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ABSTRACT

Quantiles, such as the median or percentiles, provide concise and

useful information about the distribution of a collection of items,

drawn from a totally ordered universe. We study data structures,

called quantile summaries, which keep track of all quantiles of a

stream of items, up to an error of at most ε . That is, an ε-approximate

quantile summary first processes a stream and then, given any

quantile query 0 ≤ ϕ ≤ 1, returns an item from the stream, which

is a ϕ ′-quantile for some ϕ ′ = ϕ ± ε . We focus on comparison-

based quantile summaries that can only compare two items and are

otherwise completely oblivious of the universe.

The best such deterministic quantile summary to date, due to

Greenwald and Khanna [6], stores at most O( 1ε · log εN ) items,

where N is the number of items in the stream. We prove that this

space bound is optimal by showing a matching lower bound. Our

result thus rules out the possibility of constructing a deterministic

comparison-based quantile summary in space f (ε) · o(logN ), for
any function f that does not depend on N . As a corollary, we

improve the lower bound for biased quantiles, which provide a

stronger, relative-error guarantee of (1± ε) ·ϕ, and for other related
computational tasks.
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1 INTRODUCTION

The streaming model of computation is a useful abstraction to

understand the complexity of working with large volumes of data,

too large to conveniently store. Efficient algorithms are known for

many basic functions, such as finding frequent items, computing

the number of distinct items, and measuring the empirical entropy

of the data. Typically, in the streaming model we allow just one

pass over the data and a small amount of memory, i.e., sublinear in

the data size. While computing sums, averages, or counts is trivial

with a constant memory, finding the median, quartiles, percentiles

and their generalizations, quantiles, presents a challenging task.

Indeed, four decades ago, Munro and Paterson [17] showed that

finding the exact median in p passes over the data requires Ω(N 1/p )

memory, where N is the number of items in the stream. They also

provide a p-pass algorithm for selecting the k-th smallest item in

space N 1/p · polylog(N ), and a polylog(N )-pass algorithm running

in space polylog(N ).
Thus, either large space, or a large number of passes is necessary

for finding the exact median. For this reason, subsequent research

has mostly been concerned with the computation of approximate

quantiles, which are often sufficient for applications. Namely, for a

given precision guarantee ε > 0 and a query ϕ ∈ [0, 1], instead of

finding the ϕ-quantile, i.e., the ⌊ϕN ⌋-th smallest item, we allow the

algorithm to return a ϕ ′-quantile for ϕ ′ ∈ [ϕ − ε,ϕ + ε]. In other

words, when queried for the k-th smallest item (where k = ⌊ϕN ⌋),
the algorithm may return the k ′-th smallest item for some k ′ ∈
[k − εN ,k + εN ]. Such an item is called an ε-approximate ϕ-quantile.

More precisely, we are interested in a data structure, called an

ε-approximate quantile summary, that processes a stream of items

from a totally ordered universe in a single pass. Then, it returns an

ε-approximate ϕ-quantile for any query ϕ ∈ [0, 1]. We optimize the

space used by the quantile summary, measured in words, where a

word can store any item or an integer with O(logN ) bits (that is,
counters, pointers, etc.).

1
We do not assume that items are drawn

from a particular distribution, but rather focus on data independent

solutions with worst-case guarantees. Quantile summaries are a

valuable tool, since they immediately provide solutions for a range

of related problems: estimating the cumulative distribution func-

tion; answering rank queries; constructing equi-depth histograms

(where the number of items in each bucket must be approximately

1
Hence, if instead b bits are needed to store an item, then the space complexity in bits

is at most max(b , O(logN )) times the space complexity in words.
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equal); performing Kolmogorov-Smirnov statistical tests [12]; and

balancing parallel computations [19].

Note that offline, with random access to the whole data set, we

can design an ε-approximate quantile summary with storage cost

just

⌈
1

2ε
⌉
. We simply select the ε-quantile, the 3ε-quantile, the 5ε-

quantile, and so on, and arrange them in a sorted array. Queries

can be answered by returning the ϕ-quantile of this summary data

set. Moreover, this is optimal, since there cannot be an interval

I ⊂ [0, 1] of size more than 2ε such that there is no ϕ-quantile for
any ϕ ∈ I in the quantile summary.

Building on the work of Munro and Paterson [17], Manku, Ra-

jagopalan, and Lindsay [14] designed a (streaming) quantile sum-

mary which uses space O( 1ε · log
2 εN ), although it relies on the ad-

vance knowledge of the stream length N . Then, shaving off one log

factor, Greenwald and Khanna [6] gave an ε-approximate quantile

summary, which needs just O( 1ε · log εN ) words and does not re-

quire any advance information about the stream. Both of these

deterministic algorithms work for any universe with a total order-

ing as they just need to do comparisons of the items. We call such

an algorithm comparison-based.

The question of whether one can design a 1-pass deterministic

algorithm that runs in a constant space for a constant ε has been
open for a long time, as highlighted by the first author in 2006 [1].

Following the above discussion, there is a trivial lower bound of

Ω( 1ε ) that holds even offline. This was the best known lower bound

until 2010 when Hung and Ting [10] proved that a deterministic

comparison-based algorithm needs space Ω( 1ε · log
1

ε ).

We significantly improve upon that result by showing that any

deterministic comparison-based data structure providing ε-approxi-
mate quantiles needs to use Ω( 1ε ·log εN )memory on the worst-case

input stream. Our lower bound thus matches the Greenwald and

Khanna’s result, up to a constant factor, and in particular, it rules

out an algorithm running in space f (ε) ·o(logN ), for any function f
that does not depend on N . It also follows that a comparison-based

data structure with o( 1ε · log εN ) memory must fail to provide a ϕ-
quantile for some ϕ ∈ [0, 1]. Using a standard reduction (appending

more items to the end of the stream), this implies that there is no

deterministic comparison-based streaming algorithm that returns

an ε-approximate median and uses o( 1ε · log εN )memory. Applying

a different reduction, this yields a lower bound ofΩ( 1ε ·log log
1

δ ) for

any randomized comparison-based algorithm. We refer to Section 6

for a discussion of this and other corollaries of our result.

1.1 Overview and Comparison to Prior Bounds

LetD be a deterministic comparison-based quantile summary. From

a high-level point of view, we prove the space lower bound for

D by constructing two streams π and ϱ satisfying two opposing

constraints: On one hand, the behavior ofD on these streams is the

same, implying that the memory states after processing π and ϱ are

the same, up to an order-preserving renaming of the stored items.

For this reason, π and ϱ are called indistinguishable. On the other

hand, the adversary introduces as much uncertainty as possible.

Namely, it makes the difference between the rank of a stored item

with respect to (w.r.t.) π and the rank of the next stored item w.r.t.

ϱ as large as possible, where the rank of an item w.r.t. stream σ is

its position in the ordering of σ . If this difference, which we call

the “gap”, is too large, then D fails to provide an ε-approximate

ϕ-quantile for some ϕ ∈ [0, 1]. The crucial part of our lower bound
proof is to construct the two streams in a way that yields a good

trade-off between the number of items stored by the algorithm and

the largest gap introduced.

While the previous lower bound of Ω( 1ε ·log
1

ε ) [10] is in the same

computational model, and also works by creating indistinguishable

streams with as much uncertainty as possible, our approach is sub-

stantially different. Mainly, the construction by Hung and Ting [10]

is inherently sequential as it works inm ≈ 1

ε log
1

ε iterations and ap-

pends O(m) items in each iteration to the streams constructed (and

moreover, up to O(m) new streams are created from each former

stream in each iteration). Thus, their construction produces (a large

number of) indistinguishable streams of lengthΘ

((
1

ε log
1

ε

)
2

)
. Fur-

thermore, having the number of iterations equal to the number of

items appended during each iteration (up to a constant factor) is

crucial for the analysis in [10].

In contrast, our construction is naturally specified in a recursive

way, and it produces just two indistinguishable streams of length N

for any N = Ω( 1ε ). For N ≈
(
1

ε

)
2

, our lower bound of Ω( 1ε · log εN )

implies the previous one of Ω( 1ε · log
1

ε ), and hence for higher N ,

our lower bound is strictly stronger than the previous one.

The value in using a recursive construction is as follows: The

construction produces two indistinguishable streams of length
1

ε ·

2
k
for an integer k ≥ 1, and we need to prove that the quantile

summary D must store at least c · 1ε · k items while processing one

of these streams, for a constant c > 0. The first half of the streams

is constructed recursively, soD needs to store at least c · 1ε · (k − 1)
items while processing the first half of either of these two streams

(using an induction on k). If it already stores at least c · 1ε ·k items on

the first half, then we are done. Otherwise, our inductive argument

yields that there must a substantial uncertainty introduced while

processing the first half, which we use in the recursive construction

of the second half of the streams. Then our aim will be to show that,

while processing the second half, D needs to store c · 1ε · (k − 1)

items from the second half, by induction, and c · 1ε items from

the first half, by a simple bound. Hence, it stores c · 1ε · k items

overall. However, using the inductive argument on the second half

brings some technical difficulties, since the streams already contain

items from the first half. Our analysis shows a space lower bound,

called the “space-gap inequality”, that depends on the uncertainty

introduced on a particular part of the stream, and this inequality is

amenable to a proof by induction.

Organization of the paper. In Section 2, we start by describing the

formal computational model in which our lower bound holds and

formally stating our result. In Section 3, we introduce indistinguish-

able streams, and in Section 4 we describe our construction. Then,

in Section 5 we inductively prove the crucial inequality between the

space and the largest gap (the uncertainty), which implies the lower

bound. Finally, in Section 6 we give corollaries of the construction

and discuss related open problems.



1.2 Related Work

The Greenwald-Khanna algorithm [6] is generally regarded as the

best deterministic quantile summary. The space bound of O( 1ε ·
log εN ) follows from a somewhat involved proof, and it has been

questioned whether this approach could be simplified or improved.

Our work answers this second question in the negative. For a

known universeU of bounded size, Shrivastava et al. [18] designed

a quantile summary q-digest using O( 1ε · log |U |) words. Note that
their algorithm is not comparison-based and so the result is incom-

parable to the upper bound of O( 1ε · log εN ). We are not aware of

any lower bound which holds for a known universe of bounded

size, apart from the trivial bound Ω( 1ε ).
If we tolerate randomization and relax the requirement for worst-

case error guarantees, it is possible to design quantile summar-

ies with space close to
1

ε . After a sequence of improvements [2,

5, 13, 15], Karnin, Lang, and Liberty [11] designed a randomized

comparison-based quantile summary with space bounded by O( 1ε ·

log log
1

εδ ), where δ is the probability of not returning an ε-app-
roximate ϕ-quantile for some ϕ. They also provide a reduction to

transform the deterministic Ω( 1ε · log
1

ε ) lower bound into a ran-

domized lower bound of Ω( 1ε · log log
1

δ ) for δ < 1/N !, implying

optimality of their approach in the comparison-based model for an

exponentially small δ . We discuss further how the deterministic

and randomized lower bounds relate in Section 6.

Luo et al. [13] compared quantile summaries experimentally and

also provided a simple randomized algorithm with a good practical

performance. This paper studies not only streaming algorithms

for insertion-only streams (i.e., the cash register model), but also

for turnstile streams, in which items may depart. Note that any

algorithm for turnstile streams inherently relies on the bounded

size of the universe. We refer the interested reader to the survey of

Greenwald and Khanna [7] for a description of both deterministic

and randomized algorithms, together with algorithms for turnstile

streams, the sliding window model, and distributed algorithms.

Other results arise when relaxing the requirement for correctness

under adversarial order to assuming that the input arrives in a

random order. For random-order streams, Guha and McGregor [8]

studied algorithms for exact and approximate selection of quantiles.

Among other things, they gave an algorithm for finding the exact

ϕ-quantile in space polylog(N ) using O(log logN ) passes over a
random-order stream, while with polylog(N ) memory we need

to do Ω(logN /log logN ) passes on the worst-case stream. The

Shifting Sands algorithm [16] reduces the magnitude of the error

from O(n1/2) to O(n1/3). Since our lower bound relies on carefully

constructing an adversarial input sequence, it does not apply to

this random order model.

2 COMPUTATIONAL MODEL

We present our lower bounds in a comparison-based model of

computation, in line with prior work, most notably that of Hung and

Ting [10]. We assume that the items forming the input stream are

drawn from a totally ordered universeU , about which the algorithm

has no further information. The only allowed operations on items

are to perform an equality test or a comparison of two given items.

This restriction specifically rules out manipulations which try to

combine multiple items into a single storage location, or replace a

group of items with an “average” representative. We assume that

the universe is unbounded and continuous in the sense that any

non-empty open interval contains an unbounded number of items.

This fact is relied on in our proof to be able to draw new elements

falling between any previously observed pair. An example of such

a universe is a large enough set of long incompressible strings,

ordered lexicographically (where the continuous assumption may

be achieved by making the strings even longer).

Let D be a deterministic data structure for processing a stream

of items, i.e., a sequence of items arriving one by one. We make

the following assumptions about the memory contents of D. The

memory used by D will contain some items from the stream, each

considered to occupy one memory cell, and some other information

which could include lower and upper bounds on the ranks of stored

items, counters, etc. However, we assume that the memory does

not contain the result of any operation applied on any k ≥ 1 items

from the stream, apart from a comparison and the equality test

(as other operations are prohibited by our model). Thus, we can

partition the memory state into a pair M = (I ,G), where I is the
item array for storing items from the input, indexed from 1, and

there are no items stored in the general memory G.
We give our lower bound on the memory size only in terms of |I |,

the number of items stored, and ignore the size ofG . For simplicity,

we assume without loss of generality that the contents of I are
sorted non-decreasingly, i.e., I [1] ≤ I [2] ≤ · · · . If this were not case,
we could equivalently apply an in-place sorting algorithm after

processing each item, while the information potentially encoded

in the former ordering of I can be retained in G whose size we do

not measure. Moreover, we assume that |I | never decreases over
time, i.e., once some memory is allocated to the item array, it is not

released later (otherwise, we would need to take the maximum size

of |I | during the computation ofD). Finally, we can assume that the

minimum and maximum elements of the input stream are always

maintained, with at most a constant additional storage space.

Summarizing, we have the following definition.

Definition 2.1. We say that a quantile summaryD is comparison-

based if the following holds:

(i) D does not perform any operation on items from the stream,

apart from a comparison and the equality test.

(ii) The memory of D is divided into the item array I , which
stores only items that have already occurred in the stream

(sorted non-decreasingly), and general memory G, which
does not contain any item identifier. Furthermore, once an

item is removed from I , it cannot be added back to I , unless
it appears in the stream again.

(iii) Given the i-th itemai from the input stream, the computation

of D is determined solely by the results of comparisons

between ai and I [j], for j = 1, . . . , |I |, the number |I | of
items stored, and the contents of the general memory G.

(iv) Given a quantile query 0 ≤ ϕ ≤ 1, its computation is de-

termined solely by the number of items stored (|I |), and the

contents of the general memory G. Moreover, D can only

return one of the items stored in I .

Note that quantile summaries satisfying Definition 2.1 include

the Greenwald-Khanna algorithm [6] as well as many other de-

terministic [7, 14, 17] and randomized quantile summaries [2, 5,



11, 13, 15]. On the other hand, the q-digest structure [18] is not

comparison-based, since it relies on building a binary tree over

U and since it can actually return an item that did not occur in

the stream, neither of which is allowed by Definition 2.1. Thus,

our lower bound does not apply to this algorithm and indeed, for

N ≫ |U |, its space requirement of O( 1ε · log |U |) words may be

substantially smaller than Ω( 1ε · log εN ).
We are now ready to state our main result formally.

Theorem 2.2. For any 0 < ε < 1

16
, there is no deterministic

comparison-based ε-approximate quantile summary which stores

o( 1ε · log εN ) items on any input stream of length N .

Fix the approximation guarantee 0 < ε < 1

16
and assume for

simplicity that
1

ε is an integer. Let D be a fixed deterministic

comparison-based ε-approximate quantile summary. We show that

for any integer k ≥ 1, data structure D needs to store at least

Ω( 1ε ·k) items from some input stream of length Nk := 1

ε · 2
k
(thus,

we have log
2
εNk = k).

Notation and conventions. We assume that D starts with an

empty memory stateM∅ = (I∅,G∅) with |I∅ | = 0. For an item a, let
D(M,a) be the resulting memory state after processing item a if the
memory state wasM before processing a. Moreover, for a stream

σ = a1, . . . ,aN , let D(M,σ ) = D(. . .D(D(M,a1),a2), . . . ,aN ) be
the memory state after processing stream σ . For brevity, we use
(Iσ ,Gσ ) = D(M∅,σ ), or just Iσ for the item array after processing

stream σ .
When referring to the order of a set of items, we always mean

the non-decreasing order. For an item a in stream σ , let rankσ (a) be
the rank of a in the order of σ , i.e., the position of a in the ordering

of σ . In our construction, all items in each of the streams will be

distinct, thus rankσ (a) is well-defined and equal to one more than

the number of items that are strictly smaller than a.

3 INDISTINGUISHABLE STREAMS

We start by defining an equivalence of memory states of the fixed

summary D, which captures their equality up to renaming stored

items. Then, we give the definition of indistinguishable streams.

Definition 3.1. Two memory states (I1,G1) and (I2,G2) are said

to be equivalent if (i) |I1 | = |I2 |, i.e., the number of items stored is

the same, and (ii) G1 = G2.

Definition 3.2. We say that two streams π = a1a2 . . . aN and

ϱ = b1b2 . . .bN of length N are indistinguishable for D if (1) the

final memory states (Iπ ,Gπ ) and (Iϱ ,Gϱ ) are equivalent, and (2)

for any 1 ≤ i ≤ |Iπ | = |Iϱ |, there exists 1 ≤ j ≤ N such that both

Iπ [i] = aj and Iϱ [i] = bj .

We remark that condition (2) is implied by (1) if the positions

of stored items in the stream are retained in the general memory,

but we make this property explicit as we shall use it later. In the

following, let π and ϱ be two indistinguishable streams with N
items. Note that, after D processes one of π and ϱ and receives a

quantile query 0 ≤ ϕ ≤ 1,D must return the i-th item of array I for
some i , regardless of whether the stream was π or ϱ. This follows,
since D can make its decisions based on the values inG , which are

identical in both cases, and operations on values in I , which are

indistinguishable under the comparison-based model.

For any k ≥ 1, our general approach is to recursively construct

two streams πk and ϱk of length Nk that satisfy two constraints

set in opposition to each other: They are indistinguishable for D,

but at the same time, for some j, the rank of Iπ [j] in stream π and

the rank of Iϱ [j + 1] in stream ϱ are as different as possible — we

call this difference the “gap”. The latter constraint is captured by

the following definition.

Definition 3.3. We define the largest gap between indistinguish-

able streams π and ϱ (for D) as

gap(π , ϱ) = max

1≤i< |Iπ |
max

(
rankπ (Iπ [i + 1]) − rankϱ (Iϱ [i]),

rankϱ (Iϱ [i + 1]) − rankπ (Iπ [i])
)
.

Aswe assume that I is sorted, Iπ [i+1] is the next stored item after

Iπ [i] in the ordering of Iπ . In the construction in Section 4, we will

also ensure that rankπ (Iπ [i]) ≤ rankϱ (Iϱ [i]) for any 1 ≤ i ≤ |Iπ |.
Hence, we can simplify to

gap(π , ϱ) = max

i
rankϱ (Iϱ [i + 1]) − rankπ (Iπ [i]).

We also have that gap(π , ϱ) ≥ gap(π , π ), which follows, since for

any i it holds by construction that

rankϱ (Iϱ [i + 1]) − rankπ (Iπ [i]) ≥ rankπ (Iπ [i + 1]) − rankπ (Iπ [i]).

Lemma 3.4. If D is an ε-approximate quantile summary, then

gap(π , ϱ) ≤ 2εN .

Proof. Suppose that gap(π , ϱ) > 2εN . We show that D fails to

provide an ε-approximate ϕ-quantile for some 0 ≤ ϕ ≤ 1, which is

a contradiction. Namely, because gap(π , ϱ) > 2εN , there is 1 ≤ i <
|Iπ | = |Iϱ | such that rankϱ (Iϱ [i + 1]) − rankπ (Iπ [i]) > 2εN . Let ϕ
be such that

ϕ · N =
1

2

(
rankϱ (Iϱ [i + 1]) + rankπ (Iπ [i])

)
,

i.e., ϕ · N is in the middle of the “gap”. Since streams π and ϱ are

indistinguishable and D is comparison-based, given query ϕ, D
must return the j-th item of item array I for some j, regardless of
whether the stream is π or ϱ. Observe that if j ≤ i and the input

stream is π , item Iπ [j] does not meet the requirements to be an

ε-approximate ϕ-quantile of items in π . Otherwise, when j > i ,
then item Iϱ [j] is not an ε-approximate ϕ-quantile of stream ϱ. In
either case, we get a contradiction. □

As the minimum and maximum elements of stream π are in Iπ ,
it holds that gap(π , π ) ≥ N /|Iπ |, thus the number of stored items is

at least N /gap(π , π ) ≥ N /gap(π , ϱ) ≥ 1

2ε , where the last inequality

is by Lemma 3.4. This gives an initial lower bound of Ω( 1ε ) space.
Our construction of adversarial inputs for D in the next section

increases this bound.

4 RECURSIVE CONSTRUCTION OF

INDISTINGUISHABLE STREAMS

4.1 Intuition

We will define our construction of the two streams π and ϱ using a

recursive adversarial procedure for generating items into the two

streams. This procedure tries to make the gap as large as possible,

but ensures that they are indistinguishable. It helps to consider the
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Figure 1: An illustration of the largest gap computation.

recursion tree. This tree is a full binary tree with k levels, with the

root at level 1 and thus with 2
k−1

leaves at level k . In each leaf, 2/ε
items are appended to the stream, while the adversary generates no

items in internal (i.e., non-leaf) nodes. The construction performs

the in-order traversal of the recursion tree.

One of the key concepts needed is the maintenance of two

open intervals during the construction, one for stream π , denoted
(ℓπ , rπ ), and the other for stream ϱ, denoted (ℓϱ , rϱ ). Initially, these
intervals cover the whole universe, but they are refined in each

internal node of the recursion tree. More precisely, consider the

execution in an internal node v at level i of the recursion tree. We

first execute the left subtree, which generates
1

ε · 2
i−1

items into the

streams inside the current intervals.We then identify the largest gap

inside the current intervals w.r.t. item arrays of D after processing

streams π and ϱ (more precisely, after D has completed processing

the prefixes of π and ϱ constructed so far). Having the largest gap,

we identify new open intervals for π and ϱ in “extreme regions” of

this gap, so that they do not contain any item so far. We explain this

subroutine in greater detail when describing procedure RefineIn-

tervals. We choose these intervals so that indistinguishability of

the streams is preserved, while the rank difference between the

two streams (the uncertainty) is maximized. The execution of the

procedure in nodev ends by executing the right subtree ofv , which
generates a further

1

ε · 2
i−1

items into the new, refined intervals

of the two streams. Recall that we consider the universe of items

to be continuous, namely, that we can always generate sufficiently

many items within both of the new intervals.

4.2 Notation

For an item a in stream σ , let next(σ ,a) be the next item in the

ordering of σ , i.e., the smallest item in σ that is larger than a (we

never invoke next(σ ,a) when a is the largest item in σ ). Similarly,

for an item b in stream σ , let prev(σ ,b) be the previous item in the

ordering of σ (left undefined for the smallest item in σ ). Note that
next(σ ,a) or prev(σ ,b) may well not be stored by D.

For an interval (ℓ, r ) of items and an array I of items, we use

I (ℓ,r ) to denote the restriction of I to (ℓ, r ), enclosed by ℓ and r .

That is, I (ℓ,r ) is the array of items ℓ, I [i], I [i + 1], . . . , I [j], r , where
i and j are the minimal and maximal indexes of an item in I that
falls within the interval (ℓ, r ), respectively. Items in I (ℓ,r ) are taken
to be sorted and indexed from 1. Recall also that by our convention,

Iσ is the item array after processing some stream σ .

Pseudocode 1 Adversarial procedure RefineIntervals

Input: Streams π and ϱ and intervals (ℓπ , rπ ) and (ℓϱ , rϱ ) of items

such that:

(i) π and ϱ are indistinguishable, and

(ii) only the last N ′ ≥ 2 items from π and ϱ are from intervals

(ℓπ , rπ ) and (ℓϱ , rϱ ), respectively
Output: Intervals (απ , βπ ) ⊂ (ℓπ , rπ ) and (αϱ , βϱ ) ⊂ (ℓϱ , rϱ )

1: I ′π ← I
(ℓπ ,rπ )
π and I ′ϱ← I

(ℓϱ ,rϱ )
ϱ

2: i← argmax
1≤i< |I ′ϱ | rankϱ (I

′
ϱ [i + 1]) − rankπ (I

′
π [i])

▷ Position of the largest gap in intervals (ℓπ , rπ ) and (ℓϱ , rϱ )

3: (απ , βπ )←
(
I ′π [i], next(π , I

′
π [i])

)
▷ New interval for π

4: (αϱ , βϱ )←
(
prev(ϱ, I ′ϱ [i + 1]), I

′
ϱ [i + 1]

)
▷ New interval for ϱ

5: return (απ , βπ ) and (αϱ , βϱ )

4.3 Procedure RefineIntervals

We next describe our procedure to find the largest gap and refine

the intervals, defined in Pseudocode 1. It takes as input indistin-

guishable streams π and σ and two open intervals (ℓπ , rπ ) and
(ℓϱ , rϱ ) of the universe, such that intervals (ℓπ , rπ ) and (ℓϱ , rϱ ) con-
tain only the last N ′ items from π and ϱ, respectively, for some

N ′ ≥ 2. Note that I ′π and I ′ϱ are the item arrays of D for π and

ϱ restricted to the intervals (ℓπ , rπ ) and (ℓϱ , rϱ ), respectively, as
defined above. In these restricted arrays we find the largest gap

(in line 2), which is determined by the largest rank difference of

consecutive items in the two arrays. Finally, in lines 3 and 4, we

define new, refined intervals in the extreme regions of the gap. To

be precise, the new open interval for π is between item I ′π [i] (whose
rank is used to determine the largest gap) and the next item after

I ′π [i] in the ordering of π , i.e., next(π , I ′π [i]). The new open interval

for ϱ is defined in a similar way: It is between item I ′ϱ [i + 1] (used
to determine the largest gap) and the item that precedes it in the

ordering of ϱ, i.e., prev(ϱ, I ′ϱ [i + 1]).
In Figure 1 we give an illustration. In this figure, the items in the

streams are real numbers and we depict them on the real line, the

top one for π and the bottom one for ϱ. Each item is represented

either by a short line segment if it is stored in the item array, or

by a cross otherwise (indicating that it has been “forgotten” by D).

The procedure looks for the largest gap only within the current

intervals (ℓπ , rπ ) and (ℓϱ , rϱ ). The ranks of items in the restricted

item arrays (i.e., disregarding items outside the current intervals)

can be verified to be 1, 6, 11, and 14 w.r.t. both streams. (Note that

rπ is the last item in the restricted item array I ′π , even though it

was discarded from the whole item array Iπ by the algorithm, and

similarly for ℓϱ and I ′ϱ .) Thus the largest gap size is 5 items, and is

found between the second item in the restricted item array I ′π and

the third item in I ′ϱ , as highlighted in the figure. In this example,

there is another, equal sized, gap between the first and second item

in these arrays. Ties can be broken arbitrarily. The new intervals in

the extreme regions of the largest gap are depicted as well. □
We claim that in the RefineIntervals procedure |I ′π | = |I

′
ϱ |,

which implies that the largest gap in line 2 is well-defined. Let

π = a1 . . . aN and ϱ = b1 . . .bN be the items in streams π and ϱ,
respectively. Since streams π and ϱ are indistinguishable, condi-

tion (2) in Definition 3.2 implies that for any 1 ≤ i ≤ |Iπ | = |Iϱ |



Pseudocode 2 Adversarial procedure AdvStrategy

Input: Integer k ≥ 1, streams π and ϱ, and intervals (ℓπ , rπ ) and (ℓϱ , rϱ ) of items such that:

(i) π and ϱ are indistinguishable,

(ii) π contains no item from (ℓπ , rπ ) and ϱ contains no item from (ℓϱ , rϱ ), and

(iii) for any a ∈ (ℓπ , rπ ) and b ∈ (ℓϱ , rϱ ), it holds that min{i |a ≤ Iπ [i]} = min{i |b ≤ Iϱ [i]}
2

Output: Streams π ′′ = ππk and ϱ ′′ = ϱϱk , where πk and ϱk are substreams with
1

ε · 2
k
items from (ℓπ , rπ ) and (ℓϱ , rϱ ), respectively

1: if k = 1 then ▷ Leaf node of the recursion tree

2: π ′′← stream π followed by 2/ε items from interval (ℓπ , rπ ), in order

3: ϱ ′′← stream ϱ followed by 2/ε items from interval (ℓϱ , rϱ ), in order

4: return streams π ′′ and ϱ ′′

5: else ▷ Internal node of the recursion tree

6: (π ′, ϱ ′)←AdvStrategy

(
k − 1, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )

)
7: (απ , βπ ), (αϱ , βϱ )←RefineIntervals(π ′, ϱ ′, (ℓπ , rπ ), (ℓϱ , rϱ ))

8: return (π ′′, ϱ ′′)←AdvStrategy

(
k − 1, π ′, ϱ ′, (απ , βπ ), (αϱ , βϱ ))

)
(where Iπ and Iϱ are the full item arrays), there exists 1 ≤ j ≤ N
such that both Iπ [i] = aj and Iϱ [i] = bj . As only the last N

′
items of

π and of σ are from intervals (ℓπ , rπ ) and (ℓϱ , rϱ ), respectively, we

obtain that the restricted item arrays I ′π = I
(ℓπ ,rπ )
π and I ′ϱ = I

(ℓϱ ,rϱ )
ϱ

must have the same size, proving the claim.

Finally, we show two properties that will be useful later and

follow directly from the definition of the new intervals.

Observation 1. For intervals (απ , βπ ) and (αϱ , βϱ ) returned by
RefineIntervals (π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )), it holds that

(i) π contains no item in the interval (απ , βπ ) and ϱ contains no

item in the interval (αϱ , βϱ ); and
(ii) for any a ∈ (απ , βπ ) and b ∈ (αϱ , βϱ )we have thatmin{i |a ≤

Iπ [i]} = min{i |b ≤ Iϱ [i]}.

4.4 Recursive Adversarial Strategy

Pseudocode 2 gives the formal description of the recursive ad-

versarial strategy. The procedure AdvStrategy takes as input the

level of recursion k and the indistinguishable streams π and ϱ con-

structed so far. It also takes two open intervals (ℓπ , rπ ) and (ℓϱ , rϱ )
of the universe such that so far there is no item from interval

(ℓπ , rπ ) in stream π and similarly, ϱ contains no item from (ℓϱ , rϱ ).
The initial call of the strategy for some integerk is AdvStrategy

(k, ∅, ∅, (−∞,∞), (−∞,∞)), where ∅ stands for the empty stream

and −∞ and ∞ represent the minimum and maximum items in

U , respectively. Note that the assumptions on the input for the

initial call are satisfied. The strategy for k = 1 is trivial: We just

append 2/ε arbitrary items from (ℓπ , rπ ) to π and any 2/ε items

from (ℓϱ , rϱ ) to ϱ, in the same order for both streams. For k > 1, we

first use AdvStrategy recursively for level k − 1. Then, we apply
procedure RefineIntervals on the streams constructed after the

first recursive call, and we get two new intervals on the extreme

regions of the largest gap inside the current intervals. Finally, we

use AdvStrategy recursively fork−1 in these new intervals. Below,

we prove that the assumptions on input for these two recursive

calls and for RefineIntervals are satisfied.

4.5 Example of the Adversarial Strategy

We now give an example of the construction with k = 3 in Figure 2.

The universe is U = ℜ, which we depict by the real line. For

simplicity, we set ε = 1

6
(although recall that we require ε < 1

16
for

our analysis in Section 5 to hold).

The adversarial construction starts by calling AdvStrategy

(3, ∅, ∅, (−∞,∞), (−∞,∞)). The procedure then recursively calls

itself twice and in the base case k = 1, the two streams π and ϱ
are initialized by

2

ε = 12 items (we can assume the same items are

added to the two streams). The quantile summary under considera-

tion (D) chooses to store some of them, but as 2εN1 = 4, it cannot

forget four consecutive items.

At this point, we are in the execution of AdvStrategy (2, ∅,

∅, (−∞,∞), (−∞,∞)), having finished the recursive call in line 6.

Figure 2a shows the first 12 items sent to streams π and ϱ, depicted
on the real line for each stream. A short line segment represents

an item that is stored in item array I , while a cross depicts an item

not stored by D. Note that the largest gap is between the second

and the third stored item, i.e., i = 2 in line 2 of AdvStrategy. This

is because rankπ (Iπ [2]) = 5 and rankϱ (Iϱ [3]) = 9 (the gap of the

same size is also between the first and the second item). Next, the

procedure RefineIntervals finds the largest gap and identifies

new intervals (απ , βπ ) and (αϱ , βϱ ) for the second recursive call.

In the execution of AdvStrategy(1, π ′, ϱ ′, (απ , βπ ), (αϱ , βϱ )),

there are
2

ε = 12 items appended to the streams and the largest gap

can be of size at most 2εN2 = 8. In Figure 2b, we show the last 12

items, appended in the second leaf of the recursion tree, highlighted

in red. Note that fewer of the first 12 items in the streams are now

stored and that among the 12 newly appended items, the first, the

sixth, and the eleventh are stored for both streams. The execution

returns to the root node of the recursion tree and the adversary

finds the largest gap together with new intervals. One of the largest

gaps is now between the first and the second stored item (in this

example, all gaps have the same size of 8).

The execution then goes to the third leaf, where 12 items are

appended for the third time. Figure 2c illustrates this, with the most

recent 12 items shown smaller and in blue. In the execution of

AdvStrategy for k = 2, the largest gap is found — note that we

look for it only in the current intervals, and that its size can be at

most 2ε · 3 · 2ε = 12 items. One of the two largest gaps is between

the second and the third item in the restricted item arrays; these

are also the second and the third item in the whole item arrays

2
The minimum over an empty set is defined arbitrarily to be∞.
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(d) Streams π and σ with all N3 = 48 items

Figure 2: An example of the construction of streams π and σ .

(the other gap of the same size is between the first and the second

stored item). Again, new intervals are identified for the execution

of the last leaf of the recursion tree.

Finally, the last 12 items are appended to the streams, which

completes the construction. Figure 2d shows the final state, with

these last 12 items added in green. The current intervals are with

respect to the last leaf of the recursion tree. □

4.6 Properties of the Adversarial Strategy

We first give some observations. Note that the recursion tree of

an execution of AdvStrategy(k) indeed has 2
k−1

leaves which

each correspond to calling the strategy for k = 1, and that the

items are appended to streams only in the leaves, namely,
2

ε items

to each stream in each leaf. It follows that the number of items

appended is Nk =
1

ε ·2
k
. Observe that for a general recursive call of

AdvStrategy, the input streams π and ϱ may already contain some

items. Also, the behavior of comparison-based quantile summary

D may be different when processing items appended during the

recursive call in line 6 and when processing items from the call in

line 8. The reason is that the computation of D is also influenced

by items outside the intervals, i.e., by items in streams π and ϱ that

are from other branches of the recursion tree. We remark that items



in each of π ′′ and ϱ ′′ are distinct within the streams (but the two

streams may share some items, which does not affect our analysis).

We now prove that the streams constructed are indistinguishable

and that we do not violate any assumption on input for any recurs-

ive call. We use the following lemma derived from [10] (which is a

simple consequence of the facts that D is comparison-based and

the memory states (Iπ ,Gπ ) and (Iϱ ,Gϱ ) are equivalent).

Lemma 4.1 (Implied by Lemma 2 in [10]). Suppose that streams

π and ϱ are indistinguishable for D and let Iπ and Iϱ be the corres-

ponding item arrays after processing π and ϱ, respectively. Let a,b be

any two items such that min{i |a ≤ Iπ [i]} = min{i |b ≤ Iϱ [i]}. Then
the streams πa and ϱb are indistinguishable.

Lemma 4.2. Consider an execution of AdvStrategy

(
k, π , ϱ, (ℓπ , rπ ),

(ℓϱ , rϱ )
)
for k ≥ 1 and let π ′′ and ϱ ′′ be the returned streams. Sup-

pose that streams π and ϱ and intervals (ℓπ , rπ ) and (ℓϱ , rϱ ) satisfy
the assumptions on the input of AdvStrategy. Then, for k > 1, the

assumptions on input for the recursive calls in lines 6 and 8 and for

the call of RefineIntervals in line 7 are satisfied, and, for any k ≥ 1,

the streams π ′′ and ϱ ′′ are indistinguishable.

Proof. The proof is by induction on k . In the base case k = 1,

we use the fact that the
2

ε items from the corresponding intervals

are appended in their order and that min{i |a ≤ Iπ [i]} = min{i |b ≤
Iϱ [i]} for any a ∈ (ℓπ , rπ ) and b ∈ (ℓϱ , rϱ ) by assumption (iii) on

the input of AdvStrategy. Thus, applying Lemma 4.1 for each pair

of appended items, we get that π ′′ and ϱ ′′ are indistinguishable.
Now consider k > 1. Note that assumptions (i)-(iii) of the first

recursive call (in line 6) are satisfied by the assumptions of the

considered execution. So, by applying the inductive hypothesis for

the first recursive call, streams π ′ and ϱ ′ are indistinguishable.
Next, the assumptions of procedure RefineIntervals, called in

line 7, are satisfied, since streams π ′ and ϱ ′ are indistinguishable,
π contains no item from (ℓπ , rπ ), ϱ contains no item from (ℓϱ , rϱ ),

and the first recursive call in line 6 generates N ′ = 1

ε · 2
k−1

items

from (ℓπ , rπ ) into π
′
and N ′ items from (ℓϱ , rϱ ) into ϱ

′
.

Then, assumption (i) of the second recursive call in line 8 holds,

since π ′ and ϱ ′ are indistinguishable, and assumptions (ii) and (iii)

are satisfied by applying Observation 1. Finally, we use the inductive

hypothesis for the recursive call in line 8 and get that streams π ′′

and ϱ ′′ are indistinguishable. □

Our final observation is that for any 1 ≤ i ≤ |Iπ ′′ |, we have that
rankπ ′′(Iπ ′′[i]) ≤ rankϱ′′(Iϱ′′[i]). The proof follows by induction

on k (similarly to Lemma 4.2) and by the definition of the new

intervals in lines 2-4 of procedure RefineIntervals, namely, since

the new interval for π is in the leftmost region of the largest gap,

while the new interval for ϱ is in the rightmost region.

5 SPACE-GAP INEQUALITY

5.1 Intuition for the Inequality

In this section, we analyze the space required by data structure

D when invoked on the two adversarial inputs from the previous

section. Recall that our general goal is to prove thatD needs to store

c · 1ε items from the first half of the whole stream π (or, equivalently,

from ϱ) and c · 1ε · (k − 1) items from the second half (by using

induction on the second half), where c > 0 is a constant. Note also

that if D stores c · 1ε · k items from the first half of the stream, the

second half of the argument is not even needed.

However, we actually need to prove a similar result for any

internal node of the recursion tree, where the bounds as stated

above may not hold. For instance, D may use nearly no space for

some part of the stream, which implies a lot of uncertainty there, but

still may be able to provide any ε-approximate ϕ-quantile, since the
largest gap introduced earlier is very low.We thus give a space lower

bound for an execution of AdvStrategy that depends on the largest

gap size, denoted д, which is introduced in this execution. Roughly,

the space lower bound is c · (logд) ·Nk/д for a constant c > 0, so by

setting д = 2εNk we get the desired result. For technical reasons,

the actual bound stated below as (2) is a bit more complicated. We

refer to this bound as the “space-gap inequality”, and the bulk of

the work in this section is devoted to proving this inequality.

The crucial claim needed in the proof is that, fork > 1, the largest

gap size д is, in essence, the sum of the largest gap sizes д′ and д′′

introduced in the first and the second recursive call, respectively.

This claim allows us to distinguish two cases: Either the gap д′

from the first recursive call is small (less than approximately half of

д) and thus D uses a lot of space for items from the first recursive

call, or д′ ≳ 1

2
д, so д′′ ≲ 1

2
д and we use induction on the second

recursive call, together with a straightforward space lower bound

for items from the first half of the stream.

5.2 Stating the Space-Gap Inequality

We perform the formal analysis by induction. We define

S(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )) :=
���I (ℓπ ,rπ )π ′′

��� ,
where

(π ′′, ϱ ′′) = AdvStrategy(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )).

In words, it is the size of the item array restricted to (ℓπ , rπ ) after
the execution of D on stream π ′′ (or, equivalently, with ϱ instead

of π ). For simplicity, we write Sk = S(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )).
We prove a lower bound for Sk that depends on the largest gap

between the restricted item arrays for π and for ϱ. We enhance the

definition of the gap to take the intervals restriction into account.

Definition 5.1. For indistinguishable streams σ and τ and inter-

vals (ℓσ , rσ ) and (ℓτ , rτ ), let σ and τ be the substreams of σ and τ
consisting only of items from intervals (ℓσ , rσ ) and (ℓτ , rτ ), respect-

ively. Moreover, let I ′σ = I
(ℓσ ,rσ )
σ and I ′τ = I

(ℓτ ,rτ )
τ be the restricted

item arrays after processing σ and τ , respectively. We define the

largest gap between I ′σ and I ′τ in intervals (ℓσ , rσ ) and (ℓτ , rτ ) as

gap

(
σ , τ , (ℓσ , rσ ), (ℓτ , rτ )

)
= max

1≤i< |I ′τ |
rankτ (I

′
τ [i+1])−rankσ (I

′
σ [i]) .

Note that the ranks are with respect to substreams σ and τ , and
that the largest gap is always at least one, supposing that the ranks

of stored items are not smaller for τ than for σ . We again have

gap

(
σ , τ , (ℓσ , rσ ), (ℓτ , rτ )

)
≥ gap

(
σ ,σ , (ℓσ , rσ ), (ℓσ , rσ )

)
. Also, as

the restricted item arrays are enclosed by interval boundaries, the

following simple bound holds:



Sk = S(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )) ≥
Nk

gap

(
π ′′, π ′′, (ℓπ , rπ ), (ℓπ , rπ )

)
≥

Nk
gap

(
π ′′, ϱ ′′, (ℓπ , rπ ), (ℓϱ , rϱ )

) ,
(1)

where (π ′′, ϱ ′′) = AdvStrategy(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )) andNk =
1

ε · 2
k
. The following lemma (proved below) shows a stronger in-

equality between the space and the largest gap.

Lemma 5.2 (Space-gap ineqality). Consider an execution of

AdvStrategy(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )). Let π
′′
and ϱ ′′ be the re-

turned streams, and letд := gap

(
π ′′, ϱ ′′, (ℓπ , rπ ), (ℓϱ , rϱ )

)
. Then, for

Sk = S(k, π , ϱ, (ℓπ , rπ ), (ℓϱ , rϱ )), the following space-gap inequality

holds with c = 1

8
− 2ε :

Sk ≥ c · (log
2
д + 1) ·

(
Nk
д
−

1

4ε

)
. (2)

We remark that we do not optimize the constant c . Note that the
right-hand side (RHS) of (2) is non-increasing for integer д ≥ 1, as

(log
2
д + 1)/д is decreasing for д ≥ 2 and equals 1 for д ∈ {1, 2}.

First, observe that Theorem 2.2 directly follows from Lemma 5.2,

and so our subsequent work will be in proving this space-gap

inequality. Indeed, consider any integer k ≥ 1 and let (π , ϱ) =
AdvStrategy(k, ∅, ∅, (−∞,∞), (−∞,∞)) be the constructed streams

of length Nk . Let д = gap

(
π , ϱ, (−∞,∞), (−∞,∞)

)
= gap(π , ϱ).

Since π and ϱ are indistinguishable by Lemma 4.2, we have д ≤
2εNk by Lemma 3.4. Since the RHS of (2) is decreasing for д ≥ 2

and 2εNk ≥ 2, it becomes the smallest for д = 2εNk . Thus, by

Lemma 5.2, the memory used is at least

Sk ≥ c · (log
2
д + 1) ·

(
Nk
д
−

1

4ε

)
≥ c · (log

2
2εNk + 1) ·

(
1

2ε
−

1

4ε

)
= Ω

(
1

ε
· log εNk

)
.

5.3 Preliminaries for the Proof of Lemma 5.2

The proof is by induction on k . First, observe that (2) holds almost

immediately if д ≤ 2
7
. Here, we have log

2
д + 1 ≤ 8 ≤ 1

c , and so by

the bound in (1), Sk > Nk/д ≥ c · (log
2
д+1) ·

(
Nk
д −

1

4ε

)
. Similarly,

if д ≥ 4εNk , then (2) holds, since the RHS of (2) is at most 0 and

Sk ≥ 0.
3
We thus assume that д ∈ (27, 4εNk ), which immediately

implies the base case k = 1 of the induction, since 4εN1 = 8 < 2
7

because N1 =
2

ε .

We now consider k > 1. We refer to streams π , ϱ, π ′, ϱ ′, π ′′, ϱ ′′,
intervals (απ , βπ ) and (αϱ , βϱ )with the samemeaning as in Pseudo-

code 2. Let I ′π ′ = I
(ℓπ ,rπ )
π ′ and I ′ϱ′ = I

(ℓϱ ,rϱ )
ϱ′ be the restricted item

arrays, as in Pseudocode 1. We make use of the following notation:

3
Note, however, that we cannot use Lemma 3.4 to show д ≤ 2εNk , since the largest
gap has size bounded by 2ε times the length of π ′′ or ϱ′′, which can be much larger

than Nk (due to items from other branches of the recursion tree).

• Let π ′k−1, ϱ
′
k−1 be the substreams constructed during the

recursive call in line 6. Let S ′k−1 be the size of I
′
π ′ (or, equi-

valently, of I ′ϱ′ ), and let д
′ = gap

(
π ′, ϱ ′, (ℓπ , rπ ), (ℓϱ , rϱ )

)
be

the largest gap in the input intervals after D processes one

of streams π ′ and ϱ ′.

• Let I ′′π ′′ = I
(απ ,βπ )
π ′′ and I ′′ϱ′′ = I

(αϱ ,βϱ )
ϱ′′ be the item arrays

restricted to the new intervals after D processes streams

π ′′ and ϱ ′′, respectively. Let S ′′k−1 be the size of I ′′π ′′ , and

let д′′ = gap

(
π ′′, ϱ ′′, (απ , βπ ), (αϱ , βϱ )

)
be the largest gap

in the new intervals. Let π ′′k−1 and ϱ ′′k−1 be the substreams

constructed during the recursive call in line 8.

• Let I ′π ′′ = I
(ℓπ ,rπ )
π ′′ and I ′ϱ′′ = I

(ℓϱ ,rϱ )
ϱ′′ be the item arrays

restricted to the input intervals after D processes streams

π ′′ and ϱ ′′, respectively.
• Finally, let πk and ϱk be the substreams of π ′′ and ϱ ′′, re-
stricted to (ℓπ , rπ ) and (ℓϱ , rϱ ), respectively (i.e., πk and ϱk
consist of the items appended by the considered execution).

We remark that notation I ′ abbreviates the restriction to intervals
(ℓπ , rπ ) and (ℓϱ , rϱ ) (depending on the stream), while notation I ′′

implicitly denotes the restriction to the new intervals (απ , βπ ) and
(αϱ , βϱ ). Note that π ′ = ππ ′k−1, and π ′′ = π ′π ′′k−1 = ππk , and

πk = π ′k−1π
′′
k−1, and similarly for streams ϱ ′, ϱ ′′, and ϱk .

We now show a crucial relation between the gaps.

Claim 1. д ≥ д′ + д′′ − 1

Proof. Define i to be

i := argmax
1≤i′< |I ′′π ′′ |

rankϱ′′k−1
(I ′′ϱ′′[i

′ + 1]) − rankπ ′′k−1
(I ′′π ′′[i

′]),

i.e., the position of the largest gap in the arrays I ′′π ′′ and I ′′ϱ′′ . Let

a := I ′′π ′′[i] andb := I ′′ϱ′′[i+1] be the two itemswhose rank difference

determines the largest gap size. Note that, while D stores a and

b in I ′′π ′′ and I ′′ϱ′′ , these two items does not necessarily need to be

stored in I ′π ′′ and I ′ϱ′′ , respectively. This may happen for a only

in case a = απ and thus i = 1, and similarly, for b only in case

b = βϱ and i = |I ′′π ′′ | − 1. Indeed, for i > 1, item a = I ′′π ′′[i] must be

in the whole item array Iπ ′′ and thus also in I ′π ′′ , and similarly, if

i < |I ′′π ′′ | − 1, item b = I ′′ϱ′′[i + 1] must be in Iϱ′′ and thus in I ′ϱ′′ . (In

the special case |I ′′π ′′ | = 2, both a and b may not be in I ′π ′′ and in

I ′ϱ′′ , respectively, while if |I
′′
π ′′ | > 2, at least one of a or b is actually

stored.)

Let j be the largest integer such that I ′π ′′[j] ≤ a, and let a′ :=
I ′π ′′[j]; by the above observations, a′ = a unless i = 1 and a < I ′π ′′ .
Let b ′ := I ′ϱ′′[j + 1]. We now show that b ′ ≥ b. Indeed, this clearly

holds if b ′ = b, so suppose b ′ , b. This may only happen if b = βϱ
is not in I ′ϱ′′ and i = |I

′′
π ′′ | − 1. We consider two cases:

Case 1: If a′ = I ′π ′′[j] ∈ (απ , βπ ), then I ′ϱ′′[j] ∈ (αϱ , βϱ ) as π
′′
and

ϱ ′′ are indistinguishable and only the last Nk−1 items are from

these intervals. Moreover, as i = |I ′′π ′′ | − 1, index j is the largest
such that I ′ϱ′′[j] ∈ (αϱ , βϱ ), thus b

′ = I ′ϱ′′[j + 1] ≥ βϱ = b.

Case 2: Otherwise, a′ ≤ a = απ , which may only happen when

i = 1. As also i = |I ′′π ′′ | − 1, we have |I
′′
π ′′ | = 2, i.e., no items from

(απ , βπ ) and from (αϱ , βϱ ) are stored in I
′
π ′′ and in I

′
ϱ′′ , respectively.

Then we have I ′π ′′[j + 1] ≥ βπ , by the definition of j. Before the



second recursive call, it holds that απ = I ′π ′[ℓ] and βϱ = I ′ϱ′[ℓ + 1]

for some index ℓ, i.e., there are ℓ items stored in I ′π ′ and in I
′
ϱ′ which

are not larger than απ and αϱ , respectively. By a′ = I ′π ′′[j] ≤ απ
and by the definition of j, there are j ≤ ℓ items in I ′π ′′ no larger

than απ , and hence, by indistinguishability of π ′′ and ϱ ′′, there are
j items in I ′ϱ′′ no larger than αϱ . Since no item in (αϱ , βϱ ) is stored

in I ′ϱ′′ , we conclude that b
′ = I ′ϱ′′[j + 1] ≥ βϱ = b holds.

To prove the claim, it is sufficient to show

rankϱk (b
′) − rankπk (a

′) ≥ д′ + д′′ − 1 , (3)

as the difference on the LHS is taken into account in the definition

of д. We have

д′′ = rankϱ′′k−1
(b) − rankπ ′′k−1

(a) ≤ rankϱ′′k−1
(b ′) − rankπ ′′k−1

(a′) ,

since b ′ ≥ b and a′ ≤ a. This rank difference is w.r.t. substreams

π ′′k−1 and ϱ
′′
k−1, and we now show that when considering πk and ϱk ,

the difference increases by д′ − 1. Indeed, as a′ < βπ and b ′ > αϱ ,
it holds that

rankϱ′′k−1
(b ′) − rankπ ′′k−1

(a′) = rankϱk (b
′) − rankπk (a

′) − (д′ − 1),

using the definitions of д′ and of the new intervals in lines 2—4

of procedure RefineIntervals (Pseudocode 1). Summarizing, we

haveд′′ ≤ rankϱ′′k−1
(b ′)−rankπ ′′k−1

(a′) = rankϱk (b
′)−rankπk (a

′)−

(д′ − 1), which shows (3) by rearrangement. □

5.4 Completing the Proof of Lemma 5.2

In the inductive proof of (2) for k > 1, we consider two main cases,

according to whether or not д′ is relatively small (compared to д).
Recall that we still assume that д ∈ (27, 4εNk ).

Case 1: Suppose that the following inequality holds

c · (log
2
д′ + 1) ·

(
Nk−1
д′
−

1

4ε

)
≥ c · (log

2
д + 1) ·

(
Nk
д
−

1

4ε

)
. (4)

We claim that this inequality is sufficient for (2). Indeed, first

observe that Sk ≥ S ′k−1. This follows from the assumption that

the size of the (whole) item array does not decrease and that all

items that are appended to the streams in the considered execu-

tion of AdvStrategy are within the current intervals (ℓπ , rπ ) and
(ℓϱ , rϱ ), so the number of stored items from π ′′ that are outside
(ℓπ , rπ ) cannot increase while D processes items from the con-

sidered execution. Then we use the induction hypothesis from (2)

to get S ′k−1 ≥ c · (log
2
д′ + 1) ·

(
Nk−1
д′ −

1

4ε

)
, and finally, (2) follows

from (4), since we have Sk ≥ S ′k−1 ≥ c · (log
2
д′+1) ·

(
Nk−1
д′ −

1

4ε

)
≥

c · (log
2
д + 1) ·

(
Nk
д −

1

4ε

)
.

Case 2: In the remainder of the analysis, assume that (4) does not

hold. We first show that д′′ is substantially smaller than д, by a

factor a bit larger than
1

2
. Namely, we prove the following:

Lemma 5.3. Assuming д > 2
7
and that (4) does not hold we have

д′′ <
1

2

· д ·
log

2
д + 4

log
2
д + 1

. (5)

Proof. To show (5), since (4) does not hold, we have

c · (log
2
д′ + 1) ·

(
Nk−1
д′
−

1

4ε

)
< c · (log

2
д + 1) ·

(
Nk
д
−

1

4ε

)
. (6)

By Claim 1, it holds that д ≥ д′ + д′′ − 1 ≥ д′ as д′′ ≥ 1, which

allows us to simplify (6) to

c · (log
2
д′ + 1) ·

Nk−1
д′
< c · (log

2
д + 1) ·

Nk
д
.

After dividing this inequality by c · Nk = c · 2Nk−1, we obtain

log
2
д′ + 1

2д′
<

log
2
д + 1

д
. (7)

Rearranging, we get

д′ >
д

2

·
log

2
д′ + 1

log
2
д + 1

. (8)

Next, we claim that log
2
д′ ≥ log

2
д − 2. Suppose for a contradic-

tion that log
2
д′ < log

2
д − 2, i.e., д′ < 1

4
д. Using that

log
2
д′+1

2д′ is

decreasing for д′ ≥ 2 and equal to
1

2
for д′ ∈ {0, 1}, we substitute

д′ = 1

4
д into (7) and get 2 ·

log
2
д−1
д <

log
2
д+1
д . After rearranging

we have log
2
д < 3, which is a contradiction with our assumption

that д > 2
7
.

Thus, (8) and the above claim imply

д′ >
д

2

·
log

2
д − 1

log
2
д + 1

. (9)

Using Claim 1 together with (9), we obtain д >
д
2
·
log

2
д−1

log
2
д+1 +д

′′− 1,

and by rearranging, we get

д′′ < д ·

(
1 −

1

2

·
log

2
д − 1

log
2
д + 1

)
+ 1 =

1

2

· д ·

(
2 −

log
2
д − 1

log
2
д + 1

+
2

д

)
<

1

2

· д ·

(
2 −

log
2
д − 1

log
2
д + 1

+
1

log
2
д + 1

)
=

1

2

· д ·
2 · (log

2
д + 1) − (log

2
д − 1) + 1

log
2
д + 1

=
1

2

· д ·
log

2
д + 4

log
2
д + 1

,

where in the third line we use log
2
д + 1 < 1

2
д for д > 2

7
. This

concludes the proof of the lemma. □

We continue in the proof of (2) in Case 2. We now take the

second recursive call (in line 8) into account. By induction, the

space used for items from the second recursive call, which equals

to |I ′′π ′′ | = |I
′′
ϱ′′ |, is at least S

′′
k−1 ≥ c · (log

2
д′′ + 1) ·

(
Nk−1
д′′ −

1

4ε

)
.

Using (5) and the monotonicity of the RHS of (2), we get

S ′′k−1 ≥ c ·

(
log

2

(
1

2

· д ·
log

2
д + 4

log
2
д + 1

)
+ 1

)
·
©­­«

Nk−1
1

2
· д ·

log
2
д+4

log
2
д+1

−
1

4ε

ª®®¬ .
(10)

The second factor on the RHS of (10) is at least log
2
д, since

log
2

(
1

2

· д ·
log

2
д + 4

log
2
д + 1

)
+ 1 ≥ log

2

(
1

2

· д

)
+ 1 = log

2
д.

Using also Nk−1 =
1

2
Nk , we get

S ′′k−1 ≥ c ·log
2
д·
©­­«

1

2
Nk

1

2
· д ·

log
2
д+4

log
2
д+1

−
1

4ε

ª®®¬ =
c · log

2
д · Nk

д ·
log

2
д+4

log
2
д+1

−
c · log

2
д

4ε
.

(11)

Consider the Nk−1 items from π ′k−1, which are the items from

the first recursive call (in line 6). For them, we just use a simple

bound (1): Since the largest gap in I ′π ′′ is at most д and since there



can be two gaps around stored items from π ′′k−1 (i.e., those in I ′′π ′′ ),

the number of items from π ′k−1 stored in I ′π ′′ is at least

Nk−1 − 2д

д
=

Nk − 4д

2д
≥

Nk − 16εNk
2д

, (12)

using the assumption that д ≤ 4εNk .

Summarizing, (11) gives a lower bound on |I ′′π ′′ |, i.e., the number

of stored items from π ′′k−1, and (12) a lower bound on the number

of items in I ′π ′′ that are not in I ′′π ′′ . Thus, our aim is to show that

c · log
2
д · Nk

д ·
log

2
д+4

log
2
д+1

−
c · log

2
д

4ε
+
Nk − 16εNk

2д

≥ c · (log
2
д + 1) ·

Nk
д
−
c · (log

2
д + 1)

4ε
, (13)

which implies (2) as Sk ≥ |I
′
π ′′ | and |I

′
π ′′ | is lower bounded by the

LHS of (13). To show (13), first note that −
c ·log

2
д

4ε ≥ −
c ·(log

2
д+1)

4ε ,

we thus ignore these expressions. Next, we multiply both sides

of (13) by д/(c · Nk ) and get that it suffices to show

log
2
д

log
2
д+4

log
2
д+1

+
1 − 16ε

2c
≥ log

2
д + 1 . (14)

After multiplying both sides of (14) by
log

2
д+4

log
2
д+1 ≥ 1 (the second

fraction on the LHS is not multiplied, for simplicity), we obtain

log
2
д + 1−16ε

2c ≥ log
2
д + 4, which holds for c ≤ 1

8
− 2ε . This

completes the proof of Lemma 5.2, and so the space bound follows.

6 COROLLARIES AND CONCLUSIONS

Our construction closes the asymptotic gap in the space bounds for

deterministic comparison-based quantile summaries and yields the

optimality of the Greenwald and Khanna’s quantile summary [6]. A

drawback of their quantile summary is that it carries out an intricate

merging of stored tuples, where each tuple consists of a stored item

together with lower and upper bounds on its rank. A simplified

(greedy) version, whichmerges stored tuples whenever it is possible,

was suggested already in [6], and according to experiments reported

in Luo et al. [13], it performs better in practice than the intricate

algorithm analyzed in [6]. It is an interesting open problem whether

or not the upper bound of O( 1ε · log εN ) holds for some simpler

variant of the Greenwald and Khanna’s algorithm.

6.1 Finding an Approximate Median

One of the direct consequences of our result is that finding an

ε-approximate median requires roughly the same space as con-

structing a quantile summary. (This can be done similarly for any

other ϕ-quantile as long as ε ≪ ϕ ≪ 1 − ε .)

Theorem 6.1. For any ε > 0 small enough, there is no deterministic

comparison-based streaming algorithm that finds an ε-approximate

median in the stream and runs in space o( 1ε · log εN ) on any stream

of length N .

Proof sketch. Consider the streams π and ϱ constructed by the
adversarial procedure from Section 4, i.e., (π , ϱ) = AdvStrategy

(k, ∅, ∅, (−∞,∞), (−∞,∞)). Let д = gap(π , ϱ). If д ≤ 4εNk , then

the analysis in Section 5, with an appropriately adjusted space-

gap inequality, shows that the algorithm uses space Ω( 1ε · log εNk ).

Thus, consider the case д > 4εNk , which implies that there exists

ϕ ′ ∈ (0, 1) such that the item array does not store a 2ε-approximate

ϕ ′-quantile. If ϕ ′ < 0.5, we append (1 − 2ϕ ′) · Nk ≤ Nk items to

streams π and ϱ that are smaller than any item appended so far, and

after that the algorithm cannot return an ε-approximate median.

Otherwise, ϕ ′ ≥ 0.5 and we append (2ϕ ′ − 1) · Nk ≤ Nk items to

streams π and ϱ that are larger than any item appended so far. Thus,

in this case also an ε-approximate median is not stored. □

6.2 Estimating Rank

We now consider data structures for the following Estimating

Rank problem, which is closely related to computing ε-approximate

quantiles: The input arrives as a stream of N items from a totally

ordered universe U , and the goal is to design a data structure with

small space cost which is able to provide an ε-approximate rank for

any query q ∈ U , i.e., the number of items in the stream which are

not larger than q, up to an additive error of ±εN . Our construction

directly implies a space lower bound for comparison-based data

structures, which are defined similarly as in Definition 2.1.
4

Theorem 6.2. For any 0 < ε < 1

16
, there is no deterministic

comparison-based data structure for Estimating Rank which stores

o( 1ε · log εN ) items on any input stream of length N .

Proof sketch. LetD be a deterministic comparison-based data

structure for Estimating Rank. Consider again the pair of streams

(π , ϱ) = AdvStrategy(k, ∅, ∅, (−∞,∞), (−∞,∞)). Letд = gap(π , ϱ).
The space-gap inequality (Lemma 5.2) holds, using the same proof.

As shown at the beginning of Section 5, if д ≤ 2εNk + 2, then D

needs to store Ω( 1ε · log εNk ) items (the +2 makes no effective dif-

ference in the calculation). It remains to observe that if D provides

an ε-approximate rank of any query q ∈ U , then д ≤ 2εNk + 2.

Indeed, suppose for a contradiction that д > 2εNk + 2, which

implies that there is 1 ≤ i < |Iπ | = |Iϱ | such that rankϱ (Iϱ [i +
1]) − rankπ (Iπ [i]) > 2εNk + 2. Let qπ be an item which lies in

(Iπ [i], next(π , Iπ [i])), that is, just after Iπ [i] inU (qπ exists by our

continuity assumption). Similarly, letqϱ be an item in (prev(ϱ, Iϱ [i+
1]), Iϱ [i+1]). Let r be the rank returned byD when run on queryqπ
after processing stream π . Observe that D returns r also on query

qϱ after processing stream ϱ, since π and ϱ are indistinguishable,

D is comparison-based, and the results of comparisons with stored

items are the same in both cases. However, the true ranks satisfy

rankπ (qπ ) = rankπ (Iπ [i]) + 1 and rankϱ (qϱ ) = rankϱ (Iϱ [i + 1]) −
1, thus rankϱ (qϱ ) − rankπ (qπ ) > 2εNk . It follows that r differs

from rankπ (qπ ) or from rankϱ (qϱ ) by more than εNk , which is a

contradiction. □

6.3 Randomized Algorithms

We now turn our attention to randomized quantile summaries,

which may fail to provide an ε-approximate ϕ-quantile, for some

ϕ, with probability bounded by a parameter δ . Karnin et al. [11]

designed a randomized comparison-based quantile summary with

storage cost O( 1ε · log log
1

εδ ). They also proved the matching lower

4
We only need to replace item (iv) of Definition 2.1 by (iv) Given a query q ∈ U , the

computation of D is determined solely by the results of comparisons between q and I [j],
for j = 1, . . . , |I |, the number of items stored, and the contents of G .



bound, which however holds only for a certain stream length (de-

pending on ε) and for δ exponentially close to 0. We state it more

precisely as follows.

Theorem 6.3 (Theorem 6 in [11]). There is no randomized compa-

rison-based ε-approximate quantile summary with failure probability

less than δ = 1/N !, which stores o( 1ε · log log
1

δ ) items on any input

stream of length N = Θ
(
1

ε2 · log
2 1

ε

)
.

The proof follows from reducing the randomized case to the

deterministic case and using the lower bound of Ω( 1ε · log
1

ε ) [10],

which holds for streams of length N = Θ
(
1

ε2 · log
2 1

ε

)
. Suppose for

a contradiction that there exists a comparison-based ε-approximate

quantile summary which stores o( 1ε · log log
1

δ ) items for δ =
1/N !. Note that if failure probability is below 1/N !, a random-

ized comparison-based quantile summary succeeds simultaneously

for all streams of length N with probability > 0 (by the union

bound). More precisely, it succeeds for all permutations of any

given set of N distinct items, which is sufficient in the comparison-

based model. Thus, there exists a choice of random bits which

provides a correct result for all streams of length N . Hard-coding

these bits, we obtain a deterministic algorithm running in space

o( 1ε · log log
1

δ ) = o(
1

ε · log log e
N logN ) = o( 1ε · logN ) = o(

1

ε · log
1

ε ),

which contradicts the lower bound in [10].We remark that the lower

bound holds even for finding the median.

Using our lower bound of Ω( 1ε ·log εN ) for deterministic quantile

summaries, we strengthen the randomized lower bound so that it

holds for any stream length N , which in turn gives a higher space

bound. Hence, using the same proof, we obtain:

Theorem 6.4. There is no randomized comparison-based ε-appro-
ximate quantile summary with failure probability less than δ = 1/N !,

which stores o( 1ε · log log
1

δ ) items on any input stream of length N .

Note that the lower bound of Ω( 1ε · log log
1

δ ) for randomized

quantile summaries trivially holds if δ > 0 is a fixed constant (say,

δ = 0.01), since any quantile summary needs to store Ω( 1ε ) items.

It remains an open problem whether or not the lower bound of

Ω( 1ε · log log
1

δ ) holds for δ = 1/poly(N ) or for δ = 1/polylog(N ).

6.4 Biased Quantiles

Note that the quantiles problem studied in this paper gives a uni-

form error guarantee of εN for any quantile ϕ ∈ [0, 1]. A stronger,

relative-error guarantee of εϕN was proposed by Cormode et al. [3],

under the name of biased quantiles. Namely, given a queryϕ ∈ [0, 1],
an ε-approximate biased quantile summary returns a ϕ ′-quantile
for some ϕ ′ = [(1 − ε) · ϕ, (1 + ε) · ϕ].5 In other words, when quer-

ied for the k-th smallest item (where k = ⌊ϕN ⌋), the algorithm may

return the k ′-th smallest item for some k ′ ∈ [(1 − ε) · k, (1 + ε) · k].
Note that the relative-error guarantee and the uniform guarantee

of εN are essentially the same for ϕ = Ω(1), up to a constant factor.

That is, biased quantiles provide a substantially stronger guarantee

for extreme values of ϕ only, e.g., for ϕ = 1/
√
N .

5
Strictly speaking, the definition in [3] is weaker, requiring only to approximate items

at ranks ϕ j · N with error at most ε · ϕ j · N for j = 0, . . . , ⌊log
1/ϕ N ⌋ and some

parameter ϕ ∈ (0, 1) known in advance.

Any summary for biased quantiles, even constructed offline,

requires space ofΩ( 1ε ·log εN ), which is the best lower bound proved
so far. This follows by observing that any summary needs to store

the
1

ε smallest items; among the next
1

ε items, it should store every

other one; and more generally, it needs to store Ω( 1ε ) items among

those with ranks between
2
i

ε and
2
i+1

ε for any i = 0, . . . , log εN .

The state-of-the-art upper bounds for the space requirement in

the streaming setting are O( 1ε · log
3 εN ), using a deterministic

comparison-based “merge & prune” strategy [21], and O( 1ε · log εN ·
log |U |) for a fixed universeU [4], using a modification of q-digest

from [18]. The only randomized algorithms are sampling-based and

require space of O( 1ε2 · log
1

δ · log εN ) in the worst case [9, 20].

We show that our construction from Section 4 can be used to im-

prove the lower bound for ε-approximate biased quantile summaries

by a further log εN factor. Note that the definition of comparison-

based summaries (Definition 2.1) translates to this setting, as well

as Definitions 3.1 and 3.2 which define equivalent memory states

and indistinguishable streams.

Theorem 6.5. For any 0 < ε < 1

16
, there is no deterministic

comparison-based ε-approximate biased quantile summary which

stores o( 1ε · log
2 εN ) items on any input stream of length N .

Proof sketch. For an integer k , we show that any determin-

istic comparison-based ε-approximate biased quantile summary

needs to use Ω( 1ε · k
2) space on some stream of length O( 1ε · 2

k ),

so that k = Ω(log εN ). We have k phases, executed from phase

1 to phase k . In phase i , we use the construction from Section 4

to generate Ni =
1

ε · 2
i
new items that are larger than all items

from previous phases j < i . That is, in phase i we execute (πi , ϱi ) =
AdvStrategy(i, πi−1, ϱi−1, (max(πi−1),∞), (max(ϱi−1),∞)), where
πi−1 and ϱi−1 are the streams from the previous phase (and π0 =
ϱ0 = ∅) and max(σ ) is the largest item in stream σ (so σ contains no

item from (max(σ ),∞)). The streams πi and ϱi are indistinguishable
for any i , by an iterative application of Lemma 4.2.

A similar proof as in Lemma 3.4 shows that the largest gap

among items sent in phase i is O(εNi ) with respect to the relative-

error guarantee. This uses the fact that Θ(Ni ) items were sent in

previous phases and thus the relative-error guarantee for items

from phase i is Θ(εNi ). We can thus apply the analysis in Section 5,

in particular the space-gap inequality (2). We remark that even

though the streams already contain some items before phase i , this
does not affect the analysis. Indeed, the space-gap inequality works

for any execution in the recursion tree of AdvStrategy, and the

streams may already contain many items before this execution.

Thus, the summary needs to store Ω( 1ε · i) items from phase

i . Note that this includes also the minimum and maximum items

from phase i . With constant additional storage per phase, we may

suppose that the minimum and maximum items from each phase

are stored all the time after they arrive, and that we know their exact

ranks (as the number of items in each phase is fixed). Consequently,

different phases can be treated independently.

The final observation is that the largest gap among items from

phase i remains O(εNi ) even after items from subsequent phases

arrive. This follows from the relative-error guarantee, since all

subsequent items in the streams are larger than items from phase i .
Hence, the algorithm cannot remove items from phase i from the



memory when processing items from subsequent phases, except

for items that can be removed when last item from phase i arrives.
To conclude, the algorithm stores Ω( 1ε · i) items from phase i at the
end, and summing over all k phases gives the result. □

For randomized algorithms that provide all biased quantiles with

probability more than 1− δ for δ = 1/N !, the same reduction as for

the quantiles problem in Section 6.3 (with uniform error) shows that

there is no comparison-based randomized biased quantile summary

running in space o( 1ε · log εN · log log
1

δ ). Closing the gaps for

(deterministic or randomized) biased quantiles remains open.
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