
Structure-Aware Sampling:
Flexible and Accurate Summarization

Edith Cohen, Graham Cormode, Nick Duffield
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA

{edith,graham,duffield}@research.att.com

ABSTRACT
In processing large quantities of data, a fundamental problem is
to obtain a summary which supports approximate query answer-
ing. Random sampling yields flexible summaries which naturally
support subset-sum queries with unbiased estimators and well-
understood confidence bounds. Classic sample-based summaries,
however, are designed for arbitrary subset queries and are oblivi-
ous to the structure in the set of keys. The particular structure, such
as hierarchy, order, or product space (multi-dimensional), makes
range queries much more relevant for most analysis of the data.

Dedicated summarization algorithms for range-sum queries have
also been extensively studied. They can outperform existing sam-
pling schemes in terms of accuracy on range queries per summary
size. Their accuracy, however, rapidly degrades when, as is of-
ten the case, the query spans multiple ranges. They are also less
flexible—being targeted for range sum queries alone—and are of-
ten quite costly to build and use.

In this paper we propose and evaluate variance optimal sampling
schemes that are structure-aware. These summaries improve over
the accuracy of existing structure-oblivious sampling schemes on
range queries while retaining the benefits of sample-based sum-
maries: flexible summaries, with high accuracy on both range
queries and arbitrary subset queries.

1. INTRODUCTION
Consider a scenario where a large volume of data is collected on

a daily basis: for example, sales records in a retailer, or network
activity in a telecoms company. This activity will be archived in a
warehouse or other storage mechanism, but the size of the data is
too large for data analysts to keep in memory. Rather than go out to
the full archive for every query, it is natural to retain accurate sum-
maries of each data table, and use these queries for data exploration
and analysis, reducing the need to read through the full history for
each query. Since there can be many tables (say, one for every day
at each store, in the retailer case, or one for every hour and ev-
ery router in the network case), we want to keep a very compact
summary of each table, but still guarantee accurate answers to any
query. The summary allows approximate processing of queries, in
place of the original data (which may be slow to access or even
no longer available); it also allows fast ‘previews’ of computations
which are slow or resource hungry to perform exactly.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

EXAMPLE 1. As a motivating example, consider network data
in the form of IP flow records. Each record has a source and des-
tination IP address, a port number, and size (number of bytes).
IP addresses form a natural hierarchy, where prefixes or sets of
prefixes define the ranges of interest. Port numbers indicate the
generating application, and related applications use ranges of port
numbers. Summaries of IP flows are used for many network man-
agement tasks, including planning routing strategies, and traffic
anomaly detection. Typical ad hoc analysis tasks may involve esti-
mating the amount of traffic between different subnetworks, or the
fraction of VoIP traffic on a certain network. Resources for collec-
tion, transport, storage and analysis of network measurements are
expensive; therefore, accurate summaries are needed by network
operators to understand the behavior of their network.

Such scenarios have motivated a wealth of work on data summa-
rization and approximation. There are two main themes: methods
based on random sampling, and algorithms that build more com-
plex summaries (often deterministic, but also randomized). Both
have their pros and cons. Sampling is fast and efficient, and has use-
ful guaranteed properties. Dedicated summaries can offer greater
accuracy for the kind of range queries which are most common
over large data, albeit at a greater cost to compute, and providing
less flexibility for other query types. Our goal in this work is to pro-
vide summaries which combine the best of both worlds: fast, flex-
ible summaries which are very accurate for the all-important range
queries. To attain this goal, we must understand existing methods
in detail to see how to improve on their properties.

Summaries which are based on random sampling allow us to
build (unbiased) estimates of properties of the data set, such as
counts of individual identifiers (“keys”), sums of weights for partic-
ular subsets of keys, and so on, all specified after the data has been
seen. Having high-quality estimates of these primitives allows us to
implement higher-level applications over samples, such as comput-
ing order statistics over subsets of the data, heavy hitters detection,
longitudinal studies of trends and correlations, and so on.

Summarization of items with weights traditionally uses Pois-
son sampling, where each item is sampled independently. The ap-
proach which sets the probability of including an item in the sam-
ple to be proportional to its weight (IPPS) [12] enables us to use
the Horvitz-Thompson estimator [15], which minimizes the sum of
per-item variances. “VAROPT” samples [3, 26, 7] improve on Pois-
son samples in that the sample size is fixed and they are more ac-
curate on subset-sum queries. In particular VAROPT samples have
variance optimality: they achieve variance over the queries that is
provably the smallest possible for any sample of that size.

Since sampling is simple to implement and flexible to use, it is
the default summarization method for large data sets. Samples sup-
port a rich class of possible queries directly, such as those men-

tioned in Example 1: evaluating the query over the sampled data
(with appropriately scaled weights) usually provides an unbiased,
low variance estimate of the true answer, while not requiring any
new code to be written. These summaries provide not only esti-
mates of aggregate values but also a representative sample of keys
that satisfy a selection criteria. The fact that estimates are unbiased
also means that relative error decreases for queries that span mul-
tiple samples or larger subsets and the estimation error is governed
by exponential tail bounds: the estimation error, in terms of the
number of samples from any particular subset, is highly concen-
trated around the square root of the expected number of samples.

We observe, however, that traditionally sampling has neglected
the inherent structure that is present, and which is known before
the data is observed. That is, data typically exists within a well-
understood schema that exhibits considerable structure. Common
structures include order where there is a natural ordering over keys;
hierarchy where keys are leaves within a hierarchy (e.g. geographic
hierarchy, network hierarchy); and combinations of these where
keys are multi-dimensional points in a product structure. Over such
data, queries are often structure-respecting. For example, on or-
dered data with n possible key-values, although there are O(2n)
possible subset-sum queries, the most relevant queries may be the
O(n2) possible range queries. In a hierarchy, relevant queries may
correspond to particular nodes in the hierarchy (geographic areas,
IP address prefixes), which represent O(n log n) possible ranges.
In a product structure, likely queries are boxes—intersections of
ranges of each dimension. This is observed in Example 1: the
queries mentioned are based on the network hierarchy.

While samples have been shown to work very well for queries
which resemble the sums of arbitrary subsets of keys, they tend
to be less satisfactory when restricted to range queries. Given the
same summary size, samples can be out-performed in accuracy by
dedicated methods such as (multi-dimensional) histograms [11, 20,
16], wavelet transforms [17, 28], and geometric summaries [24, 14,
1, 9, 29] including the popular Q-digest [22].

These dedicated summaries, however, have inherent drawbacks:
they primarily support queries that are sum aggregates over the
original weights, and so other queries must be expressed in terms
of this primitive. Their accuracy rapidly degrades when the query
spans multiple ranges—a limitation since natural queries may span
several (time, geographic) ranges within the same summary and
across multiple summaries. Dedicated summaries do not provide
“representative” keys of selected subsets, and require changes to
existing code to utilize. Of most concern is that they can be very
slow to compute, requiring a lot of I/O (especially as the dimen-
sionality of the data grows): a method which gives a highly accu-
rate summary of each hour’s data is of little use if it takes a day to
build! Lastly, the quality of the summary may rely on certain struc-
ture being present in the data, which is not always the case. While
these summaries have shown their value in efficiently summarizing
one-dimensional data (essentially, arrays of counts), their behavior
on even two-dimensional data is less satisfying: troubling since this
is where accurate summaries are most needed. For example, in the
network data example, we are often interested in the traffic volume
between (collections of) various source and destination ranges.

Motivated by the limitations of dedicated summaries, and the
potential for improvement over existing (structure-oblivious) sam-
pling schemes, we aim to design sampling schemes that are both
VAROPT and structure-aware. At the same time, we aim to match
the accuracy of deterministic summaries on range sum queries and
retain the desirable properties of existing sample-based summaries:
unbiasedness, tail bounds on arbitrary subset-sums, flexibility and
support for representative samples, and good I/O performance.

1.1 Our Contributions
We introduce a novel algorithmic sampling framework, which we
refer to as probabilistic aggregation, for deriving VAROPT sam-
ples. This framework makes explicit the freedom of choice in
building a VAROPT summary which has previously been over-
looked. Working within this framework, we design structure-aware
VAROPT sampling schemes which exploit this freedom to be much
more accurate on ranges than their structure-oblivious counterparts.

• For hierarchies, we design an efficient algorithm that constructs
VAROPT summaries with bounded “range discrepancy”. That is,
for any range, the number of samples deviates from the expec-
tation by less than 1. This scheme has the minimum possible
variance on ranges of any unbiased sample-based summary.

• For ordered sets, where the ranges consist of all intervals, we
provide a sampling algorithm which builds a VAROPT summary
with range discrepancy less than 2. We prove that this is the best
possible for any VAROPT sample.

• For d-dimensional datasets, we propose sampling algorithms
where the discrepancy between p(R), the expected number
of sample points in the range R, and the actual number is
O(min{ds

d−1
2d ,

p
p(R)}), where s is the sample size.

This improves over structure-oblivious random sampling, where
the corresponding discrepancy is O(

p
p(R)).

Discrepany corresponds to the error of range-sum queries, but
sampling has an advantage over other summaries with similar error
bounds: The error on queries Q which span multiple ranges grows
linearly with the number of ranges for other summaries but has
square root dependence for samples. Moreover, for samples the ex-
pected error never exceeds O(

p
p(Q)) (in expectation) regardless

of the number of ranges.

Construction Cost. For a summary structure to be effective, it
must be possible to construct quickly, and with small space require-
ments. Our main-memory sampling algorithms perform tasks such
as sorting keys or (for multidimensional data) building a kd-tree.
We propose even cheaper alternatives which perform two read-only
passes over the dataset using memory that depends on the desired
summary size s (and is independent of the size of the data set).
When the available memory is O(s log s), we obtain a VAROPT
sample that with high probability 1−O(1/polys) is close in qual-
ity to the algorithms which store and manipulate the full data set.

Empirical study. To demonstrate the value of our new structure-
aware sampling algorithms, we perform experiments comparing
to popular summaries, in particular the wavelet transform [28],
ε-approximations [14], randomized sketches [4] and to structure-
oblivious random sampling. These experiments show that it is pos-
sible to have the best of both worlds: summaries with equal or
better accuracy than the best-in-class, which are flexible and dra-
matically more efficient to construct and work with.

2. PROBABILISTIC AGGREGATION
This section introduces the “probabilistic aggregation” tech-

nique. For more background, see the review of core concepts from
sampling and summarization in Appendix A.

Our data is modeled as a set of (key, weight) pairs: each key
i ∈ K has weight wi ≥ 0. A sample is a random subset S ⊂ K.
A sampling scheme is IPPS when, for expected sample size s and
derived threshold τs, the sample includes key i with probability
min{wi/τs, 1}. IPPS can be achieved with Poisson sampling (by

Algorithm 1 PAIR-AGGREGATE(p, i, j)

Require: 0 < pi, pj < 1
1: if pi + pj < 1 then
2: if rand() < pi

pi+pj
then pi ← pi + pj ; pj ← 0

3: else pj ← pi + pj ; pi ← 0
4: else . pi + pj ≥ 1

5: if rand() <
1−pj

2−pi−pj
then pi ← 1; pj ← pi + pj − 1

6: else pi ← pi + pj − 1; pj ← 1 . w/prob 1−pi
2−pi−pj

7: return p

including keys independently) or VAROPT sampling, which al-
lows correlations between key inclusions to achieve improved vari-
ance and fixed sample size of exactly s. There is not a unique
VAROPT sampling scheme, but rather there is a large family of
VAROPT sampling distributions: the well-known “reservoir sam-
pling” is a special case of VAROPT on a data stream with uniform
weights. Classic tail bounds, including Chernoff bounds, apply
both to VAROPT and Poisson sampling.

Structure is specified as a range space (K,R) with K being the
key domain and ranges R that are subsets of K. The discrepancy
∆(S, R) of a sample S on a range R ∈ R is the difference between
the number of sampled keys S∩R and its expectation p(R). We use
∆ to denote the maximum discrepancy over all rangesR. Discrep-
ancy ∆ means that the error of range-sum queries is at most ∆τs. If
a sample is Poisson or VAROPT, it follows from Chernoff bounds
that the expected discrepancy is O(

p
p(R)) and (from bounded

VC dimension of our range spaces) that the maximum range dis-
crepancy is O(

√
s log s) with probability O(1− poly(1/s)). With

structure-aware sampling, we aim for much lower discrepancy.

Defining probabilistic aggregation. Let p be the vector of sam-
pling probabilities. We can view a sampling scheme that picks a
set of keys S as operating on p. Vector p is incrementally modified:
setting pi to 1 means i is included in the sample, while pi = 0
means it is omitted. When all entries are set to 0 or 1, the sample
is chosen (e.g. Poisson sampling independently sets each entry to
1 with probability pi). To ensure a VAROPT sample, the current
vector p′ must be a probabilistic aggregate of the original p.

A random vector p(1) ∈ [0, 1]n is a probabilistic aggregate of a
vector p(0) ∈ [0, 1]n if the following conditions are satisfied:

(i) (Agreement in Expectation) ∀i, E[p
(1)
i] = p

(0)
i ,

(ii) (Agreement in Sum)
P

i p
(1)
i =

P
i p

(0)
i , and

(iii) (Inclusion-Exclusion Bounds)

(I): E[
Y
i∈J

p
(1)
i] ≤

Y
i∈J

p
(0)
i

(E): E[
Y
i∈J

(1− p
(1)
i)] ≤

Y
i∈J

(1− p
(0)
i) .

We obtain VAROPT samples by performing a sequence of prob-
abilistic aggregations, each setting at least one of the probabilities
to 1 or 0. In Appendix B we show that probablistic aggregations
are transitive and that set entries remain set. Thus, such a process
must terminate with a VAROPT sample.
Pair Aggregation. Our summarization algorithms perform a se-
quence of simple aggregation steps which we refer to as pair ag-
gregations (Algorithm 1). Each pair aggregation step modifies only
two entries and sets at least one of them to {0, 1}. The input to pair
aggregation is a vector p and a pair i, j with each pi, pj ∈ (0, 1).

The output vector agrees with p on all entries except i, j and one
of the entries i, j is set to 0 or 1. It is not hard to verify, sepa-
rately considering cases pi + pj < 1 and pi + pj ≥ 1, that PAIR-
AGGREGATE(p, i, j) correctly computes a probabilistic aggregate
of its input, and hence the sample is VAROPT.

Pair aggregation is a powerful primitive. It produces a sample of
size exactly s =

P
i p

(0)
i

1. Observe that the choice of which pair
i, j to aggregate at any point can be arbitrary—and the result is still
a VAROPT sample. This observation is what enables our approach.
We harness this freedom in pair selection to obtain VAROPT sam-
ples that are structure aware: Intuitively, by choosing to aggregate
pairs that are “close” to each other with respect to the structure, we
control the range impact of the “movement” of probability mass.

3. ONE DIMENSIONAL STRUCTURES
We use pair aggregation to make sampling structure-aware by

describing ways to pick which pair of items to aggregate at each
step. For now, we assume the data fits in main memory, and our in-
put is the list of keys and their associated IPPS probabilities pi. We
later discuss the case when the data exceeds the available memory.

For hierarchy structures (keys K are associated with leaves of
a tree and R contains all sets of keys under some internal node)
we show how to obtain VAROPT samples with (optimal) maxi-
mum range discrepancy ∆ < 1. There are two special cases of
hierarchies: (i) disjoint ranges (where R is a partition of K)—
captured by a flat 2-level hierarchy with parent nodes correspond-
ing to ranges and (ii) order where there is a linear order on keys
and R is the set of all prefixes—the corresponding hierarchy is a
path with single leaf below each internal node. For order structures
where R is the set of “intervals” (all consecutive sets of keys) we
show that there is always a VAROPT sample with maximum range
discrepancy ∆ < 2 and prove that this is the best possible.

• Disjoint ranges: Pair selection picks pairs where both keys be-
long to the same range R. When there are multiple choices, we
may choose one arbitrarily. Only when there are none do we se-
lect a pair that spans two different ranges (arbitrarily if there are
multiple choices).

• Hierarchy: Pair selection picks pairs with lowest LCA (lowest
common ancestor). That is, we pair aggregate (i, j) if there are
no other pairs with an LCA that is a descendant of LCA(i, j).

Following these rules guarantees low range discrepancy: they
ensure that for all ranges R ∈ R and for all iterations h where
R has at least one entry which is not set, we have

P
i∈R p

(h)
i ≡P

i∈R p
(0)
i . So, at termination, when all entries in R are set:

|S ∩R| ∈ {b
P

i∈R p
(0)
i c, d

P
i∈R p

(0)
i e}.

Hence, the maximum range discrepancy is ∆ < 1. In Appendix C
we bound the discrepancy of multi-range queries.

EXAMPLE 2. Figure 1 demonstrates sampling over a hierar-
chical space. The input provides a weight associated with each in-
put item (key). Each key corresponds to a leaf node which shows its
weight and IPPS sampling probability for sample size s = 4. Each
internal tree node shows the expected number of samples under it.

All VAROPT samples include exactly 4 keys but if not structure
aware then the number of samples under internal nodes can signif-
icantly deviate from their expectation. A Poisson IPPS sample has
4 keys in expectation, and is oblivious to structure.
1Assuming that

P
i p

(0)
i is integral. This can be ensured (determin-

istically) by choosing τ as described in Algorithm 4.

0.8 0.4 0.2 0.3

1.9

0.9

4

2.1

0.71.2
1.1

0.20.10.70.40.60.3

6 4 2 3 243 87 1

leaf 1 2 3 4 5 6 7 8 9 10
IPPS 0.3 0.6 0.4 0.7 0.1 0.8 0.4 0.2 0.3 0.2

(1)+(2),(3)+(4), 0 0.9 1 0.1 0.1 0.2 1 0.5 0 0.2
(6)+(7),(8)+(9)

(2)+(4), (8)+(10) 0 1 1 0 0.1 0.2 1 0 0 0.7
(6)+(10) 0 1 1 0 0.1 0 1 0 0 0.9
(5)+(10) 0 1 1 0 0 0 1 0 0 1

Figure 1: Sampling over a hierarchy structure.

The table shows a sequence of pairwise aggregations which fol-
lows the hierarchy pair selection rule. The result is a structure-
aware VAROPT sample, consisting of the leaves S = {2, 3, 7, 10}.
One can verify that the number of samples under each internal
nodes is indeed the floor or ceiling of its expectation.

• Order structures: In Appendix D we establish the following:

THEOREM 1. For the order structure (all intervals of ordered
keys), (i) there always exists a VAROPT sample distribution with
maximum range discrepancy ∆ ≤ 2. (ii) For any fixed ∆ < 2,
there exist inputs for which a VAROPT sample distribution with
maximum range discrepancy ≤ ∆ does not exist.

4. PRODUCT STRUCTURES
We now consider summarizing d-dimensional data, where the

key structure projected on each axis is an order or a hierarchy.
Ranges are axis parallel hyper rectangles: a product of one-
dimensional key ranges (order) and/or internal nodes of a hierar-
chy.

We develop a VAROPT sampling algorithm where the discrep-
ancy on a range R is that of a (structure oblivious) VAROPT sample
on a subset with µ ≤ min{p(R), 2ds

d−1
d }. Hence, the estimation

error is subject to tail bounds (2) and (3) with this value of µ and
concentrated around

√
µ ≤ min{

p
p(R),

√
2ds

d−1
2d }.

As in the one-dimensional case, the intuition behind our ap-
proach is to limit range discrepancy by preferring pairwise aggre-
gations that result in “localized” movement of “probability mass.”

Uniform case. We start with the special case of a uniform distri-
bution over a d-dimensional hyper cube with measure s = hd.
Our algorithm partitions the hypercube into s unit cells and se-
lects the sample by independently picking a single point uniformly
from each unit cell. The resulting sample S is a VAROPT sample
(of size s) of the uniform hypercube. For analysis, observe that
any axis-parallel hyperplane intersects at most hd−1 = s

d−1
d unit

cells. Therefore, any axis-parallel box query R intersects at most
2ds(d−1)/d cells that are not contained in R. The only error in
our estimation comes from these “boundary” cells which we de-
note B(R): all other cells are either fully inside or fully outside R,
and so do not contribute to the discrepancy. We map each boundary
cell C ∈ B to a 0/1 random variable which is 1 with probability
proportional to the size of the overlap, |C ∩ R|. These random
variable are independent Poisson with µ =

P
C∈B |C ∩ R| ≤

min{p(R), |B(R)|}, and so the tail bounds hold.

Algorithm 2 KD-HIERARCHY(depth, key set)

1: if |key set| = 1 then
2: h.val← key set
3: h.left← null; h.right← null;
4: return h . kd-hierarchy h is a leaf node
5: else
6: h.val← null
7: a← depth mod d . axis on which partition is made
8: if axis a has an order structure then
9: m← arg minm

˛̨̨P
i|keya(i)≤m pi −

P
i|keya(i)>m pi

˛̨̨
. m is weighted median of key set ordered on axis a

10: left set← {i|keya(i) ≤ m};
11: right set← {i|keya(i) > m};
12: else . axis a has a hierarchy structure Ha

13: Find the partition of key set into left set and
right set over all linearizations of the hierarchy to minimize˛̨̨P

i∈left set pi −
P

i∈right set pi

˛̨̨
14: h.left← KD-HIERARCHY(depth + 1, left set)
15: h.right← KD-HIERARCHY(depth + 1, right set)
16: return h

General Case. In general, the probability mass is not distributed
uniformly throughout the space as in the previous case. So instead,
we seek to build a partition of the space into regions so that the
probability mass is (approximately) equal. In particular, we con-
sider using kd-trees to obtain a partition into cells containing keys
whose sum of probabilities is Θ(1) (in general it is not possible
to partition the discrete probabilities to sum to exactly 1). Choos-
ing kd-trees means that every axis-parallel hyperplane intersects
O(s

d−1
d) cells. Since cells are not exact units, we have to carefully

account for aggregations of the “leftover” probabilities.
Let K be the input set of weighted d-dimensional keys. Then:

• Compute IPPS inclusion probabilities for K and set aside all
keys with pi = 1 (they must all be included in the summary).
Hence, wlog, we have that all keys in K have pi < 1.

• Compute a hierarchy T over the (multidimensional) keys in K:
T ← KDHIERARCHY(0, K) .

• Apply the hierarchy summarization algorithm (Section 3) to T .

Algorithm KD-HIERARCHY builds a kd-tree, splitting on each
dimension in turn. At each internal node we select a hyperplane
perpendicular to the current axis that partitions the probability
weight in half (or as equally as possible.) Each leaf of the tree then
corresponds to an undivided rectangle containing approximately
unit probability mass. Analysis and examples are given in Ap-
pendix E.

5. I/O EFFICIENT SAMPLING
The algorithms presented in previous sections assume that we

can hold the full data set in memory to generate the summary. As
data sets grow, we require summarization methods that are more
I/O efficient. In particular, the reliance on being able to sort data,
locate data in hierarchies, and build kd-trees over the whole data
may not be realistic for large data sets. In this section, we present
I/O efficient alternatives that generate a structure-aware VAROPT
sample while only slightly compromising on range discrepancy
with respect to the main-memory variants. The intuition behind our
approach is that a structure-oblivious VAROPT sample of sufficient

Algorithm 3 IO-AGGREGATE(i)

Process key i:
1: pi ← min{1, wi/τs} . IPPS sampling prob
2: if pi = 1 then
3: S ← S ∪ {i} . i is placed in the sample
4: else . pi < 1
5: L← L(i) . L is the cell that contains i
6: if a(L) = ∅ then . Cell L has no key with pa ∈ {0, 1})
7: a(L)← i . i becomes the active key of its cell
8: else . L has an existing active key
9: a← a(L)

10: PAIR-AGGREGATE(p, i, a) . One of pi, pa is set
11: a(L)← ∅
12: if pa = 1 then
13: S ← S ∪ {a} . a is placed in the sample
14: if 0 < pa < 1 then
15: a(L)← a . a remains the active key of L

16: if pi = 1 then
17: S ← S ∪ {i} . i is placed in the sample
18: if 0 < pi < 1 then
19: a(L)← i . i becomes the active key of L

size Õ(s) is useful to guide the construction of a structure-aware
summary because with high probability it hits all sufficiently large
ranges (those with p(R) ≥ 1) (In geometric terms, it forms an ε-net
of the range space [13]). Once built, the summary can be kept in
fast-access storage while the original data is archived or deleted.

Description. Our algorithms perform two read-only streaming
passes over the (unsorted) input dataset. When using memory of
size Õ(s) (where s is the desired sample size), the range discrep-
ancy is similar to that of the main memory algorithm with high
probability. In the first pass we compute a random sample S′ of
size s′ > s using memory s′ via Poisson IPPS or stream VAROPT
sampling (reservoir sampling if keys have uniform weights). We
also compute the IPPS threshold value τs for a sample of size s (de-
scribed in Appendix A). After completion of the first pass (in main
memory) we use S′ to construct a partition L of the key domain.
The partition has the property that with high probability p(L) ≤ 1
for all L ∈ L.

In the second pass, we incrementally build the sample S, initial-
ized to ∅. We perform probabilistic aggregations, guided by the
partition L, using IPPS probabilities for a sample of size s. We
maintain at most one active key a(L) for each cell L ∈ L, which is
initialized to null. Each key i is processed using IO-AGGREGATE
(Algorithm 3): if p = min{1, wi/τs} = 1, then i is added to
S. Otherwise, if there is no active key in the cell L(i) of i, then
i becomes the active key. If there is an active key a, we PAIR-
AGGREGATE i and a. If the updated p value of one of them be-
comes 1, we include this key in the sample S. The key with p value
in (0, 1) (if there is one) is the new active key for the cell. The
storage used is O(s + |L|), since we maintain at most one active
key for each part and the number of keys included in S is at most
s. Finally, after completing the pass, we PAIR-AGGREGATE the
≤ |L| active keys, placing all keys with final pi = 1 in S.

Partition and aggregation choices. The specifics of the main-
memory operations—the construction of the partition and the final
aggregation of active keys—depend on the range structure. We start
with product structures and then refine the construction to obtain
stronger results for one-dimensional structures. Note that keys in
S′ with min{1, wi/τs} = 1 must be included in S. Moreover,

S′ must include all such keys—as S′ includes all keys with wi ≥
τs′ < τs, it therefore includes all keys with wi ≥ τs. These keys
can thus be excluded from consideration after the first phase.

Product structures: We compute h← KD-HIERARCHY(0, S′) (for
S′ with all keys with wi ≥ τs removed). This hierarchy h induces
a partition of the key domain according to the splitting criteria in
each node. The partition L corresponds to the leaves of h. The
aggregation of active keys in the final phase follows the hierarchy
h (as in Section 3).

Disjoint ranges: There is a cell in the partition for every range from
R that contains a key from S′. We then induce an arbitrary order
over the ranges and put a cell for each union of ranges inR which
lies between two consecutive ranges represented in the sample. In
total we obtain 2s′ cells. In the final phase, active keys can be
aggregated arbitrarily.

When s′ = Ω(s log s), with probability 1−poly(1/s), all ranges
of size ≥ 1 are intersected by S′ and each cell L that is a union of
ranges not seen in S′ has size at most 1 (thus, each range R with
probability mass p(R) < 1 can obtain at most one sample in S,
and so will not be over-represented in the final sample). Thus, the
maximum discrepancy is ∆ < 1 with probability 1− poly(1/s).

Order: We sort S′ according to the order (excluding keys with
wi ≥ τs). If i1, . . . , it are the remaining keys in sorted order, there
is a cell L for each subinterval (ij , ij+1] and two more, one for all
keys ≤ i1 and the other for keys > it. The final aggregation of
active keys follows the main-memory aggregation of ordered keys.

When s′ = Ω(s log s), with high probability, the maximum
probability distance between consecutive keys is 1 and therefore,
the maximum range discrepancy is ∆ < 2.

Hierarchy: A natural solution is to linearize the hierarchy, i.e. gen-
erate a total order consistent with the hierarchy, and then apply the
algorithm for this order structure. This obtains ∆ < 2 with high
probability. Alternatively, we can select all ancestors in the hier-
archy of keys in S and form a partition by matching each key to
its lowest selected ancestor. This will give us maximum range dis-
crepancy ∆ < 1 with high probability. The number of ancestors,
however, can be large and therefore this approach is best for shal-
low hierarchies.

6. EXPERIMENTAL STUDY
We conducted an experimental study of our methods, and compared
them with existing approaches to summarizing large data sets. We
consider three performance aspects: building the summary, query
processing, and query accuracy. We vary the weight of queries and
the number of ranges in each query.

6.1 Experimental Environment
Data Sets and Query Sets. We compared our approach on a vari-
ety of data sets, and present results on two examples:

The Network dataset consists of network flow data summarizing
traffic volumes exchanged between a large number of sources and
destination, observed at a network peering point. Each of the 196K
input tuples gives the total volume associated with a (source, des-
tination) pair. In total, there are 63K distinct sources and 50K dis-
tinct destinations. The keys are drawn from the two-dimensional IP
hierarchy, i.e. X=232 and Y=232 (i.e., a product of hierarchies).

The Technical Ticket data is derived from calls to a customer care
center of a broadband wireline access network that resulted in a
technical trouble ticket. Each key consists of: (i) an anonymous

10-5

10-4

10-3

10-2

10-1

 100 1000 10000 100000

A
bs

ol
ut

e
E

rr
or

Summary Size

Network Data, uniform area queries

aware
obliv

wavelet
qdigest

(a) Accuracy vs Space on Network

10-4

10-3

10-2

10-1

100

 0.001 0.01 0.1 1

A
bs

ol
ut

e
E

rr
or

Query Weight

Network Data, uniform weight queries

aware
obliv

wavelet
qdigest

(b) Accuracy vs Query weight on Network

10-4

10-3

10-2

10-1

 1 10 100

A
bs

ol
ut

e
E

rr
or

Ranges per query

Network Data, uniform weight queries

aware
obliv

wavelet
qdigest

(c) Accuracy vs Ranges per Query on Network

Figure 2: Experimental results on Network Data set.

identifier for unique customers; (ii) a trouble code, representing a
point in a hierarchy determining the nature of the problem iden-
tified from a predetermined set by the customer care staff; and
(iii) a network code, indicating points on the network path to the
customer’s location. Both attributes are hierarchical with varying
branching factor at each level, representing a total of approximately
224 possibilities in each dimension, i.e. X = 224 and Y = 224.
There are 4.8K distinct trouble codes present in the data, 80K dis-
tinct network locations, and 500K distinct observed combinations.

Each query is produced as a collection of non-overlapping rect-
angles in the data space. To study the behavior of different sum-
maries over different conditions, we generated a variety of queries
of two types. In the uniform area case, each rectangle is placed
randomly, with height and width chosen uniformly within a range
[0, h] and [0, w]. We tested a variety of scales to determine h and
w, varying these from covering almost the whole space, to covering
only a very small fraction of the data (down to a 10−4 fraction). In
the uniform weight case, each rectangle is chosen to cover roughly
the same fraction of the total weight of keys. We implement this
by building a kd-tree over the whole data, and picking cells from
the same level (note, this is independent of any kd-tree built over
sampled data by our sampling methods). For each query, we com-
pute the exact range sum over the data, and compare the absolute,
sum-squared and relative errors of our methods across a collection
of queries. In our plots below, we show results from a battery of 50
queries with varying number of rectangles.

Methods. We compared structure-aware sampling to best-in-class
examples of the various approaches described in Appendix A:

Obliv, is a structure-oblivious sampling method. We implemented
VAROPT sampling to give a sample size of exactly s.

Aware, the structure aware sampling method. We follow the 2 pass
algorithm (Section 5 and Section 4), and first draw a sample of size
several times larger than s, the target size (in our experiments, we
set s′ = 5s: increasing the factor did not significantly improve the
accuracy). We then built the kd-tree on this sample, and took a sec-
ond pass over the data to populate the tree. Lastly, we perform pair
aggregation within the tree structure to produce a sample of size
exactly s. Although the algorithm is more involved than straight
VAROPT, both are implemented in fewer than 200 lines of code.

Wavelet, implements the (two-dimensional) standard Haar wavelet
scheme. In a single pass we compute the full wavelet transform of
the data: each input data point contributes to log X · log Y wavelet
coefficients. We then prune these coefficients to retain only the s
largest (normalized) coefficients for query answering.

Qdigest, implements the (two-dimensional) q-digest data structure
[14]. This deterministically builds a summary of the data. Given a
parameter ε, the structure is promised to be at worst O(1

ε2
log X ·

log Y), but in practice materializes much fewer nodes than this, so
we count the number of materialized nodes as its size.

Sketch, implements the Count-sketch, a randomized summary of
the data [4]. Each input item contributes to O(log X · log Y)
sketches of dyadic rectangles. We choose the size of each sketch so
that the total size is bounded by a parameter s.

Our implementations in Python were run on the same machine,
on a 2.4GHz core with access to 4GB of memory. For most meth-
ods, we perform static memory allocation as a function of summary
size in advance. The exception is wavelets, which needs a lot of
space to build the transform before pruning.

6.2 Network Data Accuracy
Figure 2 shows accuracy results on network data. The y-axis

shows accuracy measured as the error in the query results divided
by the total weight of all data (the absolute error). Our experiments
which computed other metrics such as sum-squared error showed
the same trends, and so are omitted.

On this data, the structure-aware sampling typically achieved the
least error. Figure 2(a) shows this behavior across a variety of sum-
mary sizes with uniform area queries each containing 25 ranges.
For comparison, we measure the space used by each summary in
terms of elements on the original data, so in this case the small-
est sample contains 100 IP address pairs (and weights). This is
compared to keeping the 100 largest wavelet coefficients, and a q-
digest of 100 nodes. We also compared to sketch summaries with
an equivalent amount of space. However, the space required before
a sketch of two-dimensional data becomes accurate is much larger
than for the other summaries considered. The total error for the
queries shown was off the scale on the graphs, so we omit sketches
from further accuracy comparison.

Across most summary sizes, the structure-aware sampling is sev-
eral times more accurate than its structure-oblivious counterpart:
Figure 2(a), which is in log-scale on both axes, shows that the error
of the structure-aware method is half to a third that of the oblivious
method given the same space: a significant improvement. The de-
terministic q-digest structure is one to two orders of magnitude less
accurate in the same space. Only the Haar wavelet comes close to
structure-aware sampling in terms of accuracy. This is partly due to
the nature of uniform area queries: on this data, these correspond
to either very small or very large weight.

Figure 2(b) shows the accuracy under uniform weight queries,
where each query contains 10 ranges of approximately equal

100

101

102

103

104

105

106

 100 1000 10000 100000

Ite
m

s
/ s

Summary Size

Cost of building summary for Network Data

aware
obliv

wavelet
qdigest
sketch

(a) Construction throughput: network data

100

101

102

103

104

105

106

 100 1000 10000 100000

Ite
m

s
/ s

Summary Size

Cost of building summary for Tech Ticket Data

aware
obliv

wavelet
qdigest
sketch

(b) Construction throughput: tech ticket data

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 100 1000 10000 100000

It
e
m

s
 /
 s

Summary Size

Time to perform queries on Network Data

aware
obliv

wavelet
qdigest
sketch

(c) Query time vs summary size

Figure 3: Time costs as summary size varies.

weight. The graph shows the results for a fixed summary size of
2700 keys corresponding to a total summary size of about 32KB.
Here we see a clear benefit of sampling methods compared to
wavelets and q-digest: note that the error of q-digest is close to
the total weight of the query. For those “light” queries which com-
prise a small fraction of the data, there is little to choose between
the two sampling methods. But for queries which touch more of
the data, structure-awareness is able to obtain half the error of its
oblivious cousin.

The general trend is for the absolute error to increase with the
fraction of data included in the sample. However, note that the
gradient of these lines is shallow, meaning that the relative error
is actually improving, as our analysis indicates: structure aware
sampling obtains 0.001 error on a query that covers more than 0.1
of the whole data weight, i.e., the observed relative error is less than
a 1% fraction.

Figure 2(c) shows the case when we hold the total weight of
the query steady (in this case, at approximately 0.12 of the total
data weight), and vary the number of ranges in each query. We
see that the structure oblivious accuracy does not vary much: as
far as the sample is concerned, all the queries are essentially subset
queries with similar weight. However, when the query has fewer
ranges, the structure aware sampling can be several times better.
As the number of ranges per query increase, each range becomes
correspondingly smaller, and so for queries with 40 or more ranges
there is minimal difference between the structure aware and struc-
ture oblivious. On this query set, wavelets are an order of magni-
tude less accurate, given the same summary size.

6.3 Scalability
To study scalability of the different methods, we measured the

time to build the summaries, and the time to answer 2500 range
queries. Figure 3 shows these results as we vary the size of the
summary. Although our implementations are not optimized for per-
formance, we believe that these results show the general trend of
the costs. Structure-oblivious is the fastest, whose cost is essen-
tially bounded by the time to take a pass through the data (Figures
3(a) and 3(b)). Structure-aware sampling requires a second pass
through the data, and for large summaries the extra time to locate
nodes in the kd-tree reduces the throughput. We expect that a more
engineered implementation could reduce this building cost.

The q-digest and sketch summaries are both around 2 orders of
magnitude slower to build the summary. These structures are quite
fast in one-dimension, but have to do more work in higher dimen-
sions. For example, the sketch needs to update a number of loca-
tions which grows with the product of the logarithm of the dimen-

sion sizes. On pairs of 32 bit addresses, this factor is proportional
to 322=1024. The cost of building the 2D Haar wavelet summary
is 4 orders of magnitude more than sampling. The reason is that
each point in the data contributes to 1024 coefficients, leading to
millions of values before thresholding.

Since the samples, once built, have the same form, query answer-
ing takes the same time with both obliv and aware (Figure 3(c)): we
just compute the intersection of the sample with each query rectan-
gle. The cost grows with increasing sample size, as we are just
scanning through the sample to find which points fall within each
rectangle. Still, this naive approach to query answering can pro-
cess thousands of query rectangles per second (recall, the y-axis is
showing the time to complete all 2500 rectangle queries).

In comparison, asking this many queries over the full data takes
2 minutes. Again, we see the disadvantage of the wavelet approach:
each rectangle query takes of the order of a second—in other words,
it is about 1000 times slower than using a sample. The reason is that
each rectangle is decomposed into dyadic rectangles. In the worst
case, there are 1000 dyadic rectangles formed, and each dyadic
rectangle requires the value of 1000 coefficients. The effect as we
go to higher dimensions only gets worse, growing exponentially
with the dimension. While there should be more efficient ways to
use wavelets, the overall cost is offputtingly high.

6.4 Tech Ticket Data Accuracy
The plots in Figure 4 show accuracy experiments on the tech

ticket data set. Figure 4(a) shows that structure-aware and
structure-oblivious sampling behave similarly for smaller sample
sizes: this is because this data set has many high weight keys which
must be included in both samples. For large sample sizes, the meth-
ods diverge, and the benefit of structure awareness is seen: the error
is less than half that for the same sized obliv summary for samples
that are between 1% and 10% of the data size.

The next two plots compare the case for uniform area queries
(over 25 ranges, Figure 4(b)) and uniform weight queries (10
ranges, Figure 4(c)). We see that on uniform area queries, wavelets
can become competitive for higher weights, but this is not seen
when the weight of each range is controlled. In either case, for
these queries of several ranges, structure-aware sampling seems to
give the best results overall . Certainly, wavelets do not seem to
scale with this type of data: tens to hundreds of millions of coeffi-
cients are generated before thresholding, leading to a high time and
space cost. Figure 3(b) emphasises the impracticality of wavelets
on this data: generating and using samples takes seconds, while
using wavelets takes (literally) hours.

10-3

10-2

10-1

 100 1000 10000 100000

A
bs

ol
ut

e
E

rr
or

Summary Size

Tech Ticket Data, uniform weight queries

aware
obliv

wavelet
qdigest

(a) Accuracy vs space on Tech Ticket

10
-4

10
-3

10
-2

10
-1

 0.0001 0.001 0.01 0.1 1

A
b
s
o
lu

te
 E

rr
o
r

Query Weight

Tech Ticket Data, uniform area queries

aware
obliv

wavelet
qdigest

(b) Accuracy vs query weight on Tech Ticket

10
-4

10
-3

10
-2

10
-1

 0.001 0.01 0.1 1

A
b
s
o
lu

te
 E

rr
o
r

Query Weight

Tech Ticket Data, uniform weight queries

aware
obliv

wavelet
qdigest

(c) Accuracy vs query weight on Tech Ticket

Figure 4: Accuracy on the Tech Ticket Data.

7. CONCLUDING REMARKS
We introduce structure-aware sampling as an alternative to

structure-oblivious sampling and tailored deterministic summaries.
Our structure-aware samples are VAROPT—they retain the full
benefits of state-of-the-art sampling over deterministic summaries:
flexibility and support for arbitrary subset queries, accuracy on
these queries, unbiased estimation, and exponential tail bounds on
the error. By optimizing the sample distribution for range queries,
we obtain superior accuracy with respect to structure-oblivious
samples and match or surpass the accuracy of tailored determin-
istic summaries. Our proposed algorithms are simple to implement
and are I/O efficient, requiring only two sequential read passes over
the data and memory which is independent of the input size. Go-
ing to only a single (streaming) pass requires quite different ideas,
since in this case the VAROPT sample is unique, and hence struc-
ture oblivious. Instead, it is necessary to relax the VAROPT require-
ment to allow the freedom to exploit structure; our initial results in
this direction are presented in [6].

8. REFERENCES
[1] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich.

Deterministic sampling and range counting in geometric data
streams. ACM Trans. Algorithms, 3(2):16, 2007.

[2] H. Brönnimann, B. Chen, M. Dash, P. Haas, and P. Scheuer-
mann. Efficient data reduction with EASE. In KDD, 59–68,
2003.

[3] M. T. Chao. A general purpose unequal probability sampling
plan. Biometrika, 69(3):653–656, 1982.

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP, 693–703, 2002.

[5] H. Chernoff. A measure of the asymptotic efficiency for test
of a hypothesis based on the sum of observations. Annals of
Math. Statistics, 23:493–509, 1952.

[6] E. Cohen, G. Cormode, N. Duffield. Structure-Aware
Sampling on Data Streams In SIGMETRICS, 197–208, 2011

[7] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup.
Stream sampling for variance-optimal estimation of subset
sums. In SODA, 1255–1264, 2009.

[8] E. Cohen, N. Duffield, C. Lund, M. Thorup, and H. Kaplan.
Variance optimal sampling based estimation of subset sums.
arXiv:0803.0473v2, 2010.

[9] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Finding hierarchical heavy hitters in streaming data. ACM
Trans. Knowl. Discov. Data, 1(4):1–48, 2008.

[10] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan.
Dependent rounding and its applications to approximation
algorithms. J. Assoc. Comput. Mach., 53(3):324–360, 2006.

[11] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.
Approximating multi-dimensional aggregate range queries
over real attributes. In SIGMOD, 463–474, 2000.

[12] J. Hájek. Sampling from a finite population. Marcel Dekker,
New York, 1981.

[13] D. Haussler and E. Welzl. Epsilon nets and simplex range
queries. Discrete Comput. Geom., 2, 1987.

[14] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Tóth.
Adaptive spatial partitioning for multidimensional data
streams. In ISAAC, 522–533, 2004.

[15] D. G. Horvitz and D. J. Thompson. A generalization of
sampling without replacement from a finite universe. J.
Amer. Stat. Assoc., 47(260):663–685, 1952.

[16] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional
selectivity estimation using compressed histogram
information. SIGMOD Rec., 28(2):205–214, 1999.

[17] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histogr-
ams for selectivity estimation. In SIGMOD, 448–459, 1998.

[18] A. Panconesi and A. Srinivasan. Randomized distributed
edge coloring via an extension of the chernoff-hoeffding
bounds. SIAM J. Comput., 26(2):350–368, 1997.

[19] J. M. Phillips. Algorithms for epsilon-approximations of
terrains. In ICALP, 447–458, 2008.

[20] V. Poosala and Y. Ioannidis. Selectivity estimation without
the attribute value independence assumption. In VLDB,
486–495, 1997.

[21] C.-E. Särndal, B. Swensson, and J. Wretman. Model Assisted
Survey Sampling. Springer, 1992.

[22] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for sensor
networks. In SenSys, 239–249, 2004.

[23] A. Srinivasan. Distributions on level-sets with applications to
approximation algorithms. In FOCS, 588-597, 2001.

[24] S. Suri, C. D. Tóth, and Y. Zhou. Range counting over
multidimensional data streams. In SCG, 160–169, 2004.

[25] M. Szegedy and M. Thorup. On the variance of subset sum
estimation. In ESA, 75–86, 2007.

[26] Y. Tillé. Sampling Algorithms. Springer, 2006.
[27] V. Vapnik and A. Y. Chervonenkis. On the uniform

convergence of relative frequencies of events to their
probabilites. Theory of Probability and its applications,
16:264–280, 1971.

[28] J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation
and histograms via wavelets. In CIKM, 96–104, 1998.

[29] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online
identification of hierarchical heavy hitters: algorithms,
evaluation, and applications. In IMC, 101–114, 2004.

APPENDIX
A. BACKGROUND ON SUMMARIZATION

Sampling Techniques
A sample S is a random subset drawn from the space of keys K. In
our context, the keys K are members of a structured domain K.
Inclusion Probability Proportional to Size (IPPS) [12]: Many
sampling schemes set the inclusion probability of each key in S
proportional to its weight, but truncated so as not to exceed 1.
When defined with respect to a threshold parameter τ > 0, the
inclusion probability of i is pi = min{1, wi/τ}.

The expected size of the sample is just the sum of the pi’s, so we
can achieve a sample of expected size s by choosing an appropriate
threshold τs. This τs can be found by solving the equation:P

i min{1, wi/τs} = s .

τs can be computed via a linear pass on the data, using a heap H of
size at most s. Let L denote the total weight of keys processed that
are not present in the heap H . Algorithm 4 presents the algorithm
to update the value of τ for each new key. If the weight of the
new key is below the current value of τ , then we add it to L, the
sum of weights; else, we include the weight in the heap H . Then
adjust the heap: if the heap has s items, or the smallest weight
in the heap falls below the new value of τ (Line 3), we move the
smallest weight from H to L. Finally, we compute the new τ value
in Line 6. After processing all keys, we have found τs for this data.

The Horvitz Thompson (HT) estimator [15] allows us to accu-
rately answer queries from a sample, by providing adjusted weights
to use for each key in the sample. For a key i of weight wi and in-
clusion probability pi the adjusted weight is a(i) = wi/pi if i is
included in the sample and a(i) ≡ 0 otherwise. For all i, a(i) is an
optimal estimator of wi in that it minimizes the variance Var[a(i)].

A summary that includes the keys in S and their HT adjusted
weights can be used to estimate the weight w(J) of any subset of
keys J ⊂ K: a(J) =

P
i∈J a(i) =

P
i∈S∩J a(i). The HT

estimates are clearly unbiased: for all i, E[a(i)] = wi and from
linearity of expectation, for all subsets J , E[a(J)] = w(J).

With IPPS, the HT adjusted weight of an included key is τ if
wi ≤ τ and wi otherwise. Hence, for any subset J we have

a(J) =
P

i∈J|wi≥τ wi + |{i ∈ J ∩ S : wi < τ}| · τ . (1)

We can store either the adjusted weights for each key, or the origi-
nal weights (and compute the adjusted weights via τ on demand).
The variance of adjusted weight ai is Var[ai] = w2

i (1/pi − 1) ≡
wi(τ − wi) if wi ≤ τ and 0 otherwise. Using IPPS inclu-
sion probabilities with HT estimates minimizes the sum ΣV [a] =P

i Var[a(i)] of per-key variances over all inclusion probabilities
and estimators with the same (expected) sample size s =

P
i pi.

Poisson sampling is where the choice of whether to sample any
key is made independently of all other choices. A Poisson IPPS
sample of a specified expected size s can be computed efficiently
with a single pass over the data.

VAROPT sampling [3, 26, 7] improves over Poisson sampling by
guaranteeing a fixed sample size (exactly s) and giving tighter esti-
mates [7, 8, 3, 26, 10]: the variance of any subset-sum estimate is
at most that obtained by a Poisson IPPS sample. VAROPT samples
are optimal in that for any subset size, they minimize the average
variance of the estimates [25, 7]. A VAROPT sample of size s,
denoted VAROPTs, can be computed with a single pass over the
data [8], generalizing the notion of reservoir sampling.
A sample distribution over [n] is VAROPT for a parameter τ if:

Algorithm 4 STREAM τ(i) : processing item i

1: if wi < τ then L← L + wi

2: else Insert((i, wi), H);
3: while (|H| = s) or (min(H) < τ) do
4: a← delete min(H).
5: L← L + wa

6: τ ← L
s−|H|

(i) Inclusion probability is IPPS, i.e., for key i, pi =min{1, wi/τ}.
(ii) The sample size is exactly s =

P
i∈[n] pi.

(iii) High-order inclusion & exclusion probabilities are bounded by
respective products of first-order probabilities, so, for any J⊆ [n],

(I): E[
Y
i∈J

Xi] ≤
Y
i∈J

pi

(E): E[
Y
i∈J

(1−Xi)] ≤
Y
i∈J

(1− pi)

where pi is the probability that key i is included in the sample S
and E[

Q
i∈J Xi] is the probability that all i ∈ J are included in the

sample. Symmetrically E[
Q

i∈J(1−Xi)] is the probability that all
i ∈ J are excluded from the sample.

Tail bounds. For both Poisson [5] and VAROPT [18, 23, 10, 8]
samples we have strong tail bounds on the number of samples J∩S
from a subset J . We state the basic Chernoff bounds on this quan-
tity (other more familiar bounds are derivable from them). Let Xi

be an indicator variable for i being in the sample, so Xi = 1 if
i ∈ S and 0 otherwise. Then XJ , the number of samples intersect-
ing J is XJ =

P
i∈J Xi, with mean µ = E[XJ] =

P
i∈J pi.

If µ ≤ a ≤ s, the probability of getting more than a samples out
of s in the subset J is

Pr[XJ ≥ a] ≤
„

s− µ

s− a

«m−a “µ

a

”a h
≤ ea−µ

“µ

a

”ai
. (2)

For 0 ≤ a ≤ µ, the probability of fewer than a samples in J is

Pr[XJ ≤ a] ≤
„

s− µ

s− a

«m−a “µ

a

”a h
≤ ea−µ

“µ

a

”ai
. (3)

When sampling with IPPS, these bounds on the number of samples
also imply tight bounds on the estimated weight a(J): It suffices to
consider J such that ∀i ∈ J, pi < 1 (as we have the exact weight
of keys with pi = 1). Then the HT estimate is a(J) = τXJ =
τ |J ∩ S| and thus the estimate is guaranteed to be accurate:

Pr[a(J) ≤ h], Pr[a(J) ≥ h] ≤ e(h−w(J))/τ (w(J)/h)h/τ . (4)

Range discrepancy. The discrepancy of a sample measures the
difference between the number of keys sampled in a range to the
number expected to be there. Formally, consider keys with attached
IPPS inclusion probabilities pi over a structure with a set of ranges
R. The discrepancy ∆ of a set of keys S with respect to range R is

∆(S, R) =
˛̨
|S ∩R| −

P
i∈R pi

˛̨
.

The maximum range discrepancy of S is accordingly the max-
imum discrepancy over R ∈ R. For a sample distribution Ω, we
define the maximum range discrepancy as

∆ = maxS∈Ω maxR∈R
˛̨
|S ∩R| −

P
i∈R pi

˛̨
The value of the discrepancy has implications for the accuracy of

query answering. The absolute error of the HT estimator (1) on R
is the product of τ and the discrepancy: τ ·∆(S, R). We therefore
seek sampling schemes which have a small discrepancy.

For a Poisson IPPS or VAROPT sample, the discrepancy on a
range R is subject to tail bounds (Eqns. (2) and (3)) with µ = p(R)

and has expectation O(
p

p(R)).

ε-approximations. Maximum range discrepancy is closely related
to the concept of an ε-approximation [27]. A set of points A is an
ε-approximation of the range space (X,R), if for every range R,˛̨̨

|A∩R|
|A| −

|X∩R|
|X|

˛̨̨
< ε .

(This is stated for uniform weights but easily generalizes). An ε-
approximation of size s has maximum range discrepancy ∆ = εs.
A seminal result by Vapnik and Chervonenkis bounds the maxi-
mum estimation error of a random sample over ranges when the
VC dimension is small:

THEOREM 2 (FROM [27]). For any range space with VC di-
mension d, there is a constant c, so that a random sample of size

s = cε−2(d log(d/ε) + log(1/δ))

is an ε-approximation with probability 1− δ.

The structures we consider have constant VC dimension, and
the theorem can be proved from a direct application of Chernoff
bounds. Because VAROPT samples satisfy Chernoff bounds, they
also satisfy the theorem statement. By rearranging and substituting
the bound on ε, we conclude that a Poisson IPPS or a VAROPT sam-
ple of size s has maximum range discrepancy ∆ = O(

√
s log s).

with probability (1− poly(1/s))

Other Summarization Methods
In addition to sampling methods such as Poisson IPPS and
VAROPT there have been many other approaches to summarizing
data in range spaces. We provide a quick review of the rich liter-
ature on summarization methods specifically designed for range-
sum queries. Some methods use random sampling in their con-
struction, although the resulting summary is not itself a VAROPT
sample.
ε-approximations. As noted above, ε-approximations accu-
rately estimate the number of points falling in a range. For axis-
parallel hyper-rectangles, Suri, Toth, and Zhou presented random-
ized constructions that with constant probability generates an ε-

approximation of size O(ε
−2d
d+1 logd(ε

2
d+1 n)) and an alternative but

computationally intensive construction with much better asymp-
totic dependence on ε: O(1

ε
log2d+1 1

ε
) [24]. The best space upper

bound we are aware of is O(1
ε
log2d(1

ε
)) [19].

A proposal in [2] is to construct an ε-approximation of a random
sample of the dataset instead of the full dataset. This is somewhat
related to our I/O efficient constructions that utilize an initial larger
random sample. The differences are that we use the sample only as
a guide—the final summary is not necessarily a subset of the initial
sample—and that the result of our construction is a structure-aware
VAROPT sample of the full data set.

Another construction [14] trades better dependence on ε with
logarithmic dependence on domain size. The data structure is built
deterministically by dividing on each dimension in turn, and re-
taining “heavy” ranges. This can be seen as a multi-dimensional
variant of the related q-digest data structure [22].
Sketches and Projections. Random projections are a key tool in
dimensionality reduction, which allows large data sets to be com-
pactly summarized and queried. Sketches are particular kinds of
random projections, which can be computed in small space [4]. By
keeping multiple sketches of the data at multiple levels of granu-
larity, we can provide ε-approximation-like bounds in space that
depends linearly on ε−1 and logarithmically on the domain size.

Wavelet transforms and deterministic histograms. A natural ap-
proach to summarizing large data for range queries is to decom-
pose the range space into “heavy” rectangles. The answer to any
range query is the sum of weights of all rectangles fully contained
in by the query, plus partial contributions from those partly over-
lapped by the query. The accuracy then depends on the number
(and weight) of rectangles overlapped by the query. This intuition
underlies various attempts based on building (multi-dimensional)
histograms [11, 20, 16]. These tend to be somewhat heuristic in
nature, and offer little by way of guaranteed accuracy.

More generally, we can represent the data in terms of objects
other than rectangles: this yields transformations such as DCT,
Fourier transforms and wavelet representations. Of these, wavelet
representations are most popular for representing range data [17,
28]. Given data of domain size u, the transform generates u coef-
ficients, which are then thresholded: we pick the s largest coeffi-
cients (after normalization) to represent the data. When the data is
dense, we can compute the transform in time O(u), but when the
domain is large and the data sparse, it is more efficient to generate
the transform of each key, in time proportional to the product of the
logarithms of the size of each dimension per key.

B. SEQUENCES OF AGGREGATIONS
Our algorithms repeatedly apply probabilistic aggregation:

LEMMA 3. Consider a sequence p(0), p(1), p(2), p(3), . . .
where p(h) is a probabilistic aggregate of p(h−1). Probabilistic
aggregation is transitive, that is, if h1 < h2 then p(h2) is a
probabilistic aggregate of p(h1).

PROOF. We show property (I) (see Section 2) holds under tran-
sitivity. The proof for (E) is similar, and the other properties are
immediate. We show that if p(h+2) is an aggregate of p(h+1), and
p(h+1) is an aggregate of p(h), then p(h+2) is an aggregate of p(h).

Ep(2)|p(0) [
Y
i∈J

p
(2)
i] = Ep(1)|p(0)

"
Ep(2)|p(1) [

Y
i∈J

p
(2)
i]

#
≤ Ep(1)|p(0) [

Y
i∈J

p
(1)
i] ≤

Y
i∈J

p
(0)
i

Note that p
(h)
i ∈ {0, 1} implies p

(h+1)
i ≡ p

(h)
i . Thus in a se-

quence of aggregations, any entry that is set remains set, so the
number of positive entries in the output is at most that in the input.

C. MULTIPLE RANGES IN A HIERARCHY
We show that the discrepancy of a query that spans multiple

ranges in a hierarchy is bounded by the number of ranges.

LEMMA 4. Let Q be a union of ` disjoint ranges R1, . . . , R`

on a hierarchy structure. The discrepancy is at most ` and is
distributed as the error of a VAROPT sample on a subset of size
µ =

P`
h=1(p(Rh)− bp(Rh)c) ≤ `.

PROOF. Consider a truncated hierarchy where the nodes
R1, . . . , R` are leaves. Include other nodes to form a set L′ of
disjoint nodes which covers all original leaves. For each leaf node
in the truncated hierarchy Rh ∈ L′ consider a corresponding “left-
over” 0/1 random variable with probabilities p(Rh)−bp(Rh)c: its
value is 1 if the range Rh has dRhe samples, and its value is 0 if
there are bRhc samples. It follows directly from our construction
that the sample with respect to these leftovers is a VAROPT sam-
ple, since the original summarization from L′ up proceeds like a
hierarchy summarization, treating the leftovers as leaves.

Applying Chernoff bounds, we obtain that the discrepancy on Q
is at most

√
` with high probability.

D. ORDER STRUCTURES
Recall that order structures consist of all intervals of keys.

THEOREM 1 (RESTATED). For the order structure (i) there
always exists a VAROPT sample distribution with maximum range
discrepancy ∆ ≤ 2. (ii) For any fixed ∆ < 2, there exist inputs
for which a VAROPT sample distribution with maximum range dis-
crepancy ≤ ∆ does not exist.

Order Structure Summarization. To gain intuition, first consider
inputs where there is a partition L of the ordered keys into non-
overlapping intervals such that for each interval J ∈ L, p(J) =P

i∈J pi ≡ 1, i.e. the initial probabilities sum to 1. In this case,
there are VAROPT samples which pick one key from each interval
J ∈ L. Now observe that any query interval R covers some number
of full unit intervals. The only discrepancy comes from the at most
2 end intervals, and so the maximum range discrepancy is bounded
by the probability mass therein, ∆ < 2. Therefore, this sample has
maximum range discrepancy ∆ < 2.

The general case is handled by OSSUMMARIZE(p1, . . . , pn).
(Algorithm 5). Without loss of generality, key i is the ith key in
the sorted order, and pi is its inclusion probability. The algorithm
processes the keys in sorted order, maintaining an active key a that
is the only key that is not set from the prefix processed so far. At
any step, if there is an active key a, the selected pair for the aggre-
gation consists of a and the current key. Otherwise, the aggregation
involves the current and the next key. The final sample S is the set
of keys with pi = 1. We now argue it has bounded discrepancy.

PROOF OF THEOREM 1 (i). The algorithm can be viewed as a
special case of a hierarchy summarization algorithm where the or-
dered keys are arranged as a hierarchy which is a long path with
a single leaf hanging out of each path node. The internal nodes in
the hierarchy correspond to prefixes of the sorted order, and thus
they are estimated optimally (the number of samples is the floor or
ceiling of the expectation): For any i, the number of members of S
amongst the first i keys is

|S ∩ [1, i]| ∈ {b
X
j≤i

pic, d
X
j≤i

pie} .

For a key range R = [i1, i2] that is not a prefix (i2 ≥ i1 > 1), we
can express it as the difference of two prefixes:

|S ∩ R| = |S ∩ [1, i2]| − |S ∩ [1, i1 − 1]|

≤ d
X
j≤i2

pie − b
X

j≤i1−1

pic ≤ 1 +
X
j≤i2

pi − (−1 +
X

j≤i1−1

pi)

= 2 +
X

i1≤j≤i2

pi .

≥ b
X
j≤i2

pic − d
X

j≤i1−1

pie ≥ −1 +
X
j≤i2

pi − (1 +
X

j≤i1−1

pi)

= −2 +
X

i1≤j≤i2

pi .

Hence the maximum discrepancy is at most 2, as claimed.

Summaries with smaller discrepancy. Requiring the summary
to be VAROPT means that it may not be feasible to guarantee ∆
strictly less than 2. We can, however, obtain a deterministic set
with maximum range discrepancy ∆ < 1: Associate key i with
the interval Hi = (

P
j<i pj ,

P
j≤i pj] on the positive axis (with

respect to the original vector of inclusion probabilities) and sim-
ply include in S all keys where the Hi interval contains an inte-
ger. In fact, we can obtain a sample which satisfies the VAROPT
requirements (i) and (ii) but not (iii) with ∆ < 1: Uniformly pick

α ∈ [0, 1] and store all keys i so that h+α ∈ Hi for each integer h.
This sampling method is known as systematic sampling [21]. Sys-
tematic samples, however, suffer from positive correlations which
mean that estimates on some subsets have high variance (and Cher-
noff tail bounds do not apply).

Algorithm 5 OSSUMMARIZE(p1, . . . , pn)

1: a← 1 . leftover key
2: i = 2 . current key
3: while i ≤ n do . left to right scan of keys
4: while pa = 1 and a < n do
5: a++;

6: i← a + 1
7: while pi = 1 and i < n do
8: i++;

9: if pa < 1 and pi < 1 then
10: PAIR-AGGREGATE(a, i)
11: if pa = 1 or pa = 0 then . pa is set
12: a← i . i is the new leftover key
13: i++

Lower bound on discrepancy. We show that there are ordered
weighted sets for which we can not obtain a VAROPT summary
with maximum range discrepancy ∆ < 2.

PROOF OF THEOREM 1 (ii). For any positive integer m, we
show that for some sequence, there is no VAROPT sample with
∆ ≤ 2− 1/m.

We use a sequence where pi = ε � 1/(4m) and
P

i pi ≥ 5m.
Let i1 < i2 < i3, · · · be the included keys, sorted by order. With
each key i` we associate the position s(i`) =

P
j≤i`

pj .
We give a proof by contradiction. Consider keys i`, ij with ` <

j. If an interval contains at most h sampled keys, it must be of size
at most h + ∆. If an interval contains at least h sampled keys, it
must be of size at least h−∆.

The interval [s(i`)− ε, s(ij)], which is of size s(ij)− s(i`)+ ε,
contains j − ` + 1 sampled keys.

We obtain that s(ij)− s(i`) + ε ≥ j− ` + 1−∆. Rearranging,
s(ij) ≥ s(i`)− ε−∆ + 1 + j − `.

The interval (s(i`), s(ij)− ε), which is of size s(ij)−s(i`)− ε,
contains j − ` − 1 sampled keys. Hence, s(ij) − s(i`) − ε ≤
j − `− 1 + ∆. Rearranging, s(ij) ≤ s(i`) + ε + j − ` + ∆− 1.

From the above, for j > `, we have

s(ij) ∈ (s(i`)+j−`−∆+1−ε, s(i`)+j−`+∆+1+ε) . (5)

For j ≥ 2,

s(ij) ∈ (s(i1)− ε + j −∆, s(i1) + j − 2 + ∆ + ε) . (6)

Fixing the first j included keys, i1, . . . , ij , the conditional prob-
ability on ij+1 = h is at most ph. We have s(ij+1) ∈ (s(ij) +
2 − ∆ − ε, s(ij) + ∆ + ε). Therefore, there must be a positive
probability for the event

s(ij+1) < s(ij) + ∆ + ε− (1− ε) = s(ij) + 1− 1/m + 2ε

which is contained in the event s(ij+1) ≤ s(ij) + 1− 1/(2m).
Iterating this argument, we obtain that for all k > 1, we

must have positive probability for s(ik) < s(i1) + (k − 1)(1 −
1/(2m)) = s(i1) + k − 1 − (k − 1)/2m. From (6) we have
s(ik) ≥ s(i1) + k− 1− (1− 1/m) = i1 + k− 2 + 1/m. Taking
k = 4m, we get a contradiction.

Figure 5: KD Hierarchical partition of two dimensional data.

E. ANALYSIS OF KD-HIERARCHY
The KD-HIERARCHY algorithm (Algorithm 2) aims to mini-

mize the discrepancy within a product space. Figure 5 shows a
two-dimensional set of 64 keys that are uniformly weighted, with
sampling probabilities 1/2, and the corresponding kd-tree: a bal-
anced binary tree of depth 6. The cuts alternate vertically (red tree
nodes) and horizontally (blue nodes). Right-hand children in tree
correspond to right/upper parts of cuts and left-hand children to
left/lower parts.

We now analyze the resulting summary, based on the properties
of the space partitioning performed by the kd-tree. We use v to
refer interchangeably to a node in the tree and the hyperrectangle
induced by node v in the tree. A node v at depth d in the tree has
probability mass p(v) ≤ s/2d +2. We refer to the set of minimum
depth nodes that satisfy p(v) ≤ 1 as s-leaves (for super leaves)
(v is an s-leaf iff p(v) ≤ 1 and its immediate ancestor a(v) has
p(a(v)) > 1. The depth of an s-leaf (and of the hierarchy when
truncated at s-leaves) is at most D = 2 + dlog2 se.

LEMMA 5. Any axis-parallel hyperplane cuts O(s
d−1

d)
s-leaves.

PROOF. Consider the hierarchy level-by-level, top to bottom.
Each level where the axis was not perpendicular to the hyperplane
at most doubles the number of nodes that intersect the hyperplane.
Levels where the partition axis is perpendicular to the hyperplane
do not increase the number of intersecting nodes. Because axes
were used in a round-robin fashion, the fraction of levels that can
double the number of intersecting nodes is d−1

d
. Hence, when we

reach the s-leaf level, the number of intersecting nodes is at most
2

d−1
d

D = O(s
d−1

d).

An immediate corollary is that the boundary of an axis-parallel box
R may intersect at most 2ds

d−1
d s-leaves. We denote by B(R) this

set of boundary s-leaves. Let U(R) be a minimum size collection

Figure 6: Query rectangle on a hierarchical partition.

of nodes in the hierarchy such that no internal node contains a leaf
from B(R). Informally, U(R) consists of the (maximal) hyper-
rectangles which are fully contained in R or fully disjoint from R.
Figure 6 illustrates a query rectangle R (dotted red line) over the
data set of Figure 5. The maximal interior nodes contained in R
(v ∈ U(R)|v ⊂ R) are marked in solid colors (and green circles
in the tree layout) and the boundary s-leaves B(R) in light stripes
(magenta circles in the tree layouts). For example, the magenta
rectangle corresponds to the R-L-L-R path.

LEMMA 6. The size of U(R) is at most O(ds
d−1

d log s).

PROOF. Each node in U must have a sibling such that the sib-
ling, or some of its descendants, are in B(R). If this is not the case,
then the two siblings can be replaced by their parent, decreasing the
size of U(R), which contradicts its minimality. We bound the size
of U(R) by bounding the number of potential siblings. The num-
ber of ancestors of each boundary leaf is at most the depth which is
≤ 2 + dlog2 se. Thus, the number of potential siblings is at most
the number of boundary leaves times the depth. By substituting a
bound on |B(R)|, we obtain the stated upper bound.

These lemmas allow us to bound the estimation error, by applying
Lemma 4. That is, for each v ∈ U(R) such that v ⊂ R we have
a 0/1 random variable that is 1 with probability pv − bpvc and
is 0 otherwise (The value is 0 if v includes bpvc samples and 1
otherwise). For each v ∈ B(R), we have a random variable that is
1 with probability p(v ∩R). This is the probability that S contains
one key from v ∩ R (S can contain at most one key from each
s-leaf). The sample is VAROPT over these random variables with

µ =
X

v∈U(R)|v⊂R

(p(v)−bp(v)c)+
X

v∈B(R)

p(v∩R) ≤ |U(R)|+|B(R)| .

Substituting our bounds on |U(R)| and |B(R)| from Lemmas 5
and 6 gives accuracy bound claimed at the start of the section.

