
Gems of PODS: Applications of Sketching and Pathways to Impact
Graham Cormode

g.cormode@warwick.ac.uk
Meta & University of Warwick

Coventry, UK

ABSTRACT
Data summaries (a.k.a., sketches) are compact data structures that
can be updated flexibly and efficiently to capture certain properties
of a data set. Well-known examples include set summaries (Bloom
Filters) and cardinality estimators (e.g., Hyperloglog), amongst
others. PODS and SIGMOD have been home to many papers on
sketching, including several best paper recipients. Sketch algo-
rithms have emerged from the theoretical research community, but
have found wide impact in practice. This paper describes some
of the impacts that sketches have had, from online advertising to
privacy-preserving data analysis. It will consider the range of differ-
ent strategies that researchers can follow to encourage the adoption
of their work, and what has and has not worked for sketches as a
case study.

CCS CONCEPTS
• Theory of computation → Streaming models; Sketching
and sampling.

KEYWORDS
sketching; data sketches; summarization

ACM Reference Format:
Graham Cormode. 2023. Gems of PODS: Applications of Sketching and
Pathways to Impact. In Proceedings of the 42nd ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS ’23), June 18–23,
2023, Seattle, WA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3584372.3589937

1 INTRODUCTION
The concept of a “sketch” of data is that of a compact data sum-
mary that is designed to capture certain properties of the input
data. The sketch comprises a description of the data structure, and
algorithms that can update the structure and query it. This can
include routines to update the sketch with a single new piece of
information (capturing a streaming model of data processing), or
to merge together two sketches (capturing a distributed model of
data processing).

The queries that are supported by a sketch are usually to effi-
ciently approximate some function of the input data. For instance,
some sketches report the cardinality of the set of input items
that they have processed, leading to the count distinct (a.k.a. 𝐹0)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODS ’23, June 18–23, 2023, Seattle, WA, USA.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0127-6/23/06.
https://doi.org/10.1145/3584372.3589937

sketches. Sketches for dimensionality reduction approximate the
Euclidean norm (or other norm) of their input, interpreted as a high-
dimensional vector. Other sketches represent frequency histograms
in order to answer heavy hitter or quantile queries. Sketches can
also capture properties of more complex data types, such as graphs,
and matrices.

Sketching algorithms make use of a number of basic algorithmic
concepts. Deterministic sketches track counts and other simple sta-
tistics of the input data in order to give exact or approximate results.
But the majority of sketches use randomization to provide a sum-
mary that obtains an accurate approximation with high probability.
Key techniques include random sampling, or other probabilistic
ways to select information about the set of input items; and hash-
ing, to select items from the input in a random but repeatable way.
These are combined with tracking counts or setting bits in a par-
ticular fashion. From this collection of methods, a wide variety of
techniques can flourish. For instance, both the Bloom filter and
Hyperloglog summary use hashing and bit vectors to represent the
input, but for quite different purposes (tracking approximate set
membership, and approximate set cardinality, respectively).

The purpose of this article, accompanying a talk at the PODS 2023
conference, is not to give a complete overview of sketches or their
workings. Rather, the aim is to give a flavour of the development of
sketch algorithms over the decades, and to cast some light on how
they have found applications in practice.

We proceed as follows: in Section 2 we present a history of the
development of sketches over the years. We complement this in
Section 3 by looking at the corresponding timeline of how sketches
have beenmotivated for different problems. In Section 4we consider
some of the ways that have been tried to encourage the adoption
of sketches in practice, and offer concluding remarks in Section 5.

2 A (VERY) BRIEF HISTORY OF SKETCHES

The Pre-history of sketching (1970s and 1980s). The earliest
instance of something that we could reasonably refer to as a sketch
algorithm would be (uniform) random sampling, which far predates
computers. Computer science and random sampling intersected
with the notion of ‘reservoir sampling’: drawing a uniform ran-
dom sample from a large stream of examples, whose cardinality
is initially unknown. The simple incremental reservoir sampling
algorithm is attributed variously to Fan et al. and to Waterman1.
Generalizations of sampling have led to a wide range of statistical
techniques, going far beyond what can be discussed in this short
note.

Apart from sampling, the earliest sketches started to emerge
along with the wider availability of programmable computers, in
the second half of the 20th century, from the 1970s onwards. Perhaps

1See the discussion in https://markkm.com/blog/reservoir-sampling/

https://orcid.org/0000-0002-0698-0922
https://doi.org/10.1145/3584372.3589937
https://doi.org/10.1145/3584372.3589937
https://doi.org/10.1145/3584372.3589937
https://markkm.com/blog/reservoir-sampling/


PODS ’23, June 18–23, 2023, Seattle, WA, USA. Graham Cormode

the first example of something we can think of as a sketch is due
to Bloom in 1970, in the form of the famed ‘Bloom Filter’ [9] (if
any reader can point to earlier examples, I would be delighted
to hear of them). The Bloom filter compactly represents a set as
a collection of bits, and is easy to update with new entries, and
to query for (approximate) set membership. It does however take
space that is linear in the size of the set that is represented (albeit
with a small constant of proportionality). For an asymptotic space
reduction, we have to look to examples such as the Morris counter
(1977) [37], which allows us to count 𝑛 events approximately in
space proportional to 𝑂 (log log𝑛), rather than the exact binary
counter that requires log2 𝑛 bits. There is also the Flajolet and
Martin distinct counter (1983), which uses 𝑂 (log𝑛) bits, but tracks
the number of distinct items that have been observed within the
input [22].

Other notions developed during these early years is the Munro-
Paterson approach to finding quantiles in sublinear space (1980) [38].
The original focus of the work was to find the exact median (and
other order statistics) with multiple passes over the input (assumed
to be stored on tape). Later work reframed these results as pro-
viding deterministic approximations with a single pass. Boyer and
Moore provided a simple algorithm to find the majority item in a
sequence (1981) [11], which was generalized by Misra and Gries
to find all frequently occurring items [35]. From mathematics, the
Johnson-Lindenstrauss lemma (1984) [26] argued that Euclidean dis-
tances could be preserved among a set of high-dimensional points
via a suitable projection. However, it took until the 1990s before
explicit constructions emerged, based on random projections that
were approximately distance preserving. A quirk of the literature
is that these sketches are mostly known by the surnames of their
designers: Bloom, Morris, Flajolet-Martin, Munro and Paterson,
Johnson-Lindenstrauss.

The Streaming Years. The area of sketching accelerated from the
mid 1990s through the first decade of the 2000s (approximately),
due to the sudden growth in interest in ‘data streaming’ and the
streaming model of computation. This model was formulated based
on sources of large volumes of data, where it was necessary to pro-
cess many small, incremental updates as a ‘stream’ of information.
The work of Alon, Matias and Szegedy on the space complexity
of the frequency moments launched the interest in this from an
algorithmic perspective [5]. One key result was their “tug-of-war”
or AMS sketch, based on maintaining the inner product of the input
with Rademacher random variables (which can be viewed as small
space version of the Johnson-Lindendstrauss lemma). In parallel,
Indyk and Motwani introduced the notion of Locality Sensitive
Hashing, which builds a sketch of a large object, such that similar
objects are likely to have similar sketches – also relying in part on
Johnson-Lindenstrauss ideas [25].

The problem of finding the quantiles from a stream of items
has been a keystone problem for sketching over the years. Manku,
Rajagopalan and Lindsay adapted the Munro-Paterson algorithm to
the streaming setting, and proposed extensions that obtained poly-
logarithmic space bounds [32]. Greenwald and Khanna presented
and analyzed a streaming algorithm for quantiles that obtained log-
arithmic space [23]. Then Shrivastava et al. presented the q-digest

sketch for quantile estimation, which focused on mergability for
distributed data [44].

Sketches based on carefully structured random projection ap-
peared. The Count sketch can be viewed as an improvement of
the AMS sketch, replacing averaging with hashing to speed up
the computation [12]. Originally proposed for estimating item fre-
quencies, it has been generalized as the basis of sparse Johnson-
Lindenstrauss transforms. The Count-Min sketch seeks to further
streamline sketching, by removing the Rademacher random vari-
ables, in order to provide frequency estimation with 𝐿1 instead of
𝐿2 guarantees [14]. The SpaceSaving algorithm was introduced to
give a fast, deterministic solution to frequency estimation [34]; it
was later connected with the similar Misra-Gries algorithm [35].

The distinct element counting problem was also revisited in
the streaming model, with the aim of providing strong approxima-
tion guarantees with tighter space bounds. The loglog algorithm
reduced the dependence on the cardinality from logarithmic to
double-logarithmic [18]. Subsequently, the hyperloglog (HLL) fur-
ther squeezed the space cost for this problem, while remaining very
simple to implement (the same cannot be said about the algorithmic
analysis, which is highly sophisticated) [21].

During this era, it was common to refer to sketches by initialisms
of their authors, e.g., AMS, MRL, GK, CM; or by names given to the
sketches, such as SpaceSaving, Q-Digest, LogLog, Hyperloglog and
Count Sketch.

From streaming to mergable. Interest in sketches for the stream-
ing model of computation has remained, but over the last decade
there has been more emphasis on generalizing sketches to work in
distributed settings (as opposed to on centralized streams), and on
improving their performance for practical implementations.

Agarwal et al. [3] placed emphasis on the notion of mergability
of summaries, drawing out a theme that was present in many prior
works. They provided new results on mergability of deterministic
frequency estimation algorithms and randomized quantile algo-
rithms. A sequence of papers further tightened results on quantiles,
leading to the Karnin-Lang-Liberty (KLL) [30] optimal quantile
sketch, combining sampling with sketching ideas.

Some deep theoretical advances were made. Truly sparse con-
structions of the Johnson-Lindenstrauss lemma were presented by
Kane and Nelson, similar in outline to the Count Sketch but with
stronger guarantees [28]. Such dimensionality reduction techniques
led to the development of the areas of compressed sensing [17] and
subspace embeddings [48]. Sketch techniques for graphs were de-
veloped by Ahn, Guha and McGregor, based on 𝐿𝑝 sampling, which
allowed dynamic connectivity and minimum spanning trees to be
solved in near-linear space [4].

On the practical side, work from Google discussed how to op-
timize the HLL algorithm for tracking cardinalities of very high
magnitude, while improving accuracy at small cardinalities [24].
A team from Yahoo! started the “data sketches” project, which
aimed to provide robust implementations of many sketches to ease
adoption. The project emphasised the need for concurrency and
mergability of sketches [41].

Sketching at PODS. The PODS conference has been a welcoming
home for results on sketching, with many papers on sketching and
related topics appearing here. A complete enumeration is out of



Gems of PODS: Applications of Sketching and Pathways to Impact PODS ’23, June 18–23, 2023, Seattle, WA, USA.

the question, and instead I highlight some examples of papers on
sketching that have been honoured with awards at PODS:

• “An optimal algorithm for the distinct elements problem” [29]
(PODS 2010, best paper award) gives a sketch algorithm that
achieves the lower bound for counting the number of distinct
items in a stream of updates.

• “Tight bounds for 𝐿𝑝 samplers” [27] (PODS 2011, Test of time
award in 2021) uses sketch techniques to sample according
to the 𝐿𝑝 distribution, where the probability of picking an
item is proportional to a monomial function of its frequency.

• “Mergeable Summaries” [3] (PODS 2012, Test of time award
in 2022) formalizes the notion of mergeable summaries, and
shows sketches that can be merged for frequency estimation,
quantiles, and geometric approximations.

• “A framework for adversarially robust streaming algorithms” [7]
(PODS 2020, best paper award) considers how randomized
sketch algorithms can be built that are robust to an adversary
trying to break the approximation guarantee.

• “Relative Error streaming quantiles” [13] (PODS 2021, best
paper award) gives a near-optimal sketch for the problem of
summarizing a stream of items to find the quantiles with a
relative error guarantee.

• “Optimal Bounds for Approximate Counting” [39] (PODS
2022, best paper award) revisits the foundational problem
of approximate counting [37] and shows a variant sketch
that achieves improved dependency on the approximation
parameters.

Collectively, these demonstrate the depth and challenge of prob-
lems relating to sketches, and their high level of interest to the
PODS community.

Sketching in print. For further reading, and a technical presenta-
tion of the fundamentals of sketching, there are now several text-
books that cover the topic in depth. “Probability and Computing” by
Mitzenmacher and Upfal [36] is a general introduction to probabilis-
tic algorithms, which uses some sketch algorithms to illustrate the
key techniques. “Mining ofMassive Datasets” (Leskovec, Rajamaran
and Ullman) [31] devotes a chapter to sketch techniques for data
analysis. Likewise, “Foundations of Data Science” by Blum,Hopcroft
and Kannan [10] has a chapter on sketching as a mathematical tool
in data science. The book “Algorithms and Data Structures for
Massive Datasets” by Medjedovic, Tahirovic and Dedovic [33] is
almost entirely concerned with presenting core sketch algorithms
and their analyses, and similarly, “Small Summaries for Big Data”
(Cormode and Yi) [15] presents multiple sketch algorithms, and
discusses implementation issues.

3 THE SHIFTING MOTIVATIONS FOR
SKETCHING.

As hinted in the previous section, the motivations for using sketches
have shifted over time, presenting different demands on the algo-
rithms, and highlighting different concerns. Some applications have
faded due to shifts in technologies, while others remain broadly
relevant today.

Memory constrained systems (1970s—1980s). The initial moti-
vation for the first sketches were the constraints of memory. Bloom

filters were proposed as a compact way to perform spell checking
when it was not feasible to keep a full dictionary in memory [9].
Similarly, the Munro-Paterson work on quantiles was in the context
of tape-resident data sets which were too large to be brought into
memory. The advent of hierarchical memory systems with larger
main memory and ready access to (relatively) fast disks diminished
the need for such algorithms during the subsequent decades. How-
ever, the emergence of systems performing analytics on very large
volumes of data meant that these applications did not disappear
entirely.

Massive Data Streams (mid 1990s—early 2000s). The growth of
the internet, and associated ecosystems, provided the setting for
“massive data” and “data streams”. Initially, the focus came from the
network/ISP world: for the first time, we could easily see examples
where the volume of data moving through a system dwarfed the
capacity to store it at rest. Although the (meta)data was mostly
ephemeral, it was desirable to be able to summarize and query it in
order to monitor and debug networked systems. This drove the de-
mand for sketches that could be build in a streaming (incremental)
fashion, and integrated into special-purpose data stream manage-
ment systems. These included systems from Sprint (CMON [46])
and AT&T (Gigascope [16]) in industry, and academic systems such
as Stream, Aurora and Borealis [1, 2, 6, 49]. Here, the need was
often not to build one sketch, but to maintain huge numbers of
sketches in parallel (i.e., to support GROUP BY aggregate queries
over many groups). While impactful within their specialist domains,
these applications tended to be internal and bespoke to specific
network management problems. Attempts to generalize these ideas
to distributed models, captured in settings such as sensor networks,
provided rich fodder for research papers, but had more limited
practical impact.

From ISPs to Internet Companies (2000s onwards). A shift in
the motivation for sketch algorithms came in the first decade of
the current century, when a new class of Internet-based companies
came along with a focus on novel technologies. Starting with search
engines, these companies handled vast amounts of data, and hence
brought applications that could benefit from sketching. Google was
the leading example here, and several sketches found important
motivation from search data: the Count sketch was proposed by
academic visitors to Google [12], while locality sensitive hashing
was built into systems to perform multimedia (image) search. Even
though many of the technologies have changed over the years,
sketching still has relevance to these applications. For instance,
the mechanism for image similarity search may have shifted from
simple feature extraction to learned vector embeddings. However,
both rely on notions of (high-dimensional) vector similarity which
can be supported efficiently by LSH-based techniques.

Online advertising (2010s). The financial underpinning for these
new tech companies primarily derived from online advertising:
connecting internet users with adverts to draw their clicks. A basic
question that advertisers wanted to understand was exactly how
many individuals were their adverts reaching? This could be a
non-trivial question, due to the complexity and scale of the online
advertising ecosystem that quickly grew up. Sketches, specifically



PODS ’23, June 18–23, 2023, Seattle, WA, USA. Graham Cormode

distinct count sketches such as loglog and hyperloglog, were pro-
posed as an answer: these sketches could be used to track how
many distinct users (based on cookie information) were exposed to
a particular campaign, while avoiding double counting. Properties
of these sketches meant that it was possible to “slice and dice” these
statistics, by reporting response rates across multiple dimensions
(e.g., demographic attributes). Systems were built and put into pro-
duction based on this principle, by companies such as Aggregate
Knowledge. However, there were obstacles that prevented this ap-
proach having a major impact. First, a long-standing limitation of
sketches that use randomization is the challenge in communicating
a randomized approximation guarantee to non-technical consumers.
This is not unique to sketching, and can be overcome with appro-
priate communication tools (e.g., confidence intervals on reported
statistics), but presents an initial barrier. A more fundamental issue
is that computer systems eventually scaled faster than advertising
clicks: it became possible to track and process advertising informa-
tion in highly performant data warehouses, giving “exact” results
(up to sampling bias and other noise factors). While there remain
cases where the data volume is very high (e.g., systems that track
every tiny interaction, such as a mouse movement) that could ben-
efit from the use of sketching, these may instead be handled by
alternative downsampling techniques to reduce the data down to
more managable amounts.

The Big Data era (2010s onwards). Meanwhile, the terminol-
ogy shifted from ‘massive data’ to ‘big data’, and new applications
emerged. Other applications, such as social media and video stream-
ing, became mainstream, and brought their own data analytics
questions with them. While the primary data (posts, videos etc.)
have to be stored and delivered exactly, there are large volumes of
secondary data that can be summarized in sketches. For example,
Twitter used count-min sketches to keep track of how many views
were received by “embedded tweets”, such as a tweet that is pre-
sented within a news article. New algorithms for the core problems
of heavy hitters, quantiles, and count distinct were developed (e.g.,
the KLL algorithm, the t-digest summary) and made available via
libraries (the Apache Data Sketches Library) and platforms (e.g.,
Splunk and Salesforce).While it remains challenging to find detailed
information on the extent to which sketches have been deployed
in practice, anecdotally some sketches are very widely used, and
many software engineers sing the praises of sketches such as Bloom
filters and hyperloglog2.

Private Data Analysis (late 2010s onwards). As the focus on
data analysis has grown over time, so has the need for privacy
enhancing technologies to support it. The data being analyzed is
often related to individual people, and so it is necessary to mod-
ify the analysis procedure in order to protect the privacy of the
individuals who have contributed to the data. Formal definitions of
privacy have emerged in the form of 𝑘-anonymity [43] and differ-
ential privacy [19], which require that the data analysis procedure

2For instance, see https://medium.com/system-design-blog/bloom-filter-a-
probabilistic-data-structure-12e4e5cf0638 https://pedrorijo.com/blog/bloom-
filters/ https://www.ombulabs.com/blog/systemdesign/ruby/bloom-filter-and-
what-makes-them-special.html https://engineering.fb.com/2018/12/13/data-
infrastructure/hyperloglog/ http://content.research.neustar.biz/blog/hll.html
https://redis.com/blog/count-min-sketch-the-art-and-science-of-estimating-stuff/
https://florian.github.io/count-min-sketch/

adheres to some requirements, such as coarsening the level of infor-
mation available, or adding calibrated random noise to the output.
Such definitions happen to cohere well with sketching: the com-
pact representations formed by sketch algorithms tend to mix and
concentrate the information frommany individuals, making the per-
turbations due to privacy less disruptive than other representations
would be [50].

A concrete example is the RAPPOR system deployed by Google
to collect statistics on web browsing activity [20]. The system can
be summarized as combining the Bloom filter summary [9] with
randomized response [47], to randomly flip some of the bits. Simi-
larly, Apple’s deployment of differential privacy can be understood
as taking a Count-Min sketch of a sparse input and applying ran-
domized response to each entry [45]. More generally, the emerging
area of Federated Analytics [8], which aims to collect data privately
from a large population of distributed individuals can be crudely
described as being based on sketches with privacy.

Optimizing Machine Learning (mid 2010s onwards). The vast
growth in interest in machine learning over the last decade has
drawn on many aspects of computer science: optimization to train
models from data, hardware integration to speed up training at scale,
and so one. One direction of interest has been on using sketches
to reduce the cost of the training process. A basic idea is to make
use of sketches that preserve the norm of data in high-dimensional
space to perform the learning in the sketch space, rather than in
the original space. This has been leveraged to reduce the commu-
nication cost of distributed machine learning [42]. Other potential
directions include using sketching as a way to approximate ex-
pensive linear algebra operations, such as matrix multiplication,
and to incorporate kernel transformations [40, 48]. To the best of
my knowledge, such uses of sketches have so far been primarily
of academic interest, but it is feasible that future work can more
directly benefit from sketch techniques.

4 LESSONS LEARNED FROM SKETCHES IN
PRACTICE

In studying and working with sketches over many years, and be-
ing excited about their potential for adoption in a wide range of
applications, it is natural to have considered a number of ways to
spread this enthusiasm, and to accelerate the pathway to adoption.
This section reviews some of the different strategies that have been
tried, and comments on their efficacy in this regard.

Launching a startup. The most direct way of pushing ideas from
research into practice is to do it yourself: to launch a company
around your latest paper. This idea has been suggested many times
for sketches, given the powerful results that they can achieve. But,
at the risk of stating the obvious, a successful startup needs a busi-
ness idea: a product or service that can succeed in the marketplace.
Sketches, like many ideas from the data management and algo-
rithms worlds, are too far “under the hood” for a clear case to
emerge: they don’t obviously solve a problem that was impossi-
ble before, or tackle an issue that is a pain point for many users.
Profitable companies that have come from academic research (e.g.,
Google with web search, and Akamai with consistent hashing)
have ultimately succeeded due to having a business model that is

https://medium.com/system-design-blog/bloom-filter-a-probabilistic-data-structure-12e4e5cf0638
https://medium.com/system-design-blog/bloom-filter-a-probabilistic-data-structure-12e4e5cf0638
https://pedrorijo.com/blog/bloom-filters/
https://pedrorijo.com/blog/bloom-filters/
https://www.ombulabs.com/blog/systemdesign/ruby/bloom-filter-and-what-makes-them-special.html
https://www.ombulabs.com/blog/systemdesign/ruby/bloom-filter-and-what-makes-them-special.html
https://engineering.fb.com/2018/12/13/data-infrastructure/hyperloglog/
https://engineering.fb.com/2018/12/13/data-infrastructure/hyperloglog/
http://content.research.neustar.biz/blog/hll.html
https://redis.com/blog/count-min-sketch-the-art-and-science-of-estimating-stuff/
https://florian.github.io/count-min-sketch/


Gems of PODS: Applications of Sketching and Pathways to Impact PODS ’23, June 18–23, 2023, Seattle, WA, USA.

supported by the technology (i.e., online advertising, and content
delivery networks). So while sketching may be a useful tool in
building software that is of use to people, it is not (yet) a piece that
is vital to the success of a product, and so is hard to build a business
around.

Pushing out code. A more direct route to getting research ideas
into use is to provide code to implement them. Sketches are a par-
ticularly good test case for this: the algorithms needed are often
relatively simple to code up for a researcher. But the concepts and
techniques may be sufficiently unfamiliar to the typical software
engineer (such as certain kinds of hash function, or fiddly bit ma-
nipulation tricks) that prototype code can be very valuable, simply
for showing a proof of concept. A reference implementation, even
if crudely written and lightly documented, is much preferable and
more tangible than pseudocode in a paper. So it is strongly encour-
aged for researchers to make their code available to others, via
github or other forms.

Inflict ideas on the next generation. The computer science cur-
riculum is far more dynamic than, say, the mathematics curriculum,
and it is still feasible to include research ideas in undergraduate
classes. There may not be room to go in-depth on cutting edge
ideas, but including a few results from the current century may
help to keep students engaged. Sketches are a good exemplar for
this, since the ideas can fit well into an algorithms or database class,
and illustrate some of the underlying principles and concepts. A
long-term benefit of this approach is that some students may just
remember these ideas after graduation, and be motivated to make
use of them in whatever career they choose to go in to.

Write accessible notes, and put them where people can read
them.While we may think of peer-reviewed academic publications
as the medium for sharing research ideas, these are unfortunately
not the place where practitioners will find them. You can have
more reach by writing accessible notes addressing the software
engineering community. For sketches, we made web pages and
wrote articles in practitioner-focused journals. Today, you should
consider making more use of platforms like medium and substack,
and promoting posts via social media.

Give talks and tutorials. On a similar note, talks can be more
accessible than articles, particularly if they are captured as an online
video that is easy to share. For some people, their first stop to learn
about a new topic is on YouTube, rather than arXiv. Things don’t
have to be too polished, but there is potential for short-form, custom
made introductory videos to reach a wide audience interested in
learning new techniques that they can adopt.

Work directly with companies. Lastly, it can be valuable to
work directly with a company that can benefit from translating
research into practice. This is not a simple proposition: working
very closely with a company requires building up a lot of trust
and understanding, or going through a demanding application and
recruitment process. Most organizations want a solution to their
problems that can be implemented and deployed at scale. This
does not necessarily align with research novelty: sometimes simple
partial solutions will suffice, while research-inspired approaches
are viewed as too complex and not scalable enough. However, the
experience can be eye-opening, and can allow not only real-world

use of research ideas, but inspiration for new research questions
that are well-motivated.

5 CONCLUDING REMARKS
The notion of sketching is a compelling one, to build a compact
representation of a large dataset that nonetheless allows certain
properties of the data to be accurately approximated. Contributions
to this topic have required substantial theoretical advances, appear-
ing in venues such as PODS, but promising substantial impact in
practice.

The road to genuine impact is a long and bumpy one. Many great
theoretical ideas never make any significant impact, because the
scenario they solve does not arise in practice as urgently, or can
be tackled satisfactorily with heuristic or less efficient approaches.
Sketches can rightly claim to have had meaningful impact on the
practice of computer science. However, the motivations for sketches
have changed over time, and once compelling demands may no
longer be relevant. Moreover, of the hundreds, if not thousands, of
papers that have presented ideas on sketches, there may be only
a handful that have achieved very widespread use. Bloom filters
and Hyperloglog sketches are the most well-known, along with
Count sketches and Count-Min sketches, plus various sketches for
quantile and frequent item estimation (SpaceSaving, Misra-Gries,
Q-Digest, T-Digest, Greenwald-Khanna).

This illustrates the principle that good theory can lead to good
impact. The biggest contributor to this may be time: it can take time
for ideas to diffuse and to find their application. After this, active
effort to connect the ideas with their potential beneficiaries is useful
– make the ideas as easy as possible to access and digest. Finally,
there is always some element of luck – will the right motivation
align with the idea’s potential, and will the right people be inspired
by the ideas to put them into practice?

Acknowledgements. Thanks to Divesh Srivastava and S. Muthukr-
ishnan for excellent feedback and encouragement, for this article
and also throughout my career.

REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W.

Lindner, A. Rasin, N. Tatbul, Y. Xing, and S. Zdonik. 2005. Distributed Operation in
the Borealis Stream Processing Engine. In ACM SIGMOD International Conference
on Management of Data.

[2] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R.
Yan, and S. Zdonik. 2003. Aurora: a data stream management system. In ACM
SIGMOD International Conference on Management of Data. 666.

[3] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zheiwei
Wei, and Ke Yi. 2013. Mergeable Summaries. ACM Transactions on Database
Systems 38, 4 (2013).

[4] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing graph
structure via linear measurements. In ACM-SIAM Symposium on Discrete Algo-
rithms.

[5] N. Alon, Y. Matias, andM. Szegedy. 1996. The Space Complexity of Approximating
the Frequency Moments. In ACM Symposium on Theory of Computing. 20–29.

[6] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and
J; Widom. 2003. STREAM: the Stanford Stream Data Manager (demonstration
description). In ACM SIGMOD International Conference on Management of Data.
665–665.

[7] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2020.
A Framework for Adversarially Robust Streaming Algorithms. In Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, Dan Suciu, Yufei Tao,
and Zhewei Wei (Eds.). ACM, 63–80. https://doi.org/10.1145/3375395.3387658

https://doi.org/10.1145/3375395.3387658


PODS ’23, June 18–23, 2023, Seattle, WA, USA. Graham Cormode

[8] Akash Bharadwaj and Graham Cormode. 2022. An Introduction to Federated
Computation. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and
Amr El Abbadi (Eds.). ACM, 2448–2451. https://doi.org/10.1145/3514221.3522561

[9] Burton Bloom. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM 13, 7 (July 1970), 422–426.

[10] Avrim Blum, John Hopcroft, and Ravi Kannan. 2020. Foundations of Data Science.
Cambridge University Press, Cambridge. https://www.cambridge.org/core/
books/foundations-of-data-science/6A43CE830DE83BED6CC5171E62B0AA9E

[11] B. Boyer and J. Moore. 1981. A Fast Majority Vote Algorithm. Technical Report
ICSCA-CMP-32. Institute for Computer Science, University of Texas.

[12] M. Charikar, K. Chen, andM. Farach-Colton. 2002. Finding Frequent Items in Data
Streams. In Procedings of the International Colloquium on Automata, Languages
and Programming (ICALP).

[13] Graham Cormode, Zohar S. Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý.
2021. Relative Error Streaming Quantiles. In PODS’21: Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Vir-
tual Event, China, June 20-25, 2021, Leonid Libkin, Reinhard Pichler, and Paolo
Guagliardo (Eds.). ACM, 96–108. https://doi.org/10.1145/3452021.3458323

[14] G. Cormode and S. Muthukrishnan. 2005. An Improved Data Stream Summary:
The Count-Min Sketch and its Applications. Journal of Algorithms 55, 1 (2005),
58–75.

[15] Graham Cormode and Ke Yi. 2020. Small Summaries for Big Data. Cambridge
University Press.

[16] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. 2003. Gigascope:
A Stream Database for Network Applications. In ACM SIGMOD International
Conference on Management of Data.

[17] D. Donoho. 2004. Compressed Sensing. http://www-stat.stanford.edu/~donoho/
Reports/2004/CompressedSensing091604.pdf. Unpublished Manuscript.

[18] Marianne Durand and Philippe Flajolet. 2003. Loglog Counting of Large Cardinal-
ities (Extended Abstract). In European Symposium on Algorithms (ESA). 605–617.

[19] Cynthia Dwork. 2006. Differential privacy. In ICALP. 1–12.
[20] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In Computer and
Communications Security. 1054–1067.

[21] Phillipe Flajolet, Eric Fusy, O. Gandouet, and F. Meunier. 2007. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In Analysis of
Algorithms (AOFA). 127–146.

[22] P. Flajolet and G. N. Martin. 1983. Probabilistic Counting. In IEEE Conference on
Foundations of Computer Science. 76–82. Journal version in Journal of Computer
and System Sciences, 31:182–209, 1985.

[23] M. Greenwald and S. Khanna. 2001. Space-efficient online computation of quantile
summaries. In ACM SIGMOD International Conference on Management of Data.

[24] Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog in
practice: algorithmic engineering of a state of the art cardinality estimation
algorithm. In International Conference on Extending Database Technology. 683–
692.

[25] P. Indyk and R. Motwani. 1998. Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality. In ACM Symposium on Theory of Computing.
604–613.

[26] W.B. Johnson and J. Lindenstrauss. 1984. Extensions of Lipshitz mapping into
Hilbert space. Contemp. Math. 26 (1984), 189–206.

[27] Hossein Jowhari, Mert Saglam, and Gábor Tardos. 2011. Tight bounds for Lp
samplers, finding duplicates in streams, and related problems. In ACM Principles
of Database Systems.

[28] Daniel M. Kane and Jelani Nelson. 2012. Sparser Johnson-Lindenstrauss Trans-
forms. In ACM-SIAM Symposium on Discrete Algorithms.

[29] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. An optimal algo-
rithm for the distinct elements problem. In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2010, June 6-11, 2010, Indianapolis, Indiana, USA, Jan Paredaens and Dirk Van
Gucht (Eds.). ACM, 41–52. https://doi.org/10.1145/1807085.1807094

[30] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal Quantile Approxima-
tion in Streams. In IEEE Conference on Foundations of Computer Science.

[31] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of Massive
Datasets. Cambridge University Press. http://mmds.org

[32] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. 1998. Approximate Medians
and other Quantiles in One Pass and with Limited Memory. In ACM SIGMOD
International Conference on Management of Data. 426–435.

[33] Dzejla Medjedovic, Emin Tahirovic, and Ines Dedovic. 2022. Algorithms and Data
Structures for Massive Datasets. Manning.

[34] A. Metwally, D. Agrawal, and A. El Abbadi. 2005. Efficient computation of
Frequent and Top-k Elements in Data Streams. In International Conference on
Database Theory.

[35] J. Misra and D. Gries. 1982. Finding Repeated Elements. Science of Computer
Programming 2 (1982), 143–152.

[36] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

[37] Robert Morris. 1977. Counting large numbers of events in small registers. Com-
mun. ACM 21, 10 (1977), 840–842.

[38] J. I. Munro and M. S. Paterson. 1980. Selection and Sorting with Limited Storage.
Theoretical Computer Science 12 (1980), 315–323.

[39] Jelani Nelson andHuacheng Yu. 2022. Optimal Bounds for Approximate Counting.
In PODS ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, Leonid Libkin and Pablo Barceló (Eds.). ACM, 119–127.
https://doi.org/10.1145/3517804.3526225

[40] Ninh Pham and Rasmus Pagh. 2013. Fast and Scalable Polynomial Kernels
via Explicit Feature Maps. In ACM SIGKDD (Chicago, Illinois, USA). 239–247.
https://doi.org/10.1145/2487575.2487591

[41] Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit Keidar,
Lee Rhodes, and Hadar Serviansky. 2022. Fast Concurrent Data Sketches. ACM
Trans. Parallel Comput. 9, 2 (2022), 6:1–6:35. https://doi.org/10.1145/3512758

[42] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica,
Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020. FetchSGD:
Communication-Efficient Federated Learning with Sketching. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). PMLR,
8253–8265. http://proceedings.mlr.press/v119/rothchild20a.html

[43] Pierangela Samarati and Latanya Sweeney. 1998. Protecting privacy when dis-
closing information: 𝑘-anonymity and its enforcement through generalization and
suppression. Technical Report SRI-CSL-98-04. SRI.

[44] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. 2004. Medians and
Beyond: New Aggregation Techniques for Sensor Networks. In ACM SenSys.

[45] Differential Privacy Team. 2017. Learning with Privacy at Scale.
https://machinelearning.apple.com/docs/learning-with-privacy-at-
scale/appledifferentialprivacysystem.pdf. Apple Machine Learning Jour-
nal 1, 8 (Dec. 2017).

[46] K. To, T. Ye, and S. Bhattacharyya. 2004. CMON: A general purpose continuous IP
backbone traffic analysis platform. Technical Report RR04-ATL-110309. Sprint
ATL.

[47] Stanley L. Warner. 1965. Randomized Response: A Survey Technique for Elim-
inating Evasive Answer Bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.
https://doi.org/10.1080/01621459.1965.10480775 PMID: 12261830.

[48] David P. Woodruff. 2014. Sketching As a Tool for Numerical Linear Algebra.
Found. Trends Theor. Comput. Sci. 10, 1–2 (Oct. 2014), 1–157. https://doi.org/10.
1561/0400000060

[49] S. Zdonik, M. Stonebraker, M. Cherniack, and U. Cetintemel. 2003. The Aurora
and Medusa Projects. Bulletin of the Technical Committee on Data Engineering
(March 2003), 3–10.

[50] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and
Yu-Xiang Wang. 2022. Differentially Private Linear Sketches: Efficient Implemen-
tations and Applications. In Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35.
Curran Associates, Inc., 12691–12704. https://proceedings.neurips.cc/paper_files/
paper/2022/file/525338e0d98401a62950bc7c454eb83d-Paper-Conference.pdf

https://doi.org/10.1145/3514221.3522561
https://www.cambridge.org/core/books/foundations-of-data-science/6A43CE830DE83BED6CC5171E62B0AA9E
https://www.cambridge.org/core/books/foundations-of-data-science/6A43CE830DE83BED6CC5171E62B0AA9E
https://doi.org/10.1145/3452021.3458323
http://www-stat.stanford.edu/~donoho/Reports/2004/CompressedSensing091604.pdf
http://www-stat.stanford.edu/~donoho/Reports/2004/CompressedSensing091604.pdf
https://doi.org/10.1145/1807085.1807094
http://mmds.org
https://doi.org/10.1145/3517804.3526225
https://doi.org/10.1145/2487575.2487591
https://doi.org/10.1145/3512758
http://proceedings.mlr.press/v119/rothchild20a.html
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1561/0400000060
https://doi.org/10.1561/0400000060
https://proceedings.neurips.cc/paper_files/paper/2022/file/525338e0d98401a62950bc7c454eb83d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/525338e0d98401a62950bc7c454eb83d-Paper-Conference.pdf

	Abstract
	1 Introduction
	2 A (very) brief history of sketches
	3 The shifting motivations for sketching.
	4 Lessons learned from sketches in practice
	5 Concluding remarks
	References

