
The true cost of popularity 

The notion of popularity is prevalent within society.  We have made charts of the most popular 

music and movies since the early part of the twentieth century.  Elections and referenda are 

primarily decided by who gets the most votes.  Within computer systems, we monitor followers and 

endorsements in social networks, and track views, hits, and connection attempts in other networks.  

Computationally, the problem of determining which items are popular appears at first a 

straightforward one.  Given a dataset of votes, we can simply sort by the item identifier, then count 

up how many votes are assigned to each.  When the number of votes is large, we might try to avoid 

the overhead of sorting, and aim to more directly pick out the most popular items with only a few 

passes through the data.   

Things get more interesting when we further refine the problem. What happens when the number 

of votes, and the number of candidate items, gets so large that it is not feasible to keep a tally for 

each candidate?  This might be implausible in the context of political elections, but is an everyday 

reality in social systems handling many billions of actions (representing votes) on pieces of content 

or links (representing the items). Here, we may only get one opportunity to see each vote, and must 

update our data structures accordingly before moving on to the next observation.  Other twists 

complicate things further: what if votes can have different weights, reflecting the intensity of the 

endorsement?  What if these weights can be negative, encoding a removal of support for an item?  

What if the formula to compute the overall score is not the sum of the weights, but the square of 

the sum of the weights?   

Each of these variations makes the problem more challenging, while only increasing the generality of 

any solution: if we can create an algorithm to handle all these variations, then it will still work when 

they do not apply.  Such has been the level of interest in designing effective and efficient algorithms 

that a lexicon has emerged to describe them: the most popular items are the heavy hitters; 

processing each update once as it arrives gives the streaming model; allowing negative weights is the 

(general) turnstile model; setting a threshold for being a heavy hitter based on removing the k 

heaviest items is the k-tail version; and a weighting function based on squared sums is called l2. So 

while the following paper by Larsen et al. addresses the k-tail l2 heavy hitters problem in the turnstile 

streaming model, it should be understood as solving a most general version of the problem! 

Solutions for more restricted versions of this problem have been defined over the years, and have 

been put to use in deployments handling large volumes of data.  For example, Twitter has used 

heavy hitter algorithms to track the number of views of individual tweets as they are embedded in 

different pages around the web1.  Apple has combined heavy hitter algorithms with privacy tools to 

allow privately tracking the emerging popularity of words, phrases and emoticons among their 

users2.  Broadly speaking, heavy hitter algorithms are defined by two phases: a collection phase to 

gather data and statistics from viewing the stream of updates, and a search process to extract the 

heavy hitter items.  There are simple and effective randomized algorithms that can create 

summaries which allow the estimation of the final weight of a given item to a high degree of 
                                                           
1
 https://skillsmatter.com/skillscasts/6844-count-min-sketch-in-real-data-applications 

2
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accuracy.  However, when there are a very large number of possible items to consider (say, the 

combination of every tweet and every page on the web), making the search process efficient 

becomes the chief objective.  

Consequently, the main focus of this paper is on building up sufficient information to allow a more 

effective search process. It proceeds by incrementally developing the solution from first principles, 

relying on concepts from across computer science: randomly partitioning the input space to simplify 

the core problem; modifying the encoding of the item identifiers, and applying ideas from coding 

theory to correct for noise; using a construction based on expander graphs to make this more 

robust; and finally making use of an approach to clustering from spectral graph theory to ensure that 

the identifiers of the heavy hitters can be correctly extracted.  The end result is an algorithm which 

for the first time meets the minimum space cost to solve the problem while giving an efficient search 

time cost.  

This opens the way for further work.  How efficiently could this clustering approach be implemented 

in practice, and what applications might it find elsewhere?  While identifying popular items is a 

foundational question for data analysis, there are many more questions that can be asked.  The area 

of streaming algorithms concerns itself with finding efficient algorithms for statistics and queries on 

large data viewed as a stream of updates.  Current challenges revolve around processing massive 

data sets to extract statistical models for prediction and inference. 
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