 1/2), and on any w 6=γ+ v
to raise an alarm with probability at least 1/2 + ε. By using O(log 1

δ ) independent
layers and reporting the majority of the results, the probabilistic guarantee will be
boosted to 1− δ using Chernoff bounds [Motwani and Raghavan 1995].

Let k be the number of buckets per layer. The components of v are distributed
into the k buckets in a γ+-wise independent fashion, and for each bucket the PIRS
summary of those components is computed using δ′ = 1/γ2. Given some w, let this
layer raise an alarm only if all the k buckets report alarms. The intuition is that
if w contains more than γ+ erroneous members, then the probability that every
bucket gets at least one such component is high; and if w contains fewer than γ−

erroneous members, then the probability that there exists some bucket that is not
assigned any erroneous members is also high.

The crucial factor that determines whether a layer could possibly raise an alarm
is the distribution of erroneous components into buckets. The event that all buckets
raise alarms is only possible if each bucket contains at least one inconsistent com-
ponent. Let us consider all the inconsistent components in w in some order, say
w1, w2, . . ., and think of each of them as a collector that randomly picks a bucket
to “collect”. Assume for now that we have enough inconsistent elements, and let
the random variable Y denote the number of inconsistent components required to
collect all the buckets, i.e., Y is the smallest i such that w1, . . . , wi have collected all
the buckets. Then the problem becomes an instantiation of the coupon collector’s
problem [Motwani and Raghavan 1995] (viewing buckets as coupons and erroneous
components as trials). With k buckets, it is known that E(Y ) = k ln k + O(k),
therefore we set k such that γ = dk ln ke. It is easy to see that k = O(γ/ ln γ),
hence the desired storage requirement.

We need the following sharp bounds showing that Y cannot deviate too much
from its mean.

Lemma 5.6 [Motwani and Raghavan 1995]. For any constant c′,

Pr[Y ≤ k(ln k − c′)] ≤ e−ec′

+ o(1),

Pr[Y ≥ k(ln k + c′)] ≤ 1− e−e−c′

+ o(1),

where o(1) depends on k.

Notice that ln γ ≤ 2 ln k for any k ≥ 2, so Lemma 5.6 also implies that for any real
constant c:

Pr[Y ≤ γ − c
γ

ln γ
= γ−] ≤ e−ec

+ o(1), (5)

Pr[Y ≥ γ + c
γ

ln γ
= γ+] ≤ 1− e−e−c

+ o(1). (6)

Now, consider the following two cases. If w =γ− v, then the probability that
these fewer than γ− independent erroneous components cover all buckets is bounded
by (5), which is also the upper bound for the probability that the layer raises an
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 21

alarm. Thus, for any c ≥ 0, the probability of raising a false alarm is (for large
enough γ) at most

e−ec

≤ 1/e.

If w 6=γ+ v, then considering only γ+ of the inconsistent components which are
independently distributed to the buckets, there are two cases in which a true alarm is
not raised: 1. These γ+ components do not cover all buckets; and 2. All the buckets
are covered but at least one of them fails to report an alarm. The probability that
the first case occurs is bounded by (6); while the probability that the second case
happens is at most 1 − (1 − δ′)k. By the union bound, the total probability that
we produce a false negative is at most

1− e−e−c

+ o(1) + 1− (1− δ′)k ≤ 2− ee−c

− 2−
2
γ + o(1).

For γ large enough, there exists a constant ε > 0 such that this probability is at
most 1/2− ε for any c > − ln ln 2.

To summarize, if c > − ln ln 2 ≈ 0.367, then both the false positive and false
negative probabilities are at most 1/2− ε for some constant ε at one layer with k =
O(γ/ log γ) buckets. Below we analyze the error probabilities of using ` = O(log 1

δ )
independent layers.

To drive down the error probabilities for both false positives and false negatives
to δ, we use ` = O(log 1

δ ) layers and report the simple majority of their “votes”.
We quantify this probability for false negatives; the other case is symmetric.

Each layer can be viewed as a coin flip that raises a true alarm with probability
at least 1/2 + ε. Let the random variable Z denote the number of layers that raise
alarms. This process is a sequence of independent Bernoulli trials, hence Z follows
the binomial distribution. For ` independent layers, the expectation of Z is at least
µ = (1/2 + ε)`. By the Chernoff bound, the probability that a majority of layers
raise alarms is

Pr[Z <
1
2
`] = Pr[Z <

(
1− 2ε

1 + 2ε

)
µ] < e−

µ
2 ( 2ε

1+2ε )2 . (7)

Therefore, we need to ensure that e−
µ
2 ( 2ε

1+2ε )2 ≤ δ, which can be satisfied by taking
` = d 1+2ε

ε2 ln 1
δ e.

Finally, we need to generate a γ+-wise independent random hash function to
map groups to buckets. Using standard techniques we can generate such a function
using O(γ log n) truly random bits. Specifically, the technique of [Wegman and
Carter 1981] for constructing t-universal hash families can be used. Let p be some
prime between n and 2n, and α0, . . . , αγ−1 be γ random numbers chosen uniformly
and independently from Zp. Then we set

b(i) =
t−1∑
j=0

αji
j mod k + 1.

This function is guaranteed to be drawn from a t-wise independent family of func-
tions (so that, over the random choice of the function, the probability of t items
colliding under the hash function is 1/kt−1). For an incoming tuple s = (i, u), we
compute b(i) using the αj ’s in O(γ) time (using Horner’s rule), and then perform

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



22 ·

the update to the corresponding PIRS. This requires the storage of O(γ+) = O(γ)
truly random numbers per layer. We have thus obtained the desired results:

Theorem 5.7. PIRS±γ uses O(γ log 1
δ (log m+log n)) bits of space, spends O(γ log 1

δ )
time to process an update and O(|w|(γ + log m

|w| ) log 1
δ ) time to perform a verifica-

tion.

5.4 FM-PIRS: Estimating the Number of Errors

From the previous section we see that by allowing two-sided errors, we can reduce
the size of the synopsis from quadratic in γ to linear. However, for large γ, even
a linear size is too large. Further, the update cost of PIRS±γ is also linear in γ,
making these synopses very expensive to maintain when γ is large. In this section,
we present an improved solution for the CQVγ problem, whose size and update
cost only depend on the degree of approximation, but not γ, thus allowing it to
scale well with γ. Unlike PIRSγ and PIRS±γ , FM-PIRS tries to directly estimate
the number of errors in the result provided by the server, and then compare with
γ, so it is a stronger version in some sense. As a result, FM-PIRS can also support
a wider range of values of γ, which can be given only at verification time. For small
values of γ, the bounds and guarantees of PIRSγ and PIRS±γ are preferred, but
for larger values of γ, the cost of FM-PIRS is preferable.

As the name suggest, FM-PIRS is a combination of PIRS and the FM sketch [Fla-
jolet and Martin 1985], which is used to estimate the number of distinct elements
in a stream.

The FM sketch. We first briefly describe the FM sketch. Suppose that the
universe is [n] = {1, . . . , n}. We pick a random hash function h : [n] → [2L − 1]
such that any h(i) is uniformly distributed over [2L − 1], where L = O(log n). For
each element i in the stream, we compute h(i) and denote by r(i) the number of
trailing zeros in the binary representation of h(i). The FM sketch simply computes
R = max{r(i), for all i in the stream} and then outputs 1/ϕ·2R, where ϕ ≈ 0.7735.
This simple estimate has a large variance. To improve accuracy, the universe is
divided into k partitions using another random uniform hash function, and an Rj

is computed for each partition. Finally the output is k/ϕ · 2(R1+···+Rk)/k. It was
shown in [Flajolet and Martin 1985] that this estimator has a bias bounded by
1 + 0.31/k and a standard error of 0.78/

√
k.

The FM-PIRS synopsis. We will focus on the basic FM sketch with k = 1;
generalization to larger k will be straightforward. Our idea is to treat each “wrong”
group i such that vi 6= wi as a distinct element in the universe [n], and then
compute R = max{r(i), for all wrong groups i}. However, the data owner has no
idea whether i is a wrong group, so we cannot compute r(i) directly. Instead, we
create L PIRS’s X1, . . . ,XL with δ′ = δ/L. For any i, group i is put into Xj if
j ≤ r(i). Thus X1 gets half of the groups, X2 gets a quarter of the groups, etc. We
can thus compute R as follows.

Lemma 5.8. When all of X1, . . . ,XL correctly captures the errors in them, which
happens with probability at least 1−δ′·L = 1−δ, we have R = arg maxj{Xj raises an alarm}.

Proof. First, for any j, if Xj raises an alarm, there must be a wrong group i that
is distributed into Xj , i.e., such that r(i) ≥ j. So R ≥ r(i) ≥ arg maxj{Xj raises an alarm}.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 23

On the other hand, consider the group i with the maximum r(i). Xr(i) must raise
an alarm, so R = r(i) ≤ arg maxj{Xj raises an alarm}.

Example: Consider the following example with n = 8, and we use L = 3 PIRS’s
X1,X2,X3. Suppose the random hash function h maps each index in [n] as fol-
lows (in binary): h(1) = 10, h(2) = 10, h(3) = 1, h(4) = 111, h(5) = 101, h(6) =
0, h(7) = 100. Then we will allocate v1, v2, v6, v7 to X1, v6, v7 to X2, and v6 to
X3. If v2, v3, v5, and v7 later become erroneous, they will cause X1 and X2 to raise
alarms (with high probability). Now we have R = 2 and the estimated number of
errors is 1/ϕ · 2R = 5.17.

It is straightforward to generalize the basic scheme to k partitions. Thus we have
the following.

Theorem 5.9. Fix any k, FM-PIRS has a size of O(k log n(log m+log n)) bits,
processes a tuple in expected time O(1), and computes an estimate of the number of
errors in the result in expected time O(|w| log m

|w| ). With probability at least 1− δ,

the estimate has a bias bounded by 1 + 0.31/k and a standard error of 0.78/
√

k.

Proof. Since each partition keeps L = O(log n) PIRS’s, the overall size of FM-
PIRS is O(k log n(log m + log n)) bits. For an incoming tuple, only one partition
gets affected, but 0 to L PIRS’s in this partition might get updated. Since the
hash function h is uniform, the expected number of PIRS’s updated is O(1). Upon
receiving the FM-PIRS synopses of v and a result w from the server, we need to
spend O(log wi) expected time per non-zero entry of w to compute the FM-PIRS
synopses of w. So the expected time needed for an estimation is O(

∑
i log wi) =

O(|w| log m
|w| ). Finally, the bias and standard error of the estimate follow from

[Flajolet and Martin 1985].

An analytical comparison of PIRS±γ and FM-PIRS. Since FM-PIRS com-
putes an estimate of the number of errors in w, we can use FM-PIRS to do the
same task PIRS±γ is designed for. For a fair comparison, we need to set k such that
FM-PIRS provides the same probabilistic guarantee that PIRS±γ does. Since the
standard error of FM-PIRS is O(1/

√
k) and PIRS±γ allows a deviation of O(1/ ln γ).

By setting k = O(log2 γ), we can guarantee that FM-PIRS captures both false pos-
itives and false negatives with good probabilities (e.g., greater than 3/4). Finally,
by using O(log 1

δ ) independent copies of FM-PIRS and take the median, the success
probability can be boosted to 1− δ, the same as what PIRS±γ guarantees. Finally,
we only need L = O(log γ) since we are not interested in estimating the number of
errors when there are over, say 2γ of them.

Under this configuration, FM-PIRS uses O(log3 γ(log m + log n) log 1
δ ) bits of

space. Thus asymptotically (as γ grows) FM-PIRS is better than PIRS±γ . How-
ever, for small γ PIRS±γ should be better in terms of size, while FM-PIRS becomes
better when γ exceeds some large threshold. Nevertheless, FM-PIRS should always
be much better in terms of update time. We further compare these two synopses
empirically in Section 7.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



24 ·

6. HARDNESS RESULTS

6.1 Tolerance for Small Errors

In this subsection we prove the hardness of solving CQVη (Definition 2.3) using sub-
linear space, even if approximations are allowed. This problem can be interpreted
as detecting if there is any component of w that has an absolute error exceeding
a specified threshold η. We show that this problem requires at least Ω(n) bits of
space.

Theorem 6.1. Let η and δ ∈ (0, 1/2) be user specified parameters. Given a data
stream S, let X be any synopsis built on v that given w: 1. raises an alarm with
probability at most δ if w ≈η v; and 2. raises an alarm with probability at least
1− δ if w 6≈(2−ε)η v for any ε > 0. Then X has to use Ω(n) bits.

Proof. We will reduce from the problem of approximating the infinite frequency
moment, defined as follows. Let A = (a1, a2, . . .) be a sequence of elements from
the set {1, . . . n}. The infinite frequency moment, denoted by F∞, is the number
of occurrences of the most frequent element. Alon et al. [1996] showed that any
randomized algorithm that makes one pass over A and computes F∞ with a relative
error of at most 1/3 and a success probability greater than 1 − δ for any δ < 1/2,
has to use Ω(n) memory bits. In particular, they proved that even if each element
appears at most twice, it requires Ω(n) bits in order to decide if F∞ is 1 or 2 with
probability at least 1− δ.

Let X by a synopsis solving the problem stated in Theorem 6.1. We will show
how to use X to compute the infinite frequency moment for any A in which each
element appears at most twice. We will make one pass over A. For any element
i that we encounter, we update X with the tuple s = (i, η). In the end, we verify
w = 0 using X (v). If X asserts that w ≈η v, we return F∞ = 1; if X asserts
that w 6≈(2−ε)η v, we return F∞ = 2. It is not difficult to see that we have thus
computed the correct F∞ with probability at least 1− δ.

If we allow relative errors instead of absolute errors, the problem is still difficult,
as can be shown by setting s = (i, n) for element i, and doing the verification with
w = (n/(1 + η), · · · , n/(1 + η)) in the proof above.

Given the hardness of solving CQVη, we are interested in seeking alternative
methods that might be able to give guarantees under different notions of approxi-
mation using less space than the exact solution. Here we briefly discuss one such
method.

The CM sketch. The CM sketch [Cormode and Muthukrishnan 2005] uses
O( 1

ε log 1
δ′ ) words of space and provides an approximate answer ṽi for any i ∈ [n],

that satisfies vi−3ε||v||1 ≤ ṽi ≤ vi+3ε||v||1 with probability 1−δ′, for any ε ∈ (0, 1).
However, this does not make it applicable for solving CQVη as: 1. The estimation
depends on ||v||1 and it only works well for skewed distributions. Even in that
case, in practice the estimation works well only for the large vi’s; and 2. ||v||1 is
not known in advance. However, if we can estimate an upper bound on ||v||1, say
||v||1 ≤ Γ, then by setting ε = 1

3
η
Γ and δ′ = δ/n, we can use the CM sketch to get

approximate answers ṽi such that |ṽi − vi| ≤ η holds for all i simultaneously with
probability at least 1− δ. Now, given some w, we generate an alarm iff there exists
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 25

some i such that |wi− ṽi| ≥ 2η. This way, we give out a false alarm with probability
at most δ if w ≈η v, and generate an alarm with probability 1− δ if w 6≈3η v. For
other w’s, no guarantee can be made. In particular, some false negatives may be
observed for some range of w (see Figure 3). This solution uses O( 1

ε log n
δ log W )

bits of space and O(log n
δ ) time per update (where W is the largest expressible

integer in one word of the RAM model). The space dependence on 1
ε is expensive,

as 1
ε = Γ

η in this case and the upper bound on ||v||1 in practice might be large.

viη

false negatives

η

ṽi

Fig. 3. False negatives for the CM sketch approach.

6.2 Lower Bounds for Other Queries

Our discussion of methods to verify queries has focused so far on GROUP BY, SUM
and GROUP BY, COUNT queries. In this subsection, we study other natural query
forms, and show that in contrast to the results so far, giving strong guarantees on
answering these queries either exactly or approximately is not possible with a small
synopsis. Our approach is to encode problems from communication complexity,
which require a large amount of communication to solve, and argue that this entails
a large synopsis in our setting.

GROUP BY, MIN and GROUP BY, MAX. Consider a query of the same form as that
described in Section 2, except that the SQL aggregate over the n groups is MIN. Now
the semantics in the streaming setting are that vmin

i should be minτ{uτ |sτ = (i, uτ )}
and vmax

i should be maxτ{uτ |sτ = (i, uτ )}.

Lemma 6.2. Any synopsis that guarantees with probability at least 1− δ whether
∀i.vmin

i = wmin
i requires space at least n.

Proof. We show a reduction to the communication complexity problem of In-
dex. In this problem there are two players: Alice, who holds a bit string x of n
bits in length, and Bob, who holds an index 1 ≤ y ≤ n. Alice must send a single
message to Bob, who must then compute the yth bit of string x. It has been shown
that to solve this problem, even allowing a small probability δ of failure, requires
Alice’s message to be Ω(n) bits in size [Kushilevitz and Nisan 1997].

We now show that if a summary with the desired properties did exist, then it
could be used to solve the Index problem. Alice creates a summary for her bit
string x, by setting the value of group i to 0 if the ith bit of x is zero, and 1
otherwise. She then sends the summary χ(x) to Bob. Bob then records χ(x), and
updates the summary with an item in group y with weight 0. He then uses the
original summary and the updated summary to test whether there is a difference
between them. If there is, then he concludes that bit y of x is a 1; else, it is a 0.
Therefore, if the summary succeeds with constant probability (say, at least 2/3),
then it allows the Index problem to be solved, and so must require Ω(n) bits.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



26 ·

Lemma 6.3. Any synopsis which guarantees with probability at least 1−δ whether
∀i.vmax

i = wmax
i requires space at least n.

Proof. The same approach works as in the previous lemma. The only difference
is that Bob inserts an item in group y with weight 1, and tests whether there has
been any change in the summarized data. Again, this argument allows the Index
problem to be solved, implying the lower bound on the size of the summary.

We comment that the same approach can show the hardness of the AVERAGE
aggregate. But, as remarked in Section 2, we can compute AVERAGE indirectly, by
verifying the SUM and COUNT separately. Only if we ask the third party to directly
compute AVERAGE without returning the SUM and COUNT does this hardness result
hold.

Join queries. We now consider a join query, and show that this too is hard. In
particular, consider a query of the form

SELECT L.a, SUM(L.c) FROM L, R
WHERE L.a = R.b
GROUP BY L.a

This can be represented as a product of two vectors, say x and y, and the desired
output is vi = x[i] · y[i]. However, again by communication complexity arguments,
we can show that such a query requires a summary whose size is linear in the number
of groups. In this case, we analyze the effect of the “communication” happening
mid-way through processing the input data stream.

Lemma 6.4. Any synopsis which allows the query verification of the above query
with probability at least 1− δ requires space Ω(n).

Proof. The Disjointness problem in Communication Complexity is when Al-
ice holds a binary vector x of length n, Bob holds a vector string y of length n, and
their goal is to determine whether x · y > 0. It is known that any communication
protocol to solve this problem must exchange Ω(n) bits between Alice and Bob,
even allowing a small constant probability of failure.

To show the hardness of verifying the join query, we show that Alice and Bob
could use a summary to solve Disjointness. Alice takes her string x, and builds
a summary χ(x) by inserting every 1 bit as an item from L into the summary with
weight 1. She then sends the summary to Bob, who follows the same procedure,
inserting every 1 bit from y as an item from R into the summary with weight 1. Bob
then builds a new summary of a join between two empty relations, and compares
the two summaries. If the join of L and R is empty, then the two summaries should
report that the results are identical; however, if there is anything in the join of L
and R, then it should report that they are different. But this corresponds exactly
to the cases x · y = 0 and x · y > 0. Therefore, any summary to solve this problem
must have size Ω(n).

This shows that even if we wish to verify a simplified version of the query, to
determine whether the join is empty or not, it still requires a summary whose size
is linear in the number of groups.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 27

7. EMPIRICAL EVALUATION

In this section we evaluate the performance of the proposed synopses over two real
data streams. The experimental study demonstrates that our synopses: 1. use very
small space; 2. support fast updates; 3. have very high accuracy; 4. support multiple
queries; and 5. are easy to implement.

7.1 Experimental Setup

Our synopses are implemented using GNU C++ and the GNU GMP extension
which provides arbitrary precision arithmetic, useful for operating on numbers with
an arbitrary number of bits. This allows us to support long group id’s. For instance,
the example query (*) has group id’s with 64 bits, and the prime p needs to be chosen
such that we need integer arithmetic over a field with 65 bits. For queries involving
shorter id’s, one can alternatively use native 32-bit or 64-bit integers, which will
make the implementation even simpler and more efficient. The experiments were
run on an Intel Pentium 2.8GHz CPU with 512KB L2 cache and 512MB of main
memory.

We used two real data sets for our experiments. The IP traces (IPs) data stream
is collected over the AT&T backbone network; each tuple is a TCP/IP packet
header. Here, we are interested in analyzing the source IP, destination IP, and
packet size header fields. The data set consists of a segment of one day traffic
and has 100 million packets. The World Cup (WC) data stream [Arlitt and Jin ]
consists of web server logs for the 1998 Soccer World Cup. Each record in the log
contains several attributes such as a timestamp, a client id, a requested object id, a
response size, etc. We used the request streams of days 46 and 47 that have about
100 millions records. Without loss of generality, unless otherwise stated, we perform
the following default queries: For the IPs data set, we perform the example query
(*) where the aggregate is either COUNT or SUM. For the WC data set, we perform
COUNT or SUM queries on the packet size group-by client id/object id. Each client
id, object id, IP address, the response size, or the packet size is a 32-bit integer.
Thus, the group id is 64-bit long (by concatenating the two grouping attributes),
meaning a potential group space of n = 264. The number of nonzero groups is of
course far lower than n: WC has a total of 50 million nonzero groups and IPs has
7 million nonzero groups.

7.2 PIRS

We first present the experimental results on the basic PIRS synopsis. A very
conservative upper bound for the total response size and packet size is m = 1010 �
n ≈ 2 × 1019 for all cases in our experiments. So from our analysis in Section 4,
PIRS-1 is the better choice, and is thus used in our experiments. We pre-computed
p as the smallest prime above 264 (which is 18446744073709551629) and used the
same p throughout this section. Thus, each word (storing p, α, or X (v)) occupies
9 bytes.

Synopsis size. As our analysis has pointed out, PIRS uses only 3 words, or 27
bytes for our queries. This is in contrast to the näıve solution of keeping the exact
value for each nonzero group, which would require 600MB and 84MB for the WC
and IPs data sets, respectively. Also keep in mind that this is the space usage

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



28 ·

for a single query; much more space will be needed if multiple queries are to be
supported. The small size of PIRS is particularly important because it implies
not only a small memory requirement of the data owner, but also a much reduced
network bandwidth consumption since the synopsis needs to be sent from the data
owner to the client upon each verification request. Even if the data owner has a
large memory to store all the groups and chooses to send a hash (e.g. SHA0 or
SHA1) of the query result, which would solve the bandwidth problem, but still it
faces a serious computation problem: Upon each request for verification from some
client, all the groups need to be scanned once to compute the hash.

A related question is, if the query result size is so large (600MB and 84MB in our
experiments), how does the server transmit the results to the client? Here we would
like to remind the reader that queries posed on a data stream are mostly continuous,
long-standing queries. Each client could register his/her queries with a server with
potentially different quality-of-service agreements, requiring the server to send over
the updated results, say, every 10 minutes or every time the results have changed
by a certain amount. This way, the server only needs to send the deltas of the query
results compared with the last transmission, reducing the bandwidth consumption
significantly. To do so, however, the server needs to maintain a registration record
on a per-client basis remembering the client’s query specification, quality-of-service
agreement, and all the changes to the query results since the last transmission.
But all these components are necessary in any infrastructure that aims to provide
continuous query services on data streams. Our techniques enable the migration
of all these costly maintenance from the data owner to the server, which is exactly
the goal of data outsourcing.

Update cost. PIRS has a low update cost which is crucial to any streaming
application. The average per-tuple update cost is shown in Table I for count and
sum queries on both WC and IPs. The update time for the two count queries stays
the same regardless of the data set, since an update always incurs one addition, one
multiplication, and one modulo. The update cost for sum queries is higher, since
we need O(log u) time for exponentiation. The cost on WC is slightly larger as its
average u is larger than that of IPs. Nevertheless, PIRS is still extremely fast in
all cases, and is able to process more than 105 tuples (106 tuples for count queries)
per second.

WC IPs

Count 0.98 µs 0.98 µs
Sum 8.01 µs 6.69 µs

Table I. Average update time per tuple.

Detection accuracy. As guaranteed by the theoretical analysis, the probability
of failure of PIRS-1 is δ ≤ m/p, which is at most 0.5 × 10−9. This is practically
zero. Note that our estimate of m is very conservative; the actual δ is much smaller.
We generated 100, 000 random attacks and, not surprisingly, PIRS identified all of
them.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 29

5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

varying γ, layer=10

up
da

et
 ti

m
e 

pe
r 

tu
pl

e 
(µ

s)

 

 

PIRSγ

PIRS±γ

PIRSγ∗

FM−PIRS

(a) Update cost per tuple vs. γ.

5 10 15 20
10

0

10
1

10
2

10
3

10
4

varying layer, γ=10

up
da

et
 ti

m
e 

pe
r 

tu
pl

e 
(µ

s)

 

 

PIRSγ

PIRS±γ

PIRSγ∗

FM−PIRS

(b) Update cost per tuple vs. layer.

Fig. 4. PIRSγ , PIRS±γ , PIRSγ∗, FM-PIRS: update cost.

7.3 PIRSγ , PIRSγ∗, PIRS±γ , and FM-PIRS

Next, we present the experimental results on the four extended synopses: PIRSγ ,
PIRS±γ , PIRSγ∗, and FM-PIRS. These synopses are designed to check if the query
results contain less than a specified number of errors. Specifically, PIRSγ raises an
alarm when there are γ or more errors; PIRSγ∗ is a strengthened version of PIRSγ

that in addition to the alarm, also identifies and corrects the errors; PIRS±γ allows
some approximation in terms of γ but has a smaller size; and FM-PIRS can be used
to estimate the number of errors regardless of γ. Note that the näıve solution of
keeping the exact v and sending its hash to the client does not even work for the
problems that these PIRS variants are designed to solve. To be able to do so, the
näıve algorithm has to transmit the entire v to the client, which is certainly not a
viable solution. In the following we only present the experimental results on the
IPs data set with the count query. Similar patterns have been observed on the WC
data set.

Recall that all these synopses exhibit a similar structure with multiple layers
and each layer consists of multiple buckets, but how the buckets are configured
is different for different synopses. In PIRSγ , each layer contains O(γ2) buckets,
whereas PIRS±γ has only O(γ) buckets. For PIRSγ∗, the number of buckets in
each layer is the same as in PIRSγ , but each bucket in addition contains a two
dimensional array of PIRS for identifying the id’s of the erroneous groups. For
FM-PIRS, the number of buckets (say b) is determined by the potential number
(|E(w,v)|) of erroneous groups, i.e., we need to ensure that 2b > |E(w,v)|. For
our purpose, setting b = 16 could handle up to 216 faulty groups.

Update cost. In this set of experiments we study the update costs of PIRSγ ,
PIRS±γ , PIRSγ∗ and FM-PIRS. Except PIRS±γ , all other synopses have an update
cost that is independent of γ, as illustrated in Figure 4(a). PIRSγ maps an incoming
tuple to a bucket in each layer based on its group id and updates that bucket
accordingly. The mapping is performed via a pairwise independent hash function,
hence the whole process does not depend on γ. PIRSγ∗ follows a similar step, with
an additional overhead of updating the associated array of PIRS for the selected
bucket. FM-PIRS, as confirmed in the experiments, is very cheap to maintain.
Remember that it randomly selects a single layer and then updates one bucket in

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



30 ·

5 10 15 20 25 30

10
0

10
1

10
2

10
3

10
4

varying γ, layer=10

m
em

or
y 

us
ag

e 
(K

B
)

 

 

PIRSγ

PIRS±γ

PIRSγ∗

FM−PIRS

(a) Memory usage vs. γ.

5 10 15 20

10
0

10
1

10
2

10
3

10
4

varying layer, γ=10

m
em

or
y 

us
ag

e 
(K

B
)

 

 

PIRSγ

PIRS±γ

PIRSγ∗

FM−PIRS

(b) Memory usage vs. layer.

Fig. 5. PIRSγ , PIRS±γ , PIRSγ∗, FM-PIRS: memory usage.

this layer following a geometric distribution. Hence, it is independent of both γ
and `, the number of layers (see also Figure 4(b)). Finally, PIRS±γ updates one
bucket in each layer. However, the selection of the bucket is achieved with the help
of a γ-wise independent hash function, which has an update cost linear in γ. All
these trends have been demonstrated in Figure 4(a). As far as the number of layers
` is concerned, all synopses except the FM-PIRS have a linear update cost w.r.t `
as shown in Figure 4(b). Nevertheless, all synopses are able to process each tuple
in the order of ms. FM-PIRS in fact only takes approximately 1 µs to finish an
update. Therefore, these synopses could process from thousands to hundreds of
thousands tuples per second.

Synopsis size. Figure 5 shows the space usage of these synopses. Not surprisingly,
PIRSγ∗ is the largest one as it offers the most powerful functionality of actually
identifying and correcting the faulty groups. Following our discussion on configuring
various synopses, it is not hard to explain the trends exhibited from Figure 5(a)
and 5(b). Essentially, FM-PIRS is independent of γ. PIRSγ has a quadratic space
dependence on γ and PIRS±γ ’s space cost is linear to γ. As for the number of
layers, all synopses follow a linear relationship with `. Finally, it is interesting to
observe from Figure 5(a) that FM-PIRS has larger space usage than PIRS±γ when
γ is small, but is preferred for large γ’s.

Space/time trade-offs: exploiting locality. In many practical situations, data
streams tend to exhibit a large degree of locality [Li et al. 2006]. Simply put,
updates to v tend to cluster to the same components. In this case, it is possible
to exploit space/time trade-offs. We allocate a small buffer used for storing exact
aggregate results for a small number of groups. With data locality, a large portion
of updates will hit the buffer. Whenever the buffer is full and a new group needs to
be inserted, a victim is evicted from the buffer using the simple least recently used
(LRU) policy. Only then does the evicted group update PIRS, using the overall
aggregate value computed within the buffer. We flush the buffer to update PIRS
whenever a verification is required. Since we are aggregating the incoming updates
in the buffer and updating the synopsis in bulk, we incur a smaller amortized update
processing cost per tuple. A simple LRU buffer has been added to the system and
its effect on the update costs for the four synopses is reported in Figure 6 with
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 31

0 100 200 300 400 500
0

50

100

150

200

250

300

buffer size (KB), layer=10, γ=10

up
da

et
 ti

m
e 

pe
r 

tu
pl

e 
(µ

s)

 

 

PIRSγ

PIRS±γ

PIRSγ∗

FM−PIRS

Fig. 6. Space-time tradeoff.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

number of faulty groups, layer=15, γ=10

ra
tio

 o
f r

ai
si

ng
 a

la
rm

s

 

 

PIRSγ

PIRS±γ

(a) γ = 10, layer=15.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

number of faulty groups, PIRSγ: γ=10

ra
tio

 o
f r

ai
si

ng
 a

la
rm

s

 

 

layer=4
layer=5
layer=6

(b) PIRSγ , γ = 10.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

number of faulty groups, PIRS±γ: γ=10

ra
tio

 o
f r

ai
si

ng
 a

la
rm

s

 

 

layer=10
layer=15
layer=20

(c) PIRS±γ , γ = 10.

Fig. 7. Detection with tolerance for limited number of errors.

` = 10 and γ = 10. All synopses demonstrate very similar trends. As the figure
indicates, a very small buffer (roughly 500 KB) that fits into the cache is able to
reduce the update cost by an order of magnitude.

Detection accuracy. We first concentrate on PIRSγ and PIRS±γ for the simple
purpose of raising alarms when the number of faulty groups exceeds the threshold
γ. We observed that both synopses can achieve excellent detection accuracy as
the theoretical analysis suggests. All results reported here are the average ratios
obtained from 100, 000 rounds of attacks. Since the detection mechanism of the
synopses does not depend on the data characteristics, both data sets give similar
results, so again we show plots for the IPs data only. Figure 7(a) shows the ratios
of raising alarms versus the number of actual inconsistent groups, with γ = 10 and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



32 ·

0 200 400 600 800
0.75

0.8

0.85

0.9

0.95

1

number of faulty groups, PIRSγ∗ : layer=10, γ=20

re
ca

ll,
 p

re
ci

si
on

 

 

recall
precision

(a) Recall and Precision of PIRSγ∗.

5 10 15 20 25 30 35

450

475

500

525

550

575

number of layers, buckets=16

es
tim

at
ed

 n
um

be
r 

of
 fa

ul
ty

 g
ro

up
s

 

 

FM−PIRS: number of faulty groups=500

(b) Accuracy of FM-PIRS.

Fig. 8. Effectiveness of PIRSγ∗ and FM-PIRS.

10 layers. As expected, PIRSγ has no false positives and almost no false negatives;
only very few false negatives are observed with 10 and 11 actual inconsistent groups.
On the other hand, PIRS±γ has a transition region around γ and it does have false
positives. Nevertheless, the transition region is sharp and once the actual number
of inconsistent groups is slightly away from γ, both false positives and negatives
reduce to zero. We have also studied the impact of the number of layers on the
detection accuracy. Our theoretical analysis gives provable bounds. For example
with PIRSγ the probability of missing an alarm is at most 1/2` (for ` layers). In
practice, the probability is expected to be even smaller. We repeated the same
experiments using different layers, and Figure 7(b) reports the result for PIRSγ .
With fewer layers (4–6) it still achieves excellent detection accuracy. Only when the
number of inconsistent groups is close to γ, a small drop in the detection ratio is
observed. Figure 7(c) reports the same experiment for PIRS±γ with layers from 10
to 20. Having a smaller number of layers enlarges the transition region and larger
number of layers sharpens it. Outside this region, 100% detection ratio is always
guaranteed. Other experiments performed over different values of γ led to similar
behavior.

There are two limitations with the above synopses. They could not identify the
exact set of erroneous groups in the presence of errors. Also, their update cost and
space usage both depend on (at least linear to) γ, which prevents the application
of them for large γ values. To that end, we have designed PIRSγ∗ and FM-PIRS
respectively. To measure the effectiveness of identifying the faulty groups, we utilize
two common metrics, namely, recall and precision. Recall refers to the percentage of
truly faulty groups being successfully retrieved. Precision refers to the percentage
of true faulty groups identified among the reported ones. Following our analysis in
Section 5.2, the precision of PIRSγ∗ is always 1. The recall of PIRSγ∗ depends on
the probability that the same faulty group has a collision with at least one other
faulty group in every layer. Due to the independence among layers, this event
happens with really low chances in practice. Hence, we expect a high recall rate
as well. This has been confirmed in Figure 8(a) where PIRSγ∗ is configured to
raise alarms when there are more than 20 faulty groups. Even with such a small γ
value, PIRSγ∗ can perfectly identify the IDs of faulty groups for up to 500. Only
after then, the recall starts to drop. This generally agrees with our analysis in
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 33

# queries 5 10 15 20

update time (µs) 5.0 9.9 14.9 19.8
memory usage (bytes) 27 27 27 27

Table II. Update time and memory usage of PIRS for multiple queries.

Theorem 5.4.
To alleviate the relatively high update cost of PIRSγ∗, FM-PIRS could be used

to estimate the number of faulty groups from the server’s answer. Previous ex-
periments have already shown convincing evidence that this is an extremely cheap
structure to maintain and it is independent of γ. We tested it with 500 number
of faulty groups and report the average result over 100 runs in Figure 8(b). The
error bars represent the standard deviation of these runs. Clearly, increasing the
number of layers improves the accuracy of the estimation (reducing the standard
deviation and closing the gap between the average value and the true value). With
a small number of layers, say ` = 20, FM-PIRS delivers a satisfactory estimation
of the number of faulty groups.

7.4 Multiple Queries

Our final set of experiments investigates the effect of multiple, simultaneous queries.
Without loss of generality, we simply execute the same query a number of times.
Note that the same grouping attributes with different query ids are considered as
different groups. We tested with 5, 10, 15, and 20 queries in the experiments. Note
that on the WC data set, the exact solution would use 600MB for each query, hence
12GB if there are 20 queries. Following the analysis in Section 4.4, our synopses
naturally support multiple queries and still have the same memory usage as if there
were only one query. Nevertheless, the update costs of all synopses increase linearly
with the number of queries. In Table II we report the update time and memory
usage for PIRS; similar trends were observed for PIRSγ , PIRS±γ , PIRSγ∗ and
FM-PIRS.

In terms of verification power, all of the synopses are exactly the same as pre-
viously reported, by treating these multiple queries as one single combined query.
More precisely, PIRS will raise an alarm as long as one of the queries contains an
error, the γ in PIRSγ and PIRS±γ will become the threshold on the total number of
errors in all the queried combined, and FM-PIRS will estimate the total number of
errors. Note that such a combination does increase the verification granularity, as
we do not distinguish errors from different queries. If a finer granularity is desired,
a separate synopsis is still required for each query. The only exception is PIRSγ∗.
Since it finds and corrects all the errors (provided that there are no more than γ
errors in total), we can of course also identify the queries that are wrong, by using
only one PIRSγ∗ on the combined query.

8. RELATED WORK

Authentication in outsourced data. There is considerable work on authenti-
cating query execution in an outsourced database setting [Hacigumus et al. 2002;
Devanbu et al. 2003; Martel et al. 2004; Bertino et al. 2004; Pang and Tan 2004;

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



34 ·

Pang et al. 2005; Li et al. 2006]. Here, the client queries the publisher’s data
through a third party, namely the server, and the goal is to design efficient solu-
tions to enable the client to authenticate the query results. Most of these works
rely on cryptographic primitives such as digital signatures and Merkle hash trees to
design efficient index structures built by the data publisher to enable authentication
of query results. All these techniques apply only to offline settings and do not scale
to online, one-pass streaming scenarios. More recently, there have been a few works
dealing with query authentication on streaming data [Li et al. 2007; Papadopoulos
et al. 2007]. However, these papers only consider selection and aggregation queries,
and cannot support GROUP BY queries that we study in this paper. Moreover, all the
techniques in these papers are still basically variants and combinations of digital
signatures and Merkle hash trees, so technique-wise, they are very similar to the
previous works that deal with non-streaming settings.

Security guarantees. PIRS deploys completely different techniques than all pre-
vious works on query authentication, and there are also some subtle yet interesting
differences in the security guarantees provided by PIRS and the authentication
techniques. Since all the authentication techniques rely on cryptographic primi-
tives, the security is thus built upon the computational infeasibility for the attacker
(the third-party server in our case) to break the system. Theoretically speaking, if
the server has infinite computing power, she/he can always in principle successfully
return some wrong query results to the client without being detected. The security
guarantee of PIRS, on the other hand, is probabilistic impossibility. More precisely,
if the server returns any wrong query answer, the probability that the client catches
the attack is almost 1, say 1− 10−9 in the setting of our experiments, i.e., it is vir-
tually impossible for the server to attack successfully. Furthermore, the guarantee
holds even assuming that the server possesses infinite computing power. So theo-
retically speaking, the security guarantee provided by PIRS is in this sense stronger
than that provided by the authentication techniques. This is also the reason why
we choose the term “verification” instead of “authentication”, so as to differentiate
PIRS from the authentication techniques.

Comparison with sketches. PIRS is a way of summarizing the underlying data
streams. In that respect our work is related to the line of work on sketching tech-
niques [Alon et al. 1996; Manku and Motwani 2002; Babcock et al. 2003; Cormode
and Muthukrishnan 2005; Flajolet and Martin 1985; Ganguly et al. 2004]. Indeed,
many of the verification problems we study have a similar formulation to problems
studied in the streaming world. However, the precise specification is different, and
so (as discussed in Section 3), applying sketching techniques to our problems yields
results which either do not give comparable guarantees, or else require asymp-
totically and practically more space in order to give similar guarantees for the
verification problem.

Cryptographic approaches. Another possible way for solving the CQV problem
is to incremental cryptography [Bellare et al. 1994]. The idea is that by viewing v
as a message, the client could compute an authenticated signature σ(v) and any
alteration to v will be detected. Now the challenge is how to perform incremental
updates using σ(v) alone, without storing v, i.e., in the present setting the mes-
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 35

sage v is constantly updated. Cryptography researchers have devoted considerable
effort for this problem, resulting in techniques such as incremental signature and
incremental MAC [Bellare et al. 1994; Bellare et al. 1995]. However, these tech-
niques only support updates for block edit operations such as insert and delete, i.e.,
by viewing v as blocks of bits, they are able to compute σ(v′) using σ(v) alone if
v′ is obtained by inserting a new block (or deleting an old block) into (from) v.
However, in our setting the update operation is arithmetic: vτ

i = vτ−1
i + uτ , which

cannot be handled by simply deleting the old entry followed by inserting the new
one, since we only have uτ as input, and no access to either vτ−1

i or vτ
i . Hence, such

cryptographic approaches are inapplicable. Moreover, the techniques we propose
are much more lightweight and simple to implement than complex schemes based
on cryptographic primitives.

Fingerprinting techniques. Verifying the identity of polynomials is a finger-
printing technique [Motwani and Raghavan 1995]. Fingerprinting is a method for
efficient, probabilistic checking of equality between two elements x, y from a large
universe U . Instead of testing the equality using x, y deterministically with com-
plexity at least log |U |, a probabilistic approach is to pick a random mapping from
U to a significantly smaller universe V such that with high probability x, y are
identical if and only if their images in V are identical. The images of x and y
are their fingerprints and their equality can be verified in log |V | time. Fingerprint
techniques generally employ algebraic techniques combined with randomization.
Classical examples include verifying univariate polynomial multiplication [Freivalds
1979], multivariate polynomial identities [Schwartz 1980], and verifying equality of
strings [Motwani and Raghavan 1995]. We refer readers for an excellent discussion
on these problems to [Motwani and Raghavan 1995]. Although the general tech-
nique of polynomial identity verification is known, our use of it in the setting of
query verification on data streams appears to be new.

Other related works. Other security issues for secure computation/querying
over streaming and sensor data have also started to receive attention recently. For
example, orthogonal to our problem, [Chan et al. 2006; Garofalakis et al. 2007] have
studied the problem of secure in-network aggregation for aggregation queries in
sensor networks. Both works utilize cryptographic tools, such as digital signatures,
as building blocks for their algorithms and assume the man-in-middle attack model.
Hence, they are fundamentally different from our work. Nevertheless, they attest
to the fact that secure computation of aggregation queries has a profound impact
in many real applications.

Comparison with prior publication. This article is based on an earlier confer-
ence paper [Anonymous ]. In addition to providing the full analysis of the techniques
proposed, this article also makes several new nontrivial contributions extending
both the scope and techniques of [Anonymous ]. (1) In [Anonymous ] the model
consists of only two parties: the server and the client. In this article we extend all
our techniques to the more popular three-party outsourcing model that has been
adopted by most existing works in this area. (2) We provide a rigorous analysis on
the worst-case compromise of the security guarantee when PIRS is under multiple
attacks. (3) We strengthen PIRSγ to a new synopsis, PIRSγ∗, which not only tells

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



36 ·

the client whether the number of errors is below some threshold, but also where they
are and what their true values should be. This is crucial in many critical applica-
tions, in which the clients demand complete correctness of the query results. With
PIRSγ∗, we can identify and correct these errors (provided that there are no more
than γ errors), giving the client a complete and untainted query result. At the same
time, we also allow some slack for the server so that it can employ load shedding
strategies to cope with high load. (4) We design a new synopsis, PIRS-FM, that
is able to estimate the number of errors in the query result. The space and time
complexities of PIRS-FM are both much better than PIRSγ and PIRS±γ . Our
experimental results show that PIRS-FM significantly improves upon PIRSγ and
PIRS±γ in terms of space and time, while maintaining roughly the same security
guarantee. (5) We also have considered many related queries such as joins, and
given lower bounds showing that verifying their correctness with small synopses is
provably difficult.

9. CONCLUSION

The present work studies the problem of verifying “GROUP BY, COUNT” and “GROUP
BY, SUM” queries on outsourced data streams. All the existing works on query
authentication of outsourced databases are based on cryptographic primitives, and
it seems inherently difficult to apply these techniques to such group-by queries. Our
solutions, on the other hand, are based on verifying the identity of polynomials,
hence fundamentally different from the existing query authentication framework.
It is imaginable that our techniques can be applied to other query verification
problems on outsourced databases that cannot be solved using existing techniques.

REFERENCES

Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J., Lindner,
W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and Zdonik, S. 2005. The
Design of the Borealis Stream Processing Engine. In Proc. of Biennial Conference on Innovative
Data Systems Research.

Alon, N., Matias, Y., and Szegedy, M. 1996. The space complexity of approximating the
frequency moments. In Proc. ACM Symposium on Theory of Computation. 20–29.

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., and
Widom, J. 2003. STREAM: The Stanford stream data manager. IEEE Data Engineering
Bulletin 26, 1, 19–26.

Arasu, A. and Manku, G. S. 2004. Approximate counts and quantiles over sliding windows. In
Proc. ACM Symposium on Principles of Database Systems. 286–296.

Arlitt, M. and Jin, T. http:// www.acm.org/ sigcomm/ITA/. ITA, 1998 World Cup Web Site
Access Logs.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. 2002. Models and issues in
data stream systems. In Proc. ACM Symposium on Principles of Database Systems.

Babcock, B., Datar, M., and Motwani, R. 2004. Load shedding for aggregation queries over
data streams. In Proc. IEEE International Conference on Data Engineering. 350–361.

Babcock, B., M.Datar, Motwani, R., and O’Callaghan, L. 2003. Maintaining variance and
k-medians over data stream windows. In Proc. ACM Symposium on Principles of Database
Systems. 234–243.

Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, D., and Trevisan, L. 2002. Counting
distinct elements in a data stream. In Proc. of the International Workshop on Randomization
and Approximation Techniques (RANDOM). 1–10.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 37

Bellare, M., Goldreich, O., and Goldwasser, S. 1994. Incremental cryptography: The case
of hashing and signing. In Proc. of Advances in Cryptology (CRYPTO). 216–233.

Bellare, M., Guerin, R., and Rogaway, P. 1995. Xor macs: New methods for message authen-
tication using finite pseudorandom functions. In Proc. of Advances in Cryptology (CRYPTO).
15–28.

Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., and Gupta, A. 2004. Selective
and authentic third-party distribution of XML documents. IEEE Transactions on Knowledge
and Data Engineering 16, 10, 1263–1278.

Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., and Zdonik, S. 2003. Monitoring streams—a new class of data
management applications. In Proc. International Conference on Very Large Databases. 215–
226.

Chan, H., Perrig, A., and Song, D. 2006. Secure hierarchical in-network aggregation in sensor
networks. In Proc. of the ACM Conference on Computer and Communications Security. 278–
287.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,
Hong, W., Krishnamurthy, S., Madden, D., Raman, V., Reiss, F., and Shah, M. A. 2003.
TelegraphCQ: continuous dataflow processing for an uncertain world. In Proc. of Biennial
Conference on Innovative Data Systems Research.

Cormode, G. and Muthukrishnan, S. 2003. What’s hot and what’s not: tracking most frequent
items dynamically. In Proc. ACM Symposium on Principles of Database Systems. 296–306.

Cormode, G. and Muthukrishnan, S. 2005. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms 55, 1, 58–75.

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. 2005. Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In Proc. International Conference
on Very Large Databases. 25–36.

Cranor, C., Johnson, T., Spatscheck, O., and Shkapenyuk, V. 2003. Gigascope: A stream
database for internet databases. In Proc. ACM SIGMOD International Conference on Man-
agement of Data. 647–651.

Datar, M., Gionis, A., Indyk, P., and Motwani, R. 2002. Maintaining stream statistics over
sliding windows. In Proc. ACM-SIAM Symposium on Discrete Algorithms. 635–644.

Devanbu, P., Gertz, M., Martel, C., and Stubblebine, S. 2003. Authentic data publication
over the internet. Journal of Computer Security 11, 3, 291–314.

Flajolet, P. and Martin, G. N. 1985. Probabilistic counting algorithms for data base applica-
tions. Journal of Computer and System Sciences 31, 2, 182–209.

Freivalds, R. 1979. Fast probabilistic algorithms. In Proc. International Symposium on Math-
ematical Foundations of Computer Science. 57–69.

Ganguly, S., Garofalakis, M., and Rastogi, R. 2004. Tracking set-expression cardinalities
over continuous update streams. The VLDB Journal 13, 4, 354–369.

Garofalakis, M., Hellerstein, J. M., and Maniatis, P. 2007. Proof sketches: Verifiable in-
network aggregation. In Proc. IEEE International Conference on Data Engineering.

Gilbert, A. C., Kotidis, Y., Muthukrishnan, S., and Strauss, M. 2002. How to summarize
the universe: Dynamic maintenance of quantiles. In Proc. International Conference on Very
Large Databases. 454–465.

Greenwald, M. and Khanna, S. 2001. Space-efficient online computation of quantile summaries.
In Proc. ACM SIGMOD International Conference on Management of Data. 58–66.

Hacigumus, H., Iyer, B. R., and Mehrotra, S. 2002. Providing database as a service. In Proc.
IEEE International Conference on Data Engineering. 29–40.

Hammad, M. A., Mokbel, M. F., Ali, M. H., Aref, W. G., Catlin, A. C., Elmagarmid,
A. K., Eltabakh, M., Elfeky, M. G., Ghanem, T. M., Gwadera, R., Ilyas, I. F., Marzouk,
M., and Xiong, X. 2004. Nile: A query processing engine for data streams. In Proc. IEEE
International Conference on Data Engineering. 851.

Indyk, P. and Woodruff, D. 2005. Optimal approximations of the frequency moments of data
streams. In Proc. ACM Symposium on Theory of Computation.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



38 ·

Karp, R. M., Shenker, S., and Papadimitriou, C. H. 2003. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems 28, 1, 51–55.

Knuth, D. E. 1997. The Art of Computer Programming. Addison-Wesley.

Kushilevitz, E. and Nisan, N. 1997. Communication Complexity. Cambridge University Press.

Li, F., Chang, Q., Kollios, G., and Bestavros, A. 2006. Characterizing and exploiting ref-
erence locality in data stream applications. In Proc. IEEE International Conference on Data
Engineering.

Li, F., Hadjieleftheriou, M., Kollios, G., and Reyzin, L. 2006. Dynamic authenticated index
structures for outsourced databases. In Proc. ACM SIGMOD International Conference on
Management of Data. 121–132.

Li, F., Yi, K., Hadjieleftheriou, M., and Kollios, G. 2007. Proof-infused streams: Enabling
authentication of sliding window queries on streams. In Proc. International Conference on
Very Large Databases.

Manku, G. S. and Motwani, R. 2002. Approximate Frequency Counts over Data Streams. In
Proc. International Conference on Very Large Databases. 346–357.

Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., and Stubblebine, S. 2004.
A general model for authenticated data structures. Algorithmica 39, 1, 21–41.

Metwally, A., Agrawal, D., and Abbadi, A. E. 2006. An integrated efficient solution for
computing frequent and top-k elements in data streams. ACM Transactions on Database
Systems 31, 3, 1095–1133.

Motwani, R. and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press.

Muthukrishnan, S. 2003. Data streams: algorithms and applications.

Nagell, T. 1981. Introduction to Number Theory, Second ed. Chelsea Publishing Company.

Pang, H., Jain, A., Ramamritham, K., and Tan, K.-L. 2005. Verifying completeness of rela-
tional query results in data publishing. In Proc. ACM SIGMOD International Conference on
Management of Data. 407–418.

Pang, H. and Tan, K.-L. 2004. Authenticating query results in edge computing. In Proc. IEEE
International Conference on Data Engineering. 560–571.

Papadopoulos, S., Yang, Y., and Papadias, D. 2007. CADS: Continuous authentication on
data streams. In Proc. International Conference on Very Large Databases. 135–146.

Rusu, F. and Dobra, A. 2007. Pseudo-random number generation for sketch-based estimations.
ACM Transactions on Database Systems 32, 2.

Schwartz, J. T. 1980. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM 27, 4, 701–717.

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M., and Stonebraker, M. 2003. Load
shedding in a data stream manager. In Proc. International Conference on Very Large
Databases. 309–320.

Tatbul, N. and Zdonik, S. 2006. Window-aware load shedding for aggregation queries over data
streams. In Proc. International Conference on Very Large Databases. 799–810.

Thorup, M. 2000. Even strongly universal hashing is pretty fast. In Proc. ACM-SIAM Symposium
on Discrete Algorithms.

Wegman, M. N. and Carter, J. L. 1981. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22, 3.

Zhang, R., Koudas, N., Ooi, B. C., and Srivastava, D. 2005. Multiple aggregations over data
streams. In Proc. ACM SIGMOD International Conference on Management of Data. 299–310.

Zhao, Q., Xu, J., and Liu, Z. 2006. Design of a novel statistics counter architecture with optimal
space and time efficiency. In ACM SIGMETRICS. 323–334.

Anonymous. Omitted due to double-blind reviewing.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.


