
Compact Summaries over Large Datasets

Graham Cormode
University of Warwick

G.Cormode@Warwick.ac.uk

ABSTRACT
A fundamental challenge in processing the massive quantities of
information generated by modern applications is in extracting suit-
able representations of the data that can be stored, manipulated and
interrogated on a single machine. A promising approach is in the
design and analysis of compact summaries: data structures which
capture key features of the data, and which can be created effec-
tively over distributed data sets. Popular summary structures in-
clude the count distinct algorithms, which compactly approximate
item set cardinalities, and sketches which allow vector norms and
products to be estimated. These are very attractive, since they can
be computed in parallel and combined to yield a single, compact
summary of the data. This tutorial introduces the concepts and ex-
amples of compact summaries.

Categories and Subject Descriptors
E.1 [Data]: Data Structures

General Terms
Algorithms, Theory

Keywords
summaries, sketches, approximate counting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2757-2/15/05 ...$15.00.
http://dx.doi.org/10.1145/2745754.2745781.

1. INTRODUCTION
Business and scientific communities all agree that “big data”

holds both tremendous promise, and substantial challenges [8]. There
is much potential for extracting useful intelligence and actionable
information from the large quantities of data generated and cap-
tured by modern information processing systems. Big data chal-
lenges involve not only the sheer volume of the data, but the fact
that it can represent a complex variety of entities and interactions
between them, and new observations that arrive, often across mul-
tiple locations, at high velocity. Examples of applications that gen-
erate big data include:

Physical Data from sensor deployments and scientific experiments—
astronomy data from modern telescopes generates terabytes of data
each night, while the data collected from a single particle physics
experiment is too big to store;

Medical Data, as we can now sequence whole genomes economi-
cally, generating data sets of the order of 200TB in one example [7];

Activity Data, as human activity data is captured and stored in ever
greater quantities and detail: interactions from online social net-
works, locations from GPS, Internet activity etc.

Across all of these disparate settings, certain common themes
emerge. The data in question is large, and growing. The appli-
cations seek to extract patterns, trends or descriptions of the data.
Ensuring the scalability of systems, and the timeliness and veracity
of the analysis is vital in many of these applications. In order to
realize the promise of these sources of data, we need new methods
that can handle them effectively.

While such sources of big data are becoming increasingly com-
mon, the resources to process them (chiefly, processor speed, fast
memory and slower disk) are growing at a slower pace. The conse-
quence of this trend is that there is an urgent need for more effort
directed towards capturing and processing data in many critical ap-
plications. Careful planning and scalable architectures are needed
to fulfill the requirements of analysis and information extraction on
big data. In response to these needs, new computational paradigms
are being adopted to deal with the challenge of big data. Large
scale distributed computation is a central piece: the scope of the
computation can exceed what is feasible on a single machine, and
so clusters of machines work together in parallel. On top of these
architectures, parallel algorithms are designed which can take the
complex task and break it into independent pieces suitable for dis-
tribution over multiple machines.

A central challenge within any such system is how to compute
and represent complex features of big data in a way that can be pro-
cessed by many single machines in parallel. A vital component is
to be able to build and manipulate a compact summary of a large
amount of data. This powerful notion of a small summary, in all

http://dx.doi.org/10.1145/2745754.2745781

its many and varied forms, is the subject of this tutorial. The idea
of a summary is a natural and familiar one. It should represent
something large and complex in a compact fashion. Inevitably, a
summary must dispense with some of the detail and nuance of the
object which it is summarizing. However, it should also preserve
some key features of the object in a very accurate fashion. Effec-
tive compact summaries are often approximate in their answers to
queries and randomized.

The theory of compact summaries can be traced back over four
decades. A first example is the Morris Approximate Counter, which
approximately counts quantities up to magnitude n using O(log log n)
bits, rather than the dlogne bits to count exactly [15]. Subse-
quently, there has been much interest in summaries in the context of
streaming algorithms: these are algorithms that process data in the
form of a stream of updates, and whose associated data structures
can be seen as a compact summary [16]. More recently, the more
general notion of mergeable summaries has arisen: summaries that
can be computed on different portions of a dataset in isolation, then
subsequently combined to form a summary of the union of the in-
puts [1]. It turns out that a large number streaming algorithms entail
a mergeable summary, hence making this class of objects a large
and interesting one.

There has been much effort expended on summary techniques
over recent years, leading to the invention of powerful and effec-
tive summaries which have found applications in Internet Service
Providers [5], Search Engines [17, 12], and beyond.

2. TUTORIAL OUTLINE
This short tutorial will introduce the notion of summaries, and

outline ideas behind some of the most prominent examples, which
may include:

• Counts, approximate counts [15], and approximate frequen-
cies [14]

• Count distinct, set cardinality, and set operations [9, 10]

• Random projections with low-independence vectors to give
sketch data structures [3, 4, 6]

• Summaries for medians and order statistics [11, 13]

• Linear summaries for graphs: connectivity, bipartiteness and
sparsification [2]

• Summaries for matrix and linear algebra operations [18]

• Problems for which no compact summary can exist, via com-
munication complexity lower bounds.

Acknowledgments
This work supported in part by a Royal Society Wolfson Research
Merit Award, funding from the Yahoo Research Faculty Research
and Engagement Program, and European Research Council (ERC)
Consolidator Grant ERC-CoG-2014-647557.

3. REFERENCES
[1] Pankaj Agarwal, Graham Cormode, Zengfeng Huang, Jeff

Phillips, Zheiwei Wei, and Ke Yi. Mergeable summaries. In
ACM Principles of Database Systems, 2012.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor.
Analyzing graph structure via linear measurements. In
ACM-SIAM Symposium on Discrete Algorithms, 2012.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In ACM
Symposium on Theory of Computing, pages 20–29, 1996.

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Procedings of the
International Colloquium on Automata, Languages and
Programming (ICALP), 2002.

[5] G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson,
O. Spatscheck, and D. Srivastava. Holistic UDAFs at
streaming speeds. In ACM SIGMOD International
Conference on Management of Data, pages 35–46, 2004.

[6] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The Count-Min sketch and its applications.
Journal of Algorithms, 55(1):58–75, 2005.

[7] Kathleen Cravedi, Tera Randall, and Larry Thompson. 1000
genomes project data available on Amazon Cloud. NIH
News, March 2012.

[8] Kenneth Cukier. Data, data everywhere. The Economist,
February 2010.

[9] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for database applications. Journal of Computer
and System Sciences, 31:182–209, 1985.

[10] Philippe Flajolet, É. Fusy, Olivier Gandouet, and Frederic
Meunier. Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In International Conference
on Analysis of Algorithms, 2007.

[11] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In ACM SIGMOD
International Conference on Management of Data, 2001.

[12] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis.
Dremel: Interactive analysis of web-scale datasets. In
International Conference on Very Large Data Bases, pages
330–339, 2010.

[13] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
computation of frequent and top-k elements in data streams.
In International Conference on Database Theory, 2005.

[14] J. Misra and D. Gries. Finding repeated elements. Science of
Computer Programming, 2:143–152, 1982.

[15] Robert Morris. Counting large numbers of events in small
registers. Communications of the ACM, 21(10):840–842,
1977.

[16] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers, 2005.

[17] Rob Pike, Sean Dorward, Robert Griesemer, and Sean
Quinlan. Interpreting the data: Parallel analysis with sawzall.
Dynamic Grids and Worldwide Computing, 13(4):277–298,
2005.

[18] David Woodruff. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2):1–157, 2014.

	Introduction
	Tutorial Outline
	References

