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Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and

monitoring. Given a stream of 𝑛 items from a data universe equipped with a total order, the task is to compute

a sketch (data structure) of size polylogarithmic in 𝑛. Given the sketch and a query item 𝑦, one should be able

to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to 𝑦.

Most works to date focused on additive Y𝑛 error approximation, culminating in the KLL sketch that achieved

optimal asymptotic behavior. This paper investigates multiplicative (1 ± Y)-error approximations to the rank.

Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and

hence for sketches to be more accurate near extreme values.

Themost space-efficient algorithms due to prior work store either𝑂 (log(Y2𝑛)/Y2) or𝑂 (log3 (Y𝑛)/Y) universe
items. We present a randomized sketch storing𝑂 (log1.5 (Y𝑛)/Y) items that can (1± Y)-approximate the rank of

each universe item with high constant probability; this space bound is within an𝑂 (
√︁
log(Y𝑛)) factor of optimal.

Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it

suitable for parallel and distributed computing environments.
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1 INTRODUCTION
Understanding the distribution of data is a fundamental task in data monitoring and analysis. In

many settings, we want to understand the cumulative distribution function (CDF) of a large number

of observations, for instance, to identify anomalies. In other words, we would like to track the

median, percentiles, and more generally quantiles of a massive input in a small space, without

storing all the observations. Although memory constraints make an exact computation of such

order statistics impossible [20], most applications can be satisfied with approximating the quantiles,

which also yields a compact function with a bounded distance from the true CDF.
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The problem of streaming quantile approximation captures this task in the context of massive or

distributed datasets. Let 𝜎 = (𝑥1, . . . , 𝑥𝑛) be a stream of items, all drawn from a data universe U
equipped with a total order. For any 𝑦 ∈ U, let R(𝑦;𝜎) =

��{𝑖 ∈ {1, . . . , 𝑛} | 𝑥𝑖 ≤ 𝑦
}��
be the rank of 𝑦

in the stream. When 𝜎 is clear from context, we write R(𝑦). The objective is to process the stream in

one pass while storing a small number of universe items and 𝑂 (log𝑛)-bit variables (e.g., counters),
and then use those to approximate R(𝑦) for any 𝑦 ∈ U. A guarantee for an approximation R̂(𝑦) is
additive if |R̂(𝑦) − R(𝑦) | ≤ Y𝑛, and multiplicative or relative if |R̂(𝑦) − R(𝑦) | ≤ Y R(𝑦).
If the algorithm is randomized, the desired error guarantee holds for each item 𝑦 with high

probability that can be specified upfront and that affects the space bound. (On the other hand, the

space bounds for all known algorithms hold in the worst case over the inputs and random bits.)

We remark that estimating ranks immediately yields approximate quantiles, and vice versa, with a

similar error guarantee. More precisely, for 𝜙 ∈ [0, 1], a 𝜙-quantile is the ⌊𝜙𝑛⌋-th smallest item in

𝜎 , and on quantile query 𝜙 , the algorithm should return a 𝜙 ′
-quantile such that |𝜙 ′ − 𝜙 | ≤ Y for the

additive error and |𝜙 ′ − 𝜙 | ≤ Y · 𝜙 for the multiplicative error.

We stress that we do not assume any particular data distribution or that the stream is randomly-

ordered, that is, we focus on worst-case inputs. However, we assume the input is independent of

the random bits used by the algorithm, i.e., we do not aim to achieve adversarial robustness of

randomized algorithms; cf. [4].

A long line of work has focused on achieving additive error guarantees [1–3, 11–13, 15, 17, 21, 22].

However, additive error is not appropriate for many applications. Indeed, often the primary purpose

of computing quantiles is to understand the tails of the data distribution. When R(𝑦) ≪ 𝑛, a

multiplicative guarantee is much more accurate and thus harder to obtain. As pointed out by

Cormode et al. [5], a solution to this problem would also yield high accuracy when 𝑛 − R(𝑦) ≪ 𝑛,

by running the same algorithm with the reversed total ordering (simply negating the comparator).

A quintessential application that demands relative error is monitoring network latencies. In

practice, one often tracks response time percentiles 50, 90, 99, 99.9, etc. This is because latencies

are heavily long-tailed. For example, Masson et al. [19] report that for web response times, the

98.5th percentile can be as small as 2 seconds while the 99.5th percentile can be as large as 20

seconds. These unusually long response times affect network dynamics [5] and are problematic for

users. Furthermore, as argued by Tene in his talk about measuring latency [26], one needs to look

at extreme percentiles such as 99.995 to determine the latency such that only about 1% of users

experience a larger latency during a web session with several page loads. Hence, highly accurate

rank approximations are required for items 𝑦 whose rank is very large (𝑛 − R(𝑦) ≪ 𝑛); this is

precisely the requirement captured by the multiplicative error guarantee.

Achieving multiplicative guarantees is known to be strictly harder than additive ones. There are

randomized comparison-based additive error algorithms that store just Θ(Y−1) items for constant

failure probability [15], which is optimal. In particular, to achieve additive error, the number of

items stored may be independent of the stream length 𝑛. In contrast, any algorithm achieving

multiplicative error must store Ω(Y−1 · log(Y𝑛)) items (see [5, Theorem 2] and Appendix A).
1

The study of the relative-error (rank) guarantee was initiated by Gupta and Zane [14], and the

best known algorithms achieving this guarantee are as follows. Zhang et al. [28] give a randomized

algorithm storing 𝑂 (Y−2 · log(Y2𝑛)) universe items. This is essentially a Y−1 factor away from the

aforementioned lower bound. There is also a deterministic algorithm of Cormode et al. [6] that

1
Intuitively, the reason additive-error sketches can achieve space independent of the stream length is because they can

take a subsample of the stream of size about Θ(Y−2) and then sketch the subsample. For any fixed item, the additive error

to its rank introduced by sampling is at most Y𝑛 with high probability. When multiplicative error is required, one cannot

subsample the input: for low-ranked items, the multiplicative error introduced by sampling will, with high probability, not

be bounded by any constant.
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stores 𝑂 (Y−1 · log(Y𝑛) · log |U|) items. However, this algorithm requires prior knowledge of the

data universe U (since it builds a binary tree over U), and is inapplicable when U is huge or even

unbounded (e.g., if the data can take arbitrary real values). Finally, Zhang and Wang [27] designed

a deterministic algorithm requiring 𝑂 (Y−1 · log3 (Y𝑛)) space. Recent work of Cormode and Veselý

[8] proves an Ω(Y−1 · log2 (Y𝑛)) lower bound for deterministic comparison-based algorithms, which

is within a log(Y𝑛) factor of Zhang and Wang’s upper bound.

Despite both the practical and theoretical importance of multiplicative error (which is arguably

an even more natural goal than additive error), there has been no progress on upper bounds, i.e.,

no new algorithms, since 2007.

Our streaming result. In this work, we give a randomized algorithm that maintains the optimal

linear dependence on 1/Y achieved by Zhang and Wang, with a significantly improved dependence

on the stream length. Namely, we design a one-pass streaming algorithm that given Y > 0, computes

a sketch consisting of𝑂
(
Y−1 · log1.5 (Y𝑛)

)
universe items, fromwhich one can derive rank or quantile

estimates satisfying the relative error guarantee with constant probability (see Theorem 1 for a

more precise statement). Ours is the first algorithm to be strictly more space efficient than any
deterministic comparison-based algorithm (owing to the Ω(Y−1 log2 (Y𝑛)) lower bound in [8]) and

is within an 𝑂 (
√︁
log(Y𝑛)) factor of the known lower bound for randomized algorithms achieving

multiplicative error. Furthermore, it only accesses items through comparisons, i.e., is comparison-

based, rendering it suitable, e.g., for floating-point numbers or strings ordered lexicographically.

Finally, our algorithm processes the input stream efficiently, namely, its amortized update time is a

logarithm of the space bound, i.e., 𝑂
(
log(Y−1) + log log(𝑛)

)
; see Section 4 for details.

Mergeability. The ability to merge sketches of different streams to get an accurate sketch for

the concatenation of the streams is highly significant both in theory [1] and in practice [23].

Such mergeable summaries enable trivial, automatic parallelization and distribution of processing

massive data sets, by splitting the data up into pieces, summarizing each piece separately, and then

merging the results in an arbitrary way. We say that a sketch is fully mergeable if building it using

any sequence of merge operations (executed on singleton items) leads to the same guarantees as if

the entire data set had been processed as a single stream (i.e., always merging the sketch with one

item). We show that our sketch satisfies this strong definition of mergeability.

The following theorem is the main result of this paper. We stress that our algorithm, which we

call ReqSketch, does not require any advance knowledge about 𝑛, the total size of the input, which

indeed may not be available in many applications.
2

Theorem 1. For any parameters 0 < 𝛿 ≤ 0.5 and 0 < Y ≤ 1, there is a randomized, comparison-
based, one-pass streaming algorithm that, when processing a data stream consisting of 𝑛 items from a
totally-ordered universe U, produces a summary 𝑆 satisfying the following property. Given 𝑆 , for any
𝑦 ∈ U one can derive an estimate R̂(𝑦) of R(𝑦) such that

Pr

[
|R̂(𝑦) − R(𝑦) | > Y R(𝑦)

]
< 𝛿 ,

2
Aproof-of-concept Python implementation of our algorithm is available at GitHub: https://github.com/edoliberty/streaming-

quantiles/blob/master/relativeErrorSketch.py. A production-quality implementation of ReqSketch is available in the Apache

DataSketches library at https://datasketches.apache.org/.
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where the probability is over the internal randomness of the streaming algorithm. The size of 𝑆 in
memory words3 is

𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︂
log

1

𝛿

)
.

Moreover, the summary produced is fully mergeable.

All-quantiles approximation. As a straightforward corollary of Theorem 1, we obtain a space-

efficient algorithm whose estimates are simultaneously accurate for all 𝑦 ∈ U with high probability.

The proof is a standard use of the union bound combined with an epsilon-net argument; we include

the proof in Appendix B.

Corollary 1 (All-Quantiles Approximation). The error bound from Theorem 1 holds for all
𝑦 ∈ U simultaneously with probability 1 − 𝛿 when the size of the sketch in memory words is

𝑂
©«Y−1 · log1.5 (Y𝑛) ·

√︄
log

(
log(Y𝑛)

Y𝛿

)ª®¬ .

Technical overview. A starting point of the design of our algorithm is the KLL sketch [15]

that achieves optimal accuracy-space trade-off (of randomized algorithms) for the additive error

guarantee. The basic building block of the algorithm is a buffer, called a compactor, that receives
an input stream of 𝑛 items and outputs a stream of at most 𝑛/2 items, meant to “approximate” the

input stream. The buffer simply stores items and once it is full, we sort the buffer, output all items

stored at either odd or even indexes (with odd vs. even selected via an unbiased coin flip), and clear

the contents of the buffer—this is called the compaction operation. Note that a randomly chosen half

of items in the buffer is simply discarded, whereas the other half of items in the buffer is “output”

by the compaction operation.

The overall KLL sketch is built as a sequence of at most log
2
(𝑛) such compactors, such that the

output stream of a compactor is treated as the input stream of the next compactor. We thus think

of the compactors as arranged into levels, with the first one at level 0. Similar compactors were

already used, e.g., in [1, 16–18], and additional ideas are needed to get the optimal space bound for

additive error, of 𝑂 (1/Y) items stored across all compactors [15].

The compactor building block is not directly applicable to our setting for the following reasons.

A first observation is that to achieve the relative error guarantee, we need to always store the 1/Y
smallest items. This is because the relative error guarantee demands that estimated ranks for the

1/Y lowest-ranked items in the data stream are exact. If even a single one of these items is deleted

from the summary, then these estimates will not be exact. Similarly, among the next 2/Y smallest

items, the summary must store essentially every other item to achieve multiplicative error. Among

the next 4/Y smallest items in the order, the sketch must store roughly every fourth item, and so on.

The following simple modification of the compactor from the KLL sketch indeed achieves the

above. Each buffer of size 𝐵 “protects” the 𝐵/2 smallest items stored inside, meaning that these

items are not involved in any compaction (i.e., the compaction operation only removes the 𝐵/2
largest items from the buffer). Unfortunately, it turns out that this simple approach requires space

Θ(Y−2 · log(Y2𝑛)), which merely matches the space bound achieved in [28], and in particular has a

(quadratically) suboptimal dependence on 1/Y.
The key technical contribution of our work is to enhance this simple approach with a more

sophisticated rule for selecting the number of protected items in each compaction. One solution that

3
A memory word can store any universe item or an integer with𝑂 (log(𝑛 + |U |)) bits. We express all the space bounds in

memory words.
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yields our upper bound is to choose this number in each compaction at random from an appropriate

exponential distribution. However, to get a cleaner analysis and a better dependency on the failure

probability 𝛿 , we in fact derandomize this distribution.

While the resulting algorithm is relatively simple, analyzing the error behavior brings new

challenges that do not arise in the additive error setting. Roughly speaking, when analyzing the

accuracy of the estimate for R(𝑦) for any fixed item 𝑦, all error can be “attributed” to compaction

operations. In the additive error setting, one may suppose that every compaction operation con-

tributes to the error and still obtain a tight error analysis [15]. Unfortunately, this is not at all the

case for relative error: as already indicated, to obtain our accuracy bounds it is essential to show

that the estimate for any low-ranked item 𝑦 is affected by very few compaction operations.

Thus, the first step of our analysis is to carefully bound the number of compactions on each level

that affect the error for 𝑦, using a charging argument that relies on the derandomized exponential

distribution to choose the number of protected items. To get a suitable bound on the variance of the

error, we also need to show that the rank of 𝑦 in the input stream to each compactor falls by about

a factor of two at every level of the sketch. While this is intuitively true (since each compaction

operation outputs a randomly chosen half of “unprotected” items stored in the compactor), it only

holds with high probability and hence requires a careful treatment in the analysis. Finally, we

observe that the error in the estimate for 𝑦 is a zero-mean sub-Gaussian variable with variance

bounded as above, and thus applying a standard Chernoff tail bound yields our final accuracy

guarantees for the estimated rank of 𝑦.

There are substantial additional technical difficulties to analyze the algorithm under an arbitrary

sequence of merge operations, especially with no foreknowledge of the total size of the input. Most

notably, when the input size is not known in advance, the parameters of the sketch must change as

more inputs are processed. This makes obtaining a tight bound on the variance of the resulting

estimates highly involved. In particular, as a sketch processes more and more inputs, it protects

more and more items, which means that items appearing early in the stream may not be protected
by the sketch, even though they would have been protected if they appeared later in the stream.

Addressing this issue is reasonably simple in the streaming setting, because every time the sketch

parameters need to change, one can afford to allocate an entirely new sketch with the updated

parameters, without discarding the previous sketch(es); see Section 5 for details. Unfortunately,

this simple approach does not work for a general sequence of merge operations, and we provide a

much more intricate analysis to give a fully mergeable summary.

A second challenge when designing and analyzing merge operations arises from working with

our derandomized exponential distribution, since this requires each compactor to maintain a “state”

variable determining the current number of protected items, and these variables need to be “merged”

appropriately. It turns out that the correct way to merge state variables is to take a bitwise OR of

their binary representations. With this technique for merging state variables in hand, we extend the

charging argument bounding the number of compactions affecting the error in any given estimate

so as to handle an arbitrary sequence of merge operations.

Analysis with extremely small probability of failure. We close by giving an alternative analysis

of our algorithm that achieves a space bound with an exponentially better (double logarithmic)

dependence on 1/𝛿 , compared to Theorem 1. However, this improved dependence on 1/𝛿 comes at

the expense of the exponent of log(Y𝑛) increasing from 1.5 to 2. Formally, we prove the following

theorem in Section 7, where we also show that it directly implies a deterministic space bound of

𝑂 (Y−1 · log3 (Y𝑛)), matching the state-of-the-art result in [27]. For simplicity, we only prove the

theorem in the streaming setting, although we conjecture that an appropriately modified proof of

Theorem 1 would yield the same result even when the sketch is built using merge operations.
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Theorem 2. For any 0 < 𝛿 ≤ 0.5 and 0 < Y ≤ 1, there is a randomized, comparison-based,
one-pass streaming algorithm that computes a sketch consisting of 𝑂

(
Y−1 · log2 (Y𝑛) · log log(1/𝛿)

)
universe items, and from which an estimate R̂(𝑦) of R(𝑦) can be derived for every 𝑦 ∈ U. For any
fixed 𝑦 ∈ U, with probability at least 1 − 𝛿 , the returned estimate satisfies the multiplicative error
guarantee |R̂(𝑦) − R(𝑦) | ≤ Y R(𝑦).

We remark that this alternative analysis builds on an idea from [15] to analyze the top few

levels of compactors deterministically rather than obtaining probabilistic guarantees on the errors

introduced to estimates by these levels.

Organization of the paper. Since the proof of full mergeability in Theorem 1 is quite involved, we

proceed in several steps of increasing complexity. We describe our sketch in the streaming setting

in Section 2, where we also give a detailed but informal outline of the analysis. We then formally

analyze the sketch in the streaming setting in Sections 3 and 4, also assuming that a polynomial

upper bound on the stream length is known in advance. The space usage of the algorithm grows

polynomially with the logarithm of this upper bound, so if this upper bound is at most 𝑛𝑐 for some

constant 𝑐 ≥ 1, then the space usage of the algorithm remains as stated in Theorem 1, with only

the hidden constant factor changing. Then, in Section 5, we explain how to remove this assumption

in the streaming setting, yielding an algorithm that works without any information about the final

stream length.

Finally, we fully describe the merge procedure and analyze the accuracy of our sketch under an

arbitrary sequence of merge operations in Section 6 (for didactic purposes, we outline a simplified

merge operation in Section 2.3). As mentioned above, Section 7 contains an alternative analysis

that yields better space bounds for extremely small failure probabilities 𝛿 .

1.1 Detailed Comparison to Prior Work
Some prior works on streaming quantiles consider queries to be ranks 𝑟 ∈ {1, . . . , 𝑛}, and the

algorithm must identify an item 𝑦 ∈ U such that R(𝑦) is close to 𝑟 ; this is called the quantile
query. In this work, we focus on the dual problem of rank queries, where we consider queries to be

universe items 𝑦 ∈ U and the algorithm must yield an accurate estimate for R(𝑦). Unless specified
otherwise, algorithms described in this section directly solve both formulations (this holds for our

algorithm as well). Algorithms are randomized unless stated otherwise. For simplicity, randomized

algorithms are assumed to have constant failure probability 𝛿 . All reported space costs refer to the

number of universe items stored. (Apart from storing items, the algorithms may store, for example,

bounds on ranks of stored items or some counters, but the number of such𝑂 (log𝑛)-bit variables is
proportional to the number of items stored or even smaller.)

Additive Error. Manku, Rajagopalan, and Lindsay [17, 18] built on the work of Munro and

Paterson [20] and gave a deterministic solution that stores at most𝑂 (Y−1 · log2 (Y𝑛)) items, assuming

prior knowledge of 𝑛. Greenwald and Khanna [13] created an intricate deterministic streaming

algorithm that stores𝑂 (Y−1 · log(Y𝑛)) items. This is the best known deterministic algorithm for this

problem, with a matching lower bound for comparison-based streaming algorithms [8]. Agarwal et

al. [1] provided a mergeable sketch of size𝑂 (Y−1 · log1.5 (1/Y)). This paper contains many ideas and

observations that were used in later work. Felber and Ostrovsky [11] managed to reduce the space

complexity to𝑂 (Y−1 · log(1/Y)) items by combining sampling with the Greenwald-Khanna sketches

in non-trivial ways. Finally, Karnin, Lang, and Liberty [15] resolved the problem by providing an

𝑂 (1/Y)-space solution, which is optimal. For general (non-constant) failure probabilities 𝛿 , the

space upper bound becomes 𝑂 (Y−1 · log log(1/𝛿)), and they also prove a matching lower bound for

comparison-based randomized algorithms, assuming 𝛿 ≤ 1/𝑛! (i.e., 𝛿 is exponentially small in 𝑛).

J. ACM, Vol. V, No. N, Article A. Publication date: January 202X.
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Multiplicative Error. A large number of works sought to provide more accurate quantile estimates

for low or high ranks. Only a handful offer solutions to the relative error quantiles problem

considered in this work (sometimes also called the biased quantiles problem). Gupta and Zane

[14] gave an algorithm for relative error quantiles that stores 𝑂 (Y−3 · log2 (Y𝑛)) items, and used

this to approximately count the number of inversions in a list; their algorithm requires prior

knowledge of the stream length𝑛. As previouslymentioned, Zhang et al. [28] presented an algorithm

storing𝑂 (Y−2 · log(Y2𝑛)) universe items. Cormode et al. [6] designed a deterministic sketch storing

𝑂 (Y−1 · log(Y𝑛) · log |U|) items, which requires prior knowledge of the data universe U. Their

algorithm is inspired by the work of Shrivastava et al. [25] in the additive error setting and it is

also mergeable (see [1, Section 3]). Zhang and Wang [27] gave a deterministic merge-and-prune

algorithm storing𝑂 (Y−1 · log3 (Y𝑛)) items, which can handle arbitrary merges with an upper bound

on 𝑛, and streaming updates for unknown 𝑛. However, it does not tackle the most general case

of merging without a prior bound on 𝑛. Cormode and Veselý [8] recently showed a space lower

bound of Ω(Y−1 · log2 (Y𝑛)) items for any deterministic comparison-based algorithm.

Other related works that do not fully solve the relative error quantiles problem are as follows.

Manku, Rajagopalan, and Lindsay [18] designed an algorithm that, for a specified number 𝜙 ∈ [0, 1],
stores 𝑂 (Y−1 · log(1/𝛿)) items and can return an item 𝑦 with R(𝑦)/𝑛 ∈ [(1 − Y)𝜙, (1 + Y)𝜙] (their
algorithm requires prior knowledge of 𝑛). Cormode et al. [5] gave a deterministic algorithm that is

meant to achieve error properties “in between” additive and relative error guarantees. That is, their

algorithm aims to provide multiplicative guarantees only up to some minimum rank 𝑘 ; for items of

rank below 𝑘 , their solution only provides additive guarantees. Their algorithm does not solve the

relative error quantiles problem: [28] observed that for adversarial item ordering, the algorithm of

[5] requires linear space to achieve relative error for all ranks.

Dunning and Ertl [9, 10] describe a heuristic algorithm called 𝑡-digest that is intended to achieve

relative error, but they provide no formal accuracy analysis (note that 𝑡-digest is deterministic but

not comparison-based). Indeed, Cormode et al. [7] show that the error of 𝑡-digest may be arbitrarily

large on adversarially generated inputs. This latter paper also compares 𝑡-digest and ReqSketch

(i.e., the algorithm of Theorem 1) on randomly generated inputs and proposes implementation

improvements for ReqSketch that make it process an input stream faster than 𝑡-digest.

Most recently, Masson, Rim, and Lee [19] considered a notion of relative value error for quantile
sketches, which is distinct from the notion of relative rank error considered in this work. They

require that for a query percentile 𝜙 ∈ [0, 1], if 𝑦 denotes the item in the data stream satisfying

R(𝑦) = 𝜙𝑛, then the algorithm should return an item𝑦 ∈ U such that |𝑦−𝑦 | ≤ Y · |𝑦 |. This definition
only makes sense for data universes with a notion of magnitude and distance (e.g., numerical data),

and the definition is not invariant to natural data transformations, such as incrementing every data

item 𝑦 by a large constant. It is also trivially achieved by maintaining a (mergeable) histogram

with buckets ((1 + Y)𝑖 , (1 + Y)𝑖+1]. In contrast, the standard notion of relative error considered in

this work does not refer to the data items themselves, only to their ranks, and is arguably of more

general applicability.

2 DESCRIPTION OF THE ALGORITHM
2.1 The Relative-Compactor Object
The crux of our algorithm is a building block that we call the relative-compactor. Roughly speaking,

this object processes a stream of 𝑛 items and outputs a stream of at most 𝑛/2 items (each “up-

weighted” by a factor of 2), meant to “approximate” the input stream. It does so by maintaining a

buffer of limited capacity.
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Full buffer

L largest items sortedB − L smallest items in the buffer

Output every other item

Delete top L items

Insert new item xt in the next open slot

xt

Fig. 1. Illustration of the execution of a relative-compactor when inserting a new item 𝑥𝑡 into a buffer that is
full at time 𝑡 . See lines 5-14 of Algorithm 1.

Our complete sketch, described in Section 2.2 below, is composed of a sequence of relative-

compactors, where the input of the (ℎ + 1)-th relative-compactor is the output of the ℎ-th. With at

most log
2
(Y𝑛) such relative-compactors, 𝑛 being the length of the input stream, the output of the

last relative-compactor is of size 𝑂 (1/Y), and hence can be stored in memory.

Compaction Operations. The basic subroutine used by our relative-compactor is a compaction

operation. The input to a compaction operation is a list 𝑋 of 2𝑚 items 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥2𝑚 , and the

output is a sequence 𝑍 of𝑚 items. This output is chosen to be one of the following two sequences,

uniformly at random: Either 𝑍 = {𝑥2𝑖−1}𝑚𝑖=1 or 𝑍 = {𝑥2𝑖 }𝑚𝑖=1. That is, the output sequence 𝑍 equals

either the even or odd indexed items in the sorted order of 𝑋 , with both outcomes equally probable.

Consider an item 𝑦 ∈ U and recall that R(𝑦;𝑋 ) = |{𝑥 ∈ 𝑋 | 𝑥 ≤ 𝑦}| is the number of items 𝑥 ∈ 𝑋

satisfying 𝑥 ≤ 𝑦 (we remark that both 𝑋 and {𝑥 ∈ 𝑋 | 𝑥 ≤ 𝑦} are multisets of universe items).

The following is a trivial observation regarding the error of the rank estimate of 𝑦 with respect

to the input 𝑋 of a compaction operation when using 𝑍 . We view the output 𝑍 of a compaction

operation (with all items up-weighted by a factor of 2) as an approximation to the input 𝑋 ; for any

𝑦, its weighted rank in 𝑍 should be close to its rank in 𝑋 . Observation 2.1 below states that this

approximation incurs zero error on items that have an even rank in 𝑋 . Moreover, for items 𝑦 that

have an odd rank in 𝑋 , the error for 𝑦 ∈ U introduced by the compaction operation is +1 or −1
with equal probability. Note that the ranks are only w.r.t. to the input 𝑋 of the operation, which

will contain a number of the largest items in a relative-compactor. However, the observation holds

for any universe item that may not be present in 𝑋 .

Observation 2.1. A universe item 𝑦 ∈ U is said to be even (odd) w.r.t. a compaction operation if
R(𝑦;𝑋 ) is even (odd), where 𝑋 is the input sequence to the operation. If 𝑦 is even w.r.t. the compaction,
then R(𝑦;𝑋 ) − 2 R(𝑦;𝑍 ) = 0, where 𝑍 is the output sequence of the operation. Otherwise, R(𝑦;𝑋 ) −
2 R(𝑦;𝑍 ) is a variable taking a value from {−1, 1} uniformly at random.

The observation that items of even rank (and in particular items of rank zero) suffer no error

from a compaction operation plays an especially important role in the error analysis of our full

sketch.
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B/2 slots (never compacted) dlog2(n/k)e = 7 sections with k slots each

1234567

Fig. 2. Illustration of a relative-compactor and its sections, together with the indexes of the sections.

Algorithm 1 Relative-Compactor

Input: Parameters 𝑘 ∈ 2N+
and 𝑛 ∈ N+

, and a stream of items 𝑥1, 𝑥2, . . . of length at most 𝑛

1: Set 𝐵 = 2 · 𝑘 · ⌈log
2
(𝑛/𝑘)⌉

2: Initialize an empty buffer B of size 𝐵, indexed from 1

3: Set 𝐶 = 0 ⊲ State of the compaction schedule

4: for 𝑡 = 1 . . . do
5: if B is full then ⊲ Compaction operation

6: Compute 𝑧 (𝐶) = the number of trailing ones in the binary representation of 𝐶

7: Set 𝐿𝐶 = (𝑧 (𝐶) + 1) · 𝑘 and 𝑆𝐶 = 𝐵 − 𝐿𝐶 + 1

8: Pivot B s.t. the largest 𝐿𝐶 items occupy B[𝑆𝐶 : 𝐵]
9: ⊲ B[𝑆𝐶 : 𝐵] are the last 𝐿𝐶 slots of B
10: Sort B[𝑆𝐶 : 𝐵] in non-descending order

11: Output either even or odd indexed items in the range B[𝑆𝐶 : 𝐵] with equal probability

12: Mark slots B[𝑆𝐶 : 𝐵] in the buffer as clear

13: Increase 𝐶 by 1

14: Store 𝑥𝑡 to the next available slot in the buffer B.

Full Description of the Relative-Compactor Object. The complete description of the relative-

compactor object is given in Algorithm 1. The high-level idea is as follows. The relative-compactor

maintains a buffer of size 𝐵 = 2 · 𝑘 · ⌈log
2
(𝑛/𝑘)⌉ where 𝑘 is an even integer parameter controlling

the error and 𝑛 is the upper bound on the stream length. (For now, we assume that such an upper

bound is available; we remove this assumption in Section 5.) The incoming items are stored in the

buffer until it is full. At this point, we perform a compaction operation, as described above.

The input to the compaction operation is not all items in the buffer, but rather the largest 𝐿

items in the buffer for a parameter 𝐿 ≤ 𝐵/2 such that 𝐿 is even. These 𝐿 largest items are then

removed from the buffer, and the output of the compaction operation is sent to the output stream

of the buffer. This intuitively lets low-ranked items stay in the buffer longer than high-ranked ones.

Indeed, by design the lowest-ranked half of items in the buffer are never removed. We show later

that this facilitates the multiplicative error guarantee.

The crucial part in the design of Algorithm 1 is to select the parameter 𝐿 correctly, as 𝐿 controls

the number of items compacted each time the buffer is full. If we were to set 𝐿 = 𝐵/2 for all

compaction operations, then analyzing the worst-case behavior reveals that we need 𝐵 ≈ 1/Y2,
resulting in a sketch with a quadratic dependency on 1/Y. To achieve the linear dependency on 1/Y,
we choose the parameter 𝐿 via a derandomized exponential distribution subject to the constraint

that 𝐿 ≤ 𝐵/2.4
In more detail, one can think of Algorithm 1 as choosing 𝐿 as follows. During each compaction

operation, the second half of the buffer (with 𝐵/2 largest items) is split into ⌈log
2
(𝑛/𝑘)⌉ sections,

4
A prior version of this manuscript used an actual exponential distribution; see https://arxiv.org/abs/2004.01668v1. The

algorithm presented here uses randomness only to select which items to place in the output stream, not how many items to

compact. This leads to a cleaner analysis and isolates the one component of the algorithm for which randomness is essential.
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each of size 𝑘 and numbered from the right so that the first section contains the 𝑘 largest items, the

second one next 𝑘 largest items, and so on; see Figure 2. The idea is that the first section is involved

in every compaction (i.e., we always have 𝐿 ≥ 𝑘), the second section in every other compaction

(i.e., 𝐿 ≥ 2𝑘 every other time), the third section in every fourth compaction, and so on. This can

be described concisely as follows: Let 𝐶 be the number of compactions performed so far. During

the next (i.e., the 𝐶 + 1-st) compaction of the relative-compactor, we set 𝐿𝐶 = (𝑧 (𝐶) + 1) · 𝑘 , where
𝑧 (𝐶) is the number of trailing ones in the binary representation of 𝐶 (that is, if 𝐶 viewed as a

bitstring can be written as (x, 0, 1𝑗 ), for some x, then 𝑧 (𝐶) = 𝑗 ). We call the variable 𝐶 the state
of this “compaction schedule” (i.e., a particular way of choosing 𝐿). See lines 6-7 of Algorithm 1,

where we also define 𝑆𝐶 = 𝐵 − 𝐿𝐶 + 1 as the first index in the compacted part of the buffer.

Observe that 𝐿𝐶 ≤ 𝐵/2 always holds in Algorithm 1. Indeed, there are at most 𝑛/𝑘 compaction

operations (as each discards at least 𝑘 items), so the binary representation of𝐶 never has more than

⌈log
2
(𝑛/𝑘)⌉ bits, not even after the last compaction. Thus, 𝑧 (𝐶), the number of trailing ones in the

binary representation of 𝐶 , is always less than ⌈log
2
(𝑛/𝑘)⌉ and hence, 𝐿𝐶 ≤ ⌈log

2
(𝑛/𝑘)⌉ · 𝑘 = 𝐵/2.

It also follows that there is at most one compaction operation that compacts all ⌈log
2
(𝑛/𝑘)⌉ sections

at once. Our deterministic compaction schedule has the following crucial property:

Observation 2.2. Between any two compaction operations that involve exactly 𝑗 sections (i.e., both
have 𝐿 = 𝑗 · 𝑘), there is at least one compaction operation that involves more than 𝑗 sections.

Proof. Let 𝐶 < 𝐶 ′
denote the states of the compaction schedule in two steps 𝑡 < 𝑡 ′ with a

compaction operation involving exactly 𝑗 sections. Then we can express the binary representations

of 𝐶 and 𝐶 ′
as (x, 0, 1𝑗−1) and (x′, 0, 1𝑗−1), respectively, where 1𝑗−1 denotes the all-1s vector of

length 𝑗 − 1, and x and x′ are respectively the binary representations of two numbers 𝑦 and 𝑧

with 𝑦 < 𝑧. Consider the binary vector (x, 1𝑗 ). This is the binary representation of a number

𝐶 ∈ (𝐶,𝐶 ′) with strictly more trailing ones than the binary representations of 𝐶 and 𝐶 ′
. The claim

follows as there must be a step 𝑡 ∈ (𝑡, 𝑡 ′) when the state equals 𝐶 and a compaction operation is

performed. □

2.2 The Full Sketch
Following prior work [1, 15, 17], the full sketch uses a sequence of relative-compactors. At the

very start of the stream, it consists of a single relative-compactor (at level 0) and opens a new one

(at level 1) once items are fed to the output stream of the first relative-compactor (i.e., after the

first compaction operation, which occurs on the first stream update during which the buffer is

full). In general, when the newest relative-compactor is at level ℎ, the first time the buffer at level ℎ

performs a compaction operation (feeding items into its output stream for the first time), we open

a new relative-compactor at level ℎ + 1 and feed it these items. Algorithm 2 describes the logic of

this sketch.

To answer rank queries, we use the items in the buffers of the relative-compactors as a weighted

coreset. That is, the union of these items is a weighted set C of items, where the weight of items

in relative-compactor at level ℎ is 2
ℎ
(recall that ℎ starts from 0), and the approximate rank of 𝑦,

denoted R̂(𝑦), is the sum of weights of items in C smaller than or equal to 𝑦. Similarly, ReqSketch

can answer quantile queries, i.e., for a given rank 𝑟 ∈ {1, . . . , 𝑛}, return an item 𝑦 ∈ U with R(𝑦)
close to 𝑟 ; the algorithm just returns an item 𝑦 stored in one of the relative-compactors with R̂(𝑦)
closest to the query rank 𝑟 among all items in the sketch.

The construction of layered exponentially-weighted compactors and the subsequent rank estima-

tion is virtually identical to that explained in prior works [1, 15, 17]. Our essential departure from
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Algorithm 2 ReqSketch (Relative-Error Quantiles sketch)

Input: Parameters 𝑘 ∈ 2N+
and 𝑛 ∈ N+

, and a stream of items 𝑥1, 𝑥2, . . . of length at most 𝑛

Output: A sketch answering rank queries

1: Let RelCompactors be a list of relative-compactors

2: Set 𝐻 = 0, initialize relative-compactor at RelCompactors[0], with parameters 𝑘 and 𝑛

3: for 𝑡 = 1 . . . do
4: Insert(𝑥𝑡 , 0)

5: function Insert(𝑥 ,ℎ)

6: if 𝐻 < ℎ then
7: Set 𝐻 = ℎ

8: Initialize relative-compactor at RelCompactors[ℎ], with parameters 𝑘 and 𝑛

9: Insert item 𝑥 into RelCompactors[ℎ]

10: for 𝑧 in output stream of RelCompactors[ℎ] do
11: Insert(𝑧, ℎ + 1)

12: function Estimate-Rank(𝑦)

13: Set R̂(𝑦) = 0

14: for ℎ = 0 to 𝐻 do
15: for each item 𝑦 ′ ≤ 𝑦 stored in RelCompactors[ℎ] do
16: Increment R̂(𝑦) by 2

ℎ

return R̂(𝑦)

Algorithm 3Merge operation

Input: Sketches 𝑆 ′ and 𝑆 ′′ to be merged such that 𝑆 ′.𝐻 ≥ 𝑆 ′′.𝐻
Output: A sketch answering rank queries for the combined inputs of 𝑆 ′ and 𝑆 ′′

1: for ℎ = 0, . . . , 𝑆 ′′.𝐻 do ⊲ Merge 𝑆 ′′ into 𝑆 ′

2: 𝑆 ′.RelCompactors[ℎ].𝐶 = 𝑆 ′.RelCompactors[ℎ].𝐶 OR 𝑆 ′′.RelCompactors[ℎ].𝐶

3: Insert all items in 𝑆 ′′.RelCompactors[ℎ] into 𝑆 ′.RelCompactors[ℎ]

4: for ℎ = 0, . . . , 𝑆 ′.𝐻 do
5: if buffer 𝑆 ′.RelCompactors[ℎ] exceeds its capacity then
6: Perform compaction operation as in lines 6-13 of Algorithm 1 and insert output items

into 𝑆 ′.RelCompactors[ℎ + 1]

7: return 𝑆 ′

prior work is in the definition of the compaction operation, not in how compactors are plumbed

together to form a complete sketch.

2.3 Merge Operation
We describe a merge operation that takes as input two sketches 𝑆 ′ and 𝑆 ′′ which have processed

two separate streams 𝜎 ′
and 𝜎 ′′

, and that outputs a sketch 𝑆 summarizing the concatenated stream

𝜎 = 𝜎 ′ ◦ 𝜎 ′′
(the order of 𝜎 ′

and 𝜎 ′′
does not matter here). For simplicity, we assume w.l.o.g. that

sketch 𝑆 ′ has at least as many levels as sketch 𝑆 ′′. Then, the resulting sketch 𝑆 inherits parameters

𝑘 and 𝑛 from sketch 𝑆 ′, and in fact, we will merge sketch 𝑆 ′′ into 𝑆 ′. We further assume that both

𝑆 ′ and 𝑆 ′′ have the same value of 𝑘 (otherwise, it would not be meaningful to analyze the error of

𝑆) and that 𝑛 is still an upper bound on the combined input size. Later, in Section 6, we show how

to remove the latter assumption and provide a tight analysis of the sketch created by an arbitrary
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sequence of merge operations without any advance knowledge about the total input size, thus

proving Theorem 1.

The basic idea of the merge operation is straightforward: At each level, concatenate the buffers

and if that causes the capacity of the compactor to be exceeded, perform the compaction operation,

as in Algorithm 1. However, there is crucial subtlety: We need to combine the states 𝐶 of the

compaction schedule at each level in a manner that ensures that relative-error guarantees are

satisfied for the merged sketch. Consider a level ℎ and let𝐶 ′
and𝐶 ′′

be the states of the compaction

schedule at level ℎ in 𝑆 ′ and 𝑆 ′′, respectively. The new state𝐶 at level ℎ will be the bitwise OR of𝐶 ′

and 𝐶 ′′
. We explain the intuition behind using the bitwise OR in Section 6. Note that while in the

streaming setting, the state corresponds to the number of compaction operations already performed,

after a merge operation this may not hold anymore. Still, if the state is zero, this indicates that

the buffer has not yet been subject to any compactions. Algorithm 3 provides a pseudocode of the

merge operation, where we use 𝑆.𝐻 for the index of the highest level of sketch 𝑆 and similarly, 𝑆.𝑘

and 𝑆.𝑛 for the parameters 𝑘 and 𝑛 of 𝑆 , respectively.

2.4 Informal Outline of the Analysis
To analyze the error of the full sketch, we focus on the error in the estimated rank of an arbitrary

item 𝑦 ∈ U. For clarity in this informal overview, we consider the failure probability 𝛿 to be

constant, and we assume that Y−1 >
√︁
log

2
(Y𝑛), or equivalently, 𝑛 < Y−1 · 2Y−2 . Recall that in our

algorithm, all buffers have size 𝐵 = Θ(𝑘 log(𝑛/𝑘)); we ultimately will set 𝑘 = Θ
(
Y−1/

√︁
log(Y𝑛)

)
, in

which case 𝐵 = 𝑂

(
Y−1

√︁
log(Y𝑛)

)
.

Let R(𝑦) be the rank of item 𝑦 in the input stream, and Err(𝑦) = R̂(𝑦) − R(𝑦) the error of the
estimated rank for 𝑦. Our analysis of Err(𝑦) relies on just two properties.

(1) The level-ℎ compactor only does at most R(𝑦)/(𝑘 · 2ℎ) compactions that affect the error of 𝑦

(up to a constant factor).

Roughly speaking, this holds by the following reasoning. First, recall from Observation 2.1

that 𝑦 needs to be odd w.r.t. any compaction affecting the error of 𝑦, which implies that at

least one item 𝑥 ≤ 𝑦 must be removed during that compaction. We show that as we move

up one level at a time, 𝑦’s rank with respect to the input stream fed to that level falls by

about half (this is formally established in Lemma 4.4). This is the source of the 2
ℎ
factor in

the denominator. Second, we show that each compaction operation that affects Err(𝑦) can
be “attributed” to 𝑘 items smaller than or equal to 𝑦 inserted into the buffer, which relies on

using our particular compaction schedule (see Lemma 3.1). This is the source of the 𝑘 factor

in the denominator.

(2) Let𝐻𝑦 be the smallest positive integer such that 2
𝐻𝑦 ≳ R(𝑦)/𝐵 (the approximate inequality ≳

hides a universal constant). Then no compactions occurring at levels above 𝐻𝑦 affect Err(𝑦),
because 𝑦’s rank relative to the input stream of any such buffer is less than 𝐵/2 and no

relative-compactor ever compacts the lowest-ranked 𝐵/2 items that it stores.

Again, this holds because as we move up one level at a time, 𝑦’s rank w.r.t each level falls by

about half (see Lemma 4.4).

Together, this means that the variance of the estimate for 𝑦 is at most (up to constant factors):

𝐻𝑦∑︁
ℎ=1

R(𝑦)
𝑘 · 2ℎ

· 22ℎ =

𝐻𝑦∑︁
ℎ=1

R(𝑦)
𝑘

· 2ℎ , (1)
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where in the LHS, R(𝑦)/(𝑘2ℎ) bounds the number of level-ℎ compaction operations affecting the

error (this exploits Property 1 above), and 2
2ℎ

is the variance contributed by each such compaction,

due to Observation 2.1 and because items processed by relative-compactor at level ℎ each represent

2
ℎ
items in the original stream.

The RHS of Equation (1) is dominated by the term for ℎ = 𝐻𝑦 , and the term for that value of ℎ is

at most (up to constant factors)

R(𝑦)
𝑘

· 2𝐻𝑦 ≲
R(𝑦)
𝑘

· R(𝑦)
𝐵

=
R(𝑦)2
𝑘 · 𝐵 ≃ R(𝑦)2 · log(Y𝑛)

𝐵2
. (2)

The first inequality in Equation (2) exploits Property 2 above, while the last equality exploits the

fact that 𝐵 = 𝑂 (𝑘 · log(Y𝑛)).5 We obtain the desired accuracy guarantees so long as this variance is

at most Y2 R(𝑦)2, as this will imply that the standard deviation is at most Y R(𝑦). This hoped-for
variance bound holds so long as 𝐵 ≳ Y−1 ·

√︁
log

2
(Y𝑛), or equivalently 𝑘 ≳ Y−1/

√︁
log

2
(Y𝑛).

2.5 Roadmap for the Formal Analysis
Section 3 establishes the necessary properties of a single relative-compactor (Algorithm 1), namely

that, roughly speaking, each compaction operation that affects a designated item 𝑦 can be charged

to 𝑘 items smaller than or equal to 𝑦 added to the buffer. Section 4 then analyzes the full sketch

(Algorithm 2), completing the proof of our result in the streaming setting when a polynomial upper

bound on 𝑛 is known in advance. In Section 5, we provide a simple argument that the assumption

of having such an upper bound on 𝑛 is not needed in the streaming setting.

For the most general analysis under an arbitrary sequence of merge operations (i.e., for the proof

of full mergeability) and without assuming a foreknowledge of 𝑛, we refer to Section 6.

3 ANALYSIS OF THE RELATIVE-COMPACTOR IN THE STREAMING SETTING
To analyze our algorithm, we keep track of the error associated with an arbitrary fixed item 𝑦.

Throughout this section, we restrict our attention to any single relative-compactor at level ℎ

(Algorithm 1) maintained by our sketching algorithm (Algorithm 2), and we use “time 𝑡” to refer to

the 𝑡-th insertion operation to this particular relative-compactor.

We analyze the error introduced by the relative-compactor for an item 𝑦. Specifically, at time 𝑡 ,

let 𝑋 𝑡 = (𝑥1, . . . , 𝑥𝑡 ) be the input stream to the relative-compactor, 𝑍 𝑡
be the output stream, and

B𝑡
be the items in the buffer after inserting item 𝑥𝑡 . The error for the relative-compactor at time 𝑡

with respect to item 𝑦 is defined as

Err
𝑡
ℎ
(𝑦) = R(𝑦;𝑋 𝑡 ) − 2 R(𝑦;𝑍 𝑡 ) − R(𝑦;B𝑡 ). (3)

Conceptually, Err
𝑡
ℎ
(𝑦) tracks the difference between 𝑦’s rank in the input stream 𝑋 𝑡

at time 𝑡

versus its rank as estimated by the combination of the output stream and the remaining items in

the buffer at time 𝑡 (output items are upweighted by a factor of 2 while items remaining in the

buffer are not). The overall error of the relative-compactor is Err
𝑛
ℎ
(𝑦), where 𝑛 is the length of its

input stream. To bound Err
𝑛
ℎ
(𝑦), we keep track of the error associated with 𝑦 over time, and define

the increment or decrement of it as

Δ𝑡
ℎ
(𝑦) = Err

𝑡
ℎ
(𝑦) − Err

𝑡−1
ℎ

(𝑦),
where Err

0

ℎ
(𝑦) = 0.

5
In the derivations within Equation (2), there is a couple of important subtleties. The first is that when we replace 2

𝐻𝑦

with Θ(R(𝑦)/𝐵) , that substitution is only valid if R(𝑦)/𝐵 ≥ Ω (1) . However, we can assume w.l.o.g. that R(𝑦) ≥ 𝐵/2, as
otherwise the algorithm will make no error on 𝑦 by virtue of storing the lowest-ranked 𝐵/2 items deterministically. The

second subtlety is that the algorithm is only well-defined if 𝑘 ≥ 2, so when we replace 𝑘 with Θ(𝐵/log(Y𝑛)) , that is a valid
substitution only if 𝐵 ≥ Ω (log(Y𝑛)) , which holds by the assumption that Y−1 >

√︁
log

2
(Y𝑛) .
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Clearly, if the algorithm performs no compaction operation in a time step 𝑡 , then Δ𝑡
ℎ
(𝑦) = 0.

(Recall that a compaction is an execution of lines 6-13 of Algorithm 1.) Let us consider what happens

in a step 𝑡 in which a compaction operation occurs. Recall from Observation 2.1 that if𝑦 is even with

respect to the compaction (i.e., 𝑦 has even rank w.r.t. the 𝐿 largest items in the relative-compactor),

then 𝑦 suffers no error, meaning that Δ𝑡
ℎ
(𝑦) = 0. Otherwise, Δ𝑡

ℎ
(𝑦) is uniform in {−1, 1}.

Our aim is to bound the number of steps 𝑡 with Δ𝑡
ℎ
(𝑦) ≠ 0, equal to

∑𝑛
𝑡=1 |Δ𝑡

ℎ
(𝑦) |, and use this in

turn to help us bound Err
𝑛
ℎ
(𝑦). We call a step 𝑡 with Δ𝑡

ℎ
(𝑦) ≠ 0 important. Likewise, call an item 𝑥

with 𝑥 ≤ 𝑦 important. Let Rℎ (𝑦) be the rank of 𝑦 in the input stream to level ℎ; so there are Rℎ (𝑦)
important items inserted to the buffer at level ℎ (in the notation above, we have Rℎ (𝑦) = R(𝑦;𝑋𝑛)).
Recall that 𝑘 denotes the parameter in Algorithm 1 controlling the size of the buffer sections of

each relative-compactor and that 𝐵 denotes the buffer’s capacity.

Our main analytic result regarding relative-compactors is that there are at most Rℎ (𝑦)/𝑘 impor-

tant steps. Its proof explains the intuition behind our compaction schedule, i.e., why we set 𝐿 as

described in Algorithm 1.

Lemma 3.1. Consider the relative-compactor at level ℎ, fed an input stream of length at most 𝑛.
For any fixed item 𝑦 ∈ U with rank Rℎ (𝑦) in the input stream to level ℎ, there are at most Rℎ (𝑦)/𝑘
important steps. In particular,

𝑛∑︁
𝑡=1

|Δ𝑡
ℎ
(𝑦) | ≤ Rℎ (𝑦)/𝑘 and

��
Err

𝑛
ℎ
(𝑦)

�� ≤ Rℎ (𝑦)/𝑘 .

Proof. We focus on steps 𝑡 in which the algorithm performs a level-ℎ compaction operation

(possibly not important), and call a step 𝑡 a 𝑗-step for 𝑗 ≥ 1 if the compaction operation in step 𝑡 (if

any) involves exactly 𝑗 sections (i.e., 𝐿𝐶 = 𝑗 · 𝑘 in line 7 of Algorithm 1). Recall from Section 2.1

that sections are numbered from the right, so that the first section contains the 𝑘 largest items in

the buffer, the second section contains the next 𝑘 largest items, and so on. Note that we think of

the buffer as being sorted at all times.

For any 𝑗 ≥ 1, let 𝑠 𝑗 be the number of important 𝑗-steps. Further, let Rℎ,𝑗 (𝑦) be the number of

important items that are either removed from the 𝑗-th section during a compaction, or remain in

the 𝑗-th section at the end of execution, i.e., after the relative-compactor has processed its entire

input stream. We also define Rℎ,𝑗 (𝑦) for 𝑗 = ⌈log
2
(𝑛/𝑘)⌉ + 1. In this case, we define the 𝑗-th section

to be the last 𝑘 slots in the first half of the buffer (which contains 𝐵/2 smallest items); this special

section is never involved in any compaction.

Observe that

∑
𝑗≥1 𝑠 𝑗 is the number of important steps and that

∑
𝑗≥1 Rℎ,𝑗 (𝑦) ≤ Rℎ (𝑦). We will

show

𝑠 𝑗 · 𝑘 ≤ Rℎ,𝑗+1 (𝑦) . (4)

Intuitively, our aim is to “charge” each important 𝑗-step to 𝑘 important items that are either removed

from section 𝑗 + 1, or remain in section 𝑗 + 1 at the end of execution, so that each such item is

charged at most once.

Equation 4 implies the lemma as the number of important steps is

𝑛∑︁
𝑡=1

|Δ𝑡 (𝑦) | =
⌈log

2
(𝑛/𝑘) ⌉∑︁
𝑗=1

𝑠 𝑗 ≤
⌈log

2
(𝑛/𝑘) ⌉∑︁
𝑗=1

Rℎ,𝑗+1 (𝑦)
𝑘

≤ Rℎ (𝑦)
𝑘

.

To show the lower bound on Rℎ,𝑗+1 (𝑦) in (4), consider an important 𝑗-step 𝑡 . Since the algorithm

compacts exactly 𝑗 sections and Δ𝑡
ℎ
(𝑦) ≠ 0, there is at least one important item in section 𝑗 by

Observation 2.1. As section 𝑗 + 1 contains smaller-ranked (or equal-ranked) items than section 𝑗 ,

section 𝑗 + 1 contains important items only. We have two cases for charging the important 𝑗-step 𝑡 :
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Case A: There is a compaction operation after step 𝑡 that involves at least 𝑗 + 1 buffer sections,

i.e., a 𝑗 ′-step for 𝑗 ′ ≥ 𝑗 + 1. Let 𝑡 ′ be the first such step. Note that just before the compaction in

step 𝑡 ′, the ( 𝑗 + 1)-st section contains important items only as it contains important items only

immediately after step 𝑡 . We charge the important step 𝑡 to the 𝑘 important items that are in the

( 𝑗 + 1)-st section just before step 𝑡 ′. Thus, all of these charged items are removed from level ℎ in

step 𝑡 ′.

Case B: Otherwise, there is no compaction operation after step 𝑡 that involves at least 𝑗 + 1 buffer

sections. Then, we charge step 𝑡 to the 𝑘 important items that are in the ( 𝑗 + 1)-st section at the

end of execution.

It remains to observe that each important item 𝑥 accounted for in Rℎ,𝑗+1 (𝑦) is charged at most

once. (Note that different compactions may be charged to the items which are consumed during the

same later compaction, but our charging will ensure that these are assigned to different sections.

For example, consider a sequence of three consecutive important steps (there is no compaction in

other steps in between them) such that in the first one the algorithm compacts 2 sections, then 1

section, and 3 sections in the third important step. The first compaction will be charged to section

3 of the last compaction, and the second compaction is charged to section 2 of the last compaction.)

Formally, suppose that 𝑥 is removed from section 𝑗 + 1 during some compaction operation

in a step 𝑡 ′. Item 𝑥 may only be charged by some number of important 𝑗-steps before step 𝑡 ′

(satisfying the condition of Case A). To show there is at most one such important step, we use the

crucial property of our compaction schedule (Observation 2.2) that between every two compaction

operations involving exactly 𝑗 sections, there is at least one compaction that involves more than 𝑗

sections. Since any important 𝑗-step is charged to the first subsequent compaction that involves

more than 𝑗 sections, item 𝑥 is charged at most once.

Otherwise, 𝑥 remains in section 𝑗 + 1 of the level-ℎ buffer at the end of processing. The proof in

this case is similar to the previous case. Item 𝑥 may only be charged by some number of important

𝑗-steps (that fall into Case B) such that there are no subsequent compaction operations involving

at least 𝑗 + 1 buffer sections, and there is at most one such important step by Observation 2.2. This

shows (4), which implies the lemma as noted above. □

4 ANALYSIS OF THE FULL SKETCH IN THE STREAMING SETTING
We denote by Errℎ (𝑦) the error for item 𝑦 at the end of the stream when comparing the input

stream to the compactor of level ℎ and its output stream and buffer. That is, letting Bℎ be the items

in the buffer of the level-ℎ relative-compactor after Algorithm 2 has processed the input stream,

Errℎ (𝑦) = Rℎ (𝑦) − 2 Rℎ+1 (𝑦) − R(𝑦;Bℎ). (5)

For the analysis, we first set the value of parameter 𝑘 of Algorithm 2. Namely, given (an upper

bound on) the stream length 𝑛, the desired accuracy 0 < Y ≤ 1, and the desired upper bound

0 < 𝛿 ≤ 0.5 on failure probability, we let

𝑘 = 2 ·

4

Y
·

√︄
ln

1

𝛿

log
2
(Y𝑛)

 . (6)

In the rest of this section, we suppose that parameters Y and 𝛿 satisfy 𝛿 > 1/exp(Y𝑛/64) (note
that this a very weak assumption as for 𝛿 ≤ 1/exp(Y𝑛/64), the accuracy guarantees hold nearly

deterministically, the space cost of

√︁
ln(1/𝛿) becomes Ω(

√
Y𝑛), and furthermore, the analyses in

Sections 6 and 7 do not require such an assumption). We start by showing a lower bound on 𝑘 · 𝐵.
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Claim 4.1. If parameter 𝑘 is set according to Equation (6) and 𝐵 is set as in Algorithm 1 (line 1),
then the following inequality holds:

𝑘 · 𝐵 ≥ 2
6 · 1

Y2
· ln 1

𝛿
. (7)

Proof. We first need to relate log
2
(𝑛/𝑘) (used to define 𝐵, see line 1 of Algorithm 1) and log

2
(Y𝑛)

(that appears in the definition of 𝑘 , see Equation (6)). Using the assumption 𝛿 > 1/exp(Y𝑛/64), we
have 𝑘 ≤ 8Y−1 ·

√︁
ln(1/𝛿) ≤ 8Y−1 ·

√︁
Y𝑛/64 = Y−1 ·

√
Y𝑛, which gives us

log
2

(𝑛
𝑘

)
≥ log

2

(
Y𝑛
√
Y𝑛

)
=
log

2
(Y𝑛)
2

.

Using this and the definition of 𝑘 , we bound 𝑘 · 𝐵 as follows:

𝑘 · 𝐵 = 2 · 𝑘2 ·
⌈
log

2

𝑛

𝑘

⌉
≥ 2 · 26 · 1

Y2
·

ln
1

𝛿

log
2
(Y𝑛) ·

log
2
(Y𝑛)
2

= 2
6 · 1

Y2
· ln 1

𝛿
.

□

We now provide bounds on the rank of 𝑦 on each level, starting with a simple one that will be

useful for bounding the maximum level ℎ with Rℎ (𝑦) > 0.

Observation 4.2. Rℎ+1 (𝑦) ≤ max{0, Rℎ (𝑦) − 𝐵/2} for any ℎ ≥ 0.

Proof. Since the lowest-ranked 𝐵/2 items in the input stream to the level-ℎ relative-compactor

are stored in the buffer Bℎ and never given to the output stream of the relative-compactor, it follows

immediately that Rℎ+1 (𝑦) ≤ max{0, Rℎ (𝑦) − 𝐵/2}. □

Next, we prove that Rℎ (𝑦) roughly halves with every level. This is easy to see in expectation

and we show that it is true with high probability up to a certain crucial level 𝐻 (𝑦). Here, we define
𝐻 (𝑦) to be the minimal ℎ for which 2

2−ℎ
R(𝑦) ≤ 𝐵/2. For ℎ = 𝐻 (𝑦) − 1 (assuming 𝐻 (𝑦) > 0), we

particularly have 2
3−𝐻 (𝑦)

R(𝑦) ≥ 𝐵/2, or equivalently
2
𝐻 (𝑦) ≤ 2

4 · R(𝑦)/𝐵. (8)

Below, in Lemma 4.4, we show that no important item (i.e., one smaller than or equal to 𝑦) can ever

reach level 𝐻 (𝑦) with high probability. Recall that a zero-mean random variable 𝑋 with variance

𝜎2
is sub-Gaussian if E[exp(𝑠𝑋 )] ≤ exp(− 1

2
· 𝑠2 · 𝜎2) for any 𝑠 ∈ R; note that a (weighted) sum of

independent zero-mean sub-Gaussian variables is a zero-mean sub-Gaussian random variable as

well. We will use the following standard (Chernoff) tail bound for sub-Gaussian variables (see, e.g.,

Lemma 1.3 in [24]):

Fact 4.3. Let 𝑋 be a zero-mean sub-Gaussian variable with variance at most 𝜎2. Then for any
𝑎 > 0, it holds that

Pr[𝑋 > 𝑎] ≤ exp

(
− 𝑎2

2𝜎2

)
and Pr[𝑋 < −𝑎] ≤ exp

(
− 𝑎2

2𝜎2

)
.

Lemma 4.4. Assuming 𝐻 (𝑦) > 0, with probability at least 1 − 𝛿 it holds that Rℎ (𝑦) ≤ 2
−ℎ+1

R(𝑦)
for any ℎ < 𝐻 (𝑦).

Proof. We prove by induction on 0 ≤ ℎ < 𝐻 (𝑦) that, conditioned on Rℓ (𝑦) ≤ 2
−ℓ+1

R(𝑦) for any
ℓ < ℎ, with probability at least 1 − 𝛿 · 2ℎ−𝐻 (𝑦)

it holds that Rℎ (𝑦) ≤ 2
−ℎ+1

R(𝑦). Taking the union
bound over all 0 ≤ ℎ < 𝐻 (𝑦) implies the claim. As R0 (𝑦) = R(𝑦), the base case follows immediately.

Next, consider ℎ > 0 and condition on Rℓ (𝑦) ≤ 2
−ℓ+1

R(𝑦) for any ℓ < ℎ. Observe that any

compaction operation at any level ℓ that involves 𝑎 important items inserts
1

2
𝑎 such items to the
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input stream at level ℓ + 1 in expectation, no matter whether 𝑎 is odd or even. Indeed, if 𝑎 is odd,

then the number of important items promoted is
1

2
(𝑎 +𝑋 ), where 𝑋 is a zero-mean random variable

uniform on {−1, 1}. For an even 𝑎, the number of important items that are promoted is
1

2
𝑎 with

probability 1.

Thus, random variable Rℓ (𝑦) for any level ℓ > 0 is generated by the following random process:

To get Rℓ (𝑦), start with Rℓ−1 (𝑦) important items and remove those stored in the level-(ℓ − 1)
relative-compactor Bℓ−1 at the end of execution; there are R(𝑦;Bℓ−1) ≤ 𝐵 important items in Bℓ−1.
Then, as described above, each compaction operation at level ℓ − 1 involving 𝑎 > 0 important items

promotes to level ℓ either 1

2
𝑎 important items if 𝑎 is even, or

1

2
(𝑎 + 𝑋 ) important items if 𝑎 is odd,

i.e., the compaction is important. In total, Rℓ−1 (𝑦) − R(𝑦;Bℓ−1) important items are involved in

compaction operations at level ℓ − 1. Summarizing and letting𝑚ℓ−1 be the number of important

compaction operations at level ℓ − 1, we have

Rℓ (𝑦) =
1

2

· (Rℓ−1 (𝑦) − R(𝑦;Bℓ−1) + Binomial(𝑚ℓ−1)) , (9)

where Binomial(𝑛) represents the sum of 𝑛 zero-mean i.i.d. random variables uniform on {−1, 1}.
To simplify (9), consider the following sequence of random variables 𝑌0, . . . , 𝑌ℎ : Start with

𝑌0 = R(𝑦) and for 0 < ℓ < ℎ let

𝑌ℓ =
1

2

· (𝑌ℓ−1 + Binomial(𝑚ℓ−1)) . (10)

Note that E[𝑌ℓ ] = 2
−ℓ
R(𝑦). Since variables 𝑌ℓ differ from Rℓ (𝑦) only by not subtracting R(𝑦;Bℓ−1)

at every level ℓ > 0, variable 𝑌ℎ stochastically dominates variable Rℎ (𝑦), so in particular,

Pr[Rℎ (𝑦) > 2
−ℎ+1

R(𝑦)] ≤ Pr[𝑌ℎ > 2
−ℎ+1

R(𝑦)] , (11)

which implies that it is sufficient to bound Pr[𝑌ℎ > 2
−ℎ+1

R(𝑦)]. Unrolling the definition of 𝑌ℎ
in (10), we obtain

𝑌ℎ = 2
−ℎ · R(𝑦) +

ℎ−1∑︁
ℓ=0

2
−ℎ+ℓ · Binomial(𝑚ℓ ) . (12)

Observe that 𝑌ℎ equals a fixed amount (2
−ℎ · R(𝑦)) plus a zero-mean sub-Gaussian variable

𝑍ℎ =

ℎ−1∑︁
ℓ=0

2
−ℎ+ℓ · Binomial(𝑚ℓ ) , (13)

since Binomial(𝑛) is a sum of 𝑛 independent zero-mean sub-Gaussian variables (with variance 1).

To bound the variance of 𝑍ℎ , first note that for any ℓ < ℎ, we have𝑚ℓ ≤ Rℓ (𝑦)/𝑘 ≤ 2
−ℓ+1

R(𝑦)/𝑘
by Lemma 3.1 and by conditioning on Rℓ (𝑦) ≤ 2

−ℓ+1
R(𝑦). As Var[Binomial(𝑛)] = 𝑛, the variance

of 𝑍ℎ is

Var[𝑍ℎ] ≤
ℎ−1∑︁
ℓ=0

2
−2ℎ+2ℓ ·𝑚ℓ ≤

ℎ−1∑︁
ℓ=0

2
−2ℎ+2ℓ · 2

−ℓ+1
R(𝑦)
𝑘

=

ℎ−1∑︁
ℓ=0

2
−2ℎ+ℓ+1

R(𝑦)
𝑘

≤ 2
−ℎ+1 · R(𝑦)

𝑘
.
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Note that Pr[𝑌ℎ > 2
−ℎ+1

R(𝑦)] = Pr[𝑍ℎ > 2
−ℎ

R(𝑦)]. To bound the latter probability, we apply

the tail bound for sub-Gaussian variables (Fact 4.3) to get

Pr[𝑍ℎ > 2
−ℎ

R(𝑦)] < exp

(
− 2

−2ℎ · R(𝑦)2

2 · (2−ℎ+1 · R(𝑦)/𝑘)

)
= exp

(
−2−ℎ−2 · R(𝑦) · 𝑘

)
= exp

(
−2−ℎ+𝐻 (𝑦)−6 · 24−𝐻 (𝑦)

R(𝑦) · 𝑘
)

≤ exp

(
−2−ℎ+𝐻 (𝑦)−6 · 𝐵 · 𝑘

)
(14)

≤ exp

(
−2−ℎ+𝐻 (𝑦)−6 · 26 · 1

Y2
· ln 1

𝛿

)
(15)

≤ exp

(
−2−ℎ+𝐻 (𝑦) · ln 1

𝛿

)
= 𝛿2

𝐻 (𝑦)−ℎ ≤ 𝛿 · 2−𝐻 (𝑦)+ℎ , (16)

where inequality (14) uses 2
4−𝐻 (𝑦)

R(𝑦) ≥ 𝐵 (by the definition of 𝐻 (𝑦), cf. Equation (8)), inequal-

ity (15) follows from Claim 4.1, inequality (16) uses Y ≤ 1, and the last inequality uses 𝛿 ≤ 0.5. As

explained above, this concludes the proof. □

In what follows, we condition on the bound on Rℎ (𝑦) in Lemma 4.4 for any ℎ < 𝐻 (𝑦).

Lemma 4.5. Conditioned on the bound on R𝐻 (𝑦)−1 (𝑦) in Lemma 4.4, it holds that R𝐻 (𝑦) (𝑦) = 0.

Proof. According to Lemma 4.4 and the definition of 𝐻 (𝑦) as the minimal ℎ for which

2
2−ℎ

R(𝑦) ≤ 𝐵/2,

R𝐻 (𝑦)−1 (𝑦) ≤ 2
2−𝐻 (𝑦)

R(𝑦) ≤ 1

2

𝐵 .

Invoking Observation 4.2, we get R𝐻 (𝑦) (𝑦) ≤ max{0, R𝐻 (𝑦)−1 (𝑦) − 𝐵/2} = 0. □

We are now ready to bound the overall error of the sketch for item 𝑦, i.e., Err(𝑦) = R̂(𝑦) − R(𝑦)
where R̂(𝑦) is the estimated rank of 𝑦. It is easy to see that

Err(𝑦) =
𝐻∑︁
ℎ=0

2
ℎ
Errℎ (𝑦),

where 𝐻 is the highest level with a relative-compactor (that never produces any output). To bound

this error, we refine the guarantee of Lemma 3.1. Notice that for any particular relative-compactor,

the bound

∑𝑛
𝑡=1 |Δ𝑡

ℎ
(𝑦) | referred to in Lemma 3.1 applied to a level ℎ is a potentially crude upper

bound on Errℎ (𝑦) =
∑𝑛

𝑡=1 Δ
𝑡
ℎ
(𝑦): Each non-zero term Δ𝑡

ℎ
(𝑦) is positive or negative with equal

probability, so the terms are likely to involve a large amount of cancellation. To take advantage of

this, we bound the variance of Err(𝑦).

Lemma 4.6. Conditioned on the bound on Rℎ (𝑦) in Lemma 4.4 for any ℎ < 𝐻 (𝑦), Err(𝑦) is a
zero-mean sub-Gaussian random variable with Var[Err(𝑦)] ≤ 2

5 · R(𝑦)2/(𝑘 · 𝐵).

Proof. Consider the relative-compactor at any level ℎ. By Lemma 3.1, Errℎ (𝑦) is a sum of at

most Rℎ (𝑦)/𝑘 random variables, i.i.d. uniform in {−1, 1}. In particular, Errℎ (𝑦) is a zero-mean

sub-Gaussian random variable with Var[Errℎ (𝑦)] ≤ Rℎ (𝑦)/𝑘 . Thus, Err(𝑦) is a sum of independent

zero-mean sub-Gaussian random variables, and as such is itself a zero-mean sub-Gaussian random

variable.
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It remains to bound the variance of Err(𝑦), for which we first bound Var[Errℎ (𝑦)] for each ℎ.

If Rℎ (𝑦) = 0, then Observation 2.1 implies that Errℎ (𝑦) = 0, and hence that Var[Errℎ (𝑦)] = 0.

Thus, using Lemma 4.5, we have Var[Errℎ (𝑦)] = 0 for any ℎ ≥ 𝐻 (𝑦). For ℎ < 𝐻 (𝑦), we use

Var[Errℎ (𝑦)] ≤ Rℎ (𝑦)/𝑘 to obtain:

Var[Err(𝑦)] =
𝐻 (𝑦)−1∑︁
ℎ=0

2
2ℎ
Var[Errℎ (𝑦)]

≤
𝐻 (𝑦)−1∑︁
ℎ=0

2
2ℎ · Rℎ (𝑦)

𝑘
≤

𝐻 (𝑦)−1∑︁
ℎ=0

2
ℎ+1 · R(𝑦)

𝑘
≤ 2

𝐻 (𝑦)+1 · R(𝑦)
𝑘

≤ 2
5 · R(𝑦)

2

𝑘 · 𝐵 ,

where the second inequality is due to Lemma 4.4 and the last inequality follows from (8). □

To show that the space bound is maintained, we also need to bound the number of relative-

compactors.

Observation 4.7. The number of relative-compactors ever created by the full algorithm (Algorithm
2) is at most ⌈log

2
(𝑛/𝐵)⌉ + 1.

Proof. Each item on level ℎ has weight 2
ℎ
, so there are at most 𝑛/2ℎ items inserted to the buffer

at that level. Applying this observation to ℎ = ⌈log
2
(𝑛/𝐵)⌉, we get that on this level, there are fewer

than 𝐵 items inserted to the buffer, which is consequently not compacted, so the highest level has

index at most ⌈log
2
(𝑛/𝐵)⌉. The claim follows (recall that the lowest level has index 0). □

We are now ready to prove the main result of this section, namely, the accuracy guarantees in

the streaming setting when the stream length is essentially known in advance.

Theorem 3. Assume that (a polynomial upper bound on) the stream length 𝑛 is known in advance.
For any parameters 0 < 𝛿 ≤ 0.5 and 0 < Y ≤ 1 satisfying 𝛿 > 1/exp(Y𝑛/64), there is a randomized,
comparison-based, one-pass streaming algorithm that, when processing a data stream consisting of
𝑛 items from a totally-ordered universeU, produces a summary 𝑆 satisfying the following property.
Given 𝑆 , for any 𝑦 ∈ U one can derive an estimate R̂(𝑦) of R(𝑦) such that

Pr

[
|R̂(𝑦) − R(𝑦) | > Y R(𝑦)

]
< 𝛿 ,

where the probability is over the internal randomness of the streaming algorithm. The size of 𝑆 in
memory words is

𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︂
log

1

𝛿

)
.

Proof. First, suppose that Y ≤ 4 ·
√︁
ln(1/𝛿)/log

2
(Y𝑛). Then we use Algorithm 2 with parameters

𝑘 and 𝑛, where 𝑘 is set as in (6). Note that 𝑘 is an even positive integer as required by Algorithm 2.

By Lemma 4.4, with probability at least 1 − 𝛿 , we have Rℎ (𝑦) ≤ 2
−ℎ+1

R(𝑦) for any ℎ < 𝐻 (𝑦) and
we condition on this event happening.

We again apply the standard (Chernoff) tail bound for sub-Gaussian variables (Fact 4.3) together

with Lemma 4.6 (for which we need the bound on Rℎ (𝑦) for any ℎ < 𝐻 (𝑦)) and obtain

Pr [| Err(𝑦) | ≥ Y R(𝑦)] < 2 exp

(
− Y2 · R(𝑦)2
2 · 25 · R(𝑦)2/(𝑘 · 𝐵)

)
≤ 2 exp

(
−
Y2 · 26 · Y−2 · ln 1

𝛿

2
6

)
= 2 exp

(
− ln

1

𝛿

)
= 2𝛿 ,
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where we use Claim 4.1 in the second inequality. This concludes the calculation of the failure

probability.

Regarding the memory usage, there are at most ⌈log
2
(𝑛/𝐵)⌉ + 1 ≤ log

2
(Y𝑛) relative-compactors

by Observation 4.7, and each requires 𝐵 = 2 · 𝑘 · ⌈log
2
(𝑛/𝑘)⌉ memory words. Thus, the memory

needed to run the algorithm is at most

log
2
(Y𝑛) · 2 · 𝑘 ·

⌈
log

2

𝑛

𝑘

⌉
≤ log

2
(Y𝑛) · 2 · 2 ·


4

Y
·

√︄
ln

1

𝛿

log
2
(Y𝑛)

 ·𝑂 (log(Y𝑛)) , (17)

where we use that ⌈log
2
(𝑛/𝑘)⌉ ≤ 𝑂 (log(Y𝑛)), which follows from 𝑘 ≥ Y−1/

√︁
log

2
(Y𝑛). Using

Y ≤ 4 ·
√︁
ln(1/𝛿)/log

2
(Y𝑛), we have 𝑎 := 4Y−1 ·

√︁
ln(1/𝛿)/log

2
(Y𝑛) ≥ 1, so ⌈𝑎⌉ ≤ 2𝑎 and it follows

that (17) is bounded by 𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︁
log(1/𝛿)

)
.

For Y > 4 ·
√︁
ln(1/𝛿)/log

2
(Y𝑛), we use the comparison-based streaming algorithm by Zhang

et al. [28] that requires space 𝑂
(
Y−2 · log(Y2𝑛) · log(1/𝛿)

)
and otherwise satisfies the same er-

ror guarantee as our algorithm. To get the desired space bound, we observe that the case

condition implies

√︁
log

2
(Y𝑛) > 4 ·

√︁
ln(1/𝛿) · Y−1 and thus, 𝑂

(
Y−2 · log(Y2𝑛) · log(1/𝛿)

)
≤

𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︁
log(1/𝛿)

)
.
6 □

Update time. We now analyze the amortized update time of Algorithm 2 and show that it can

be made 𝑂 (log𝐵) = 𝑂 (log(𝑘) + log log(𝑛/𝑘)), i.e., the algorithm processes 𝑛 streaming updates

in total time 𝑂 (𝑛 · log𝐵). To see this, first observe that the time complexity is dominated, up to a

constant factor, by running Algorithm 1 for the relative-compactor at level 0. Indeed, the running

time can be decomposed into the operations done by Algorithm 2 itself, plus the running time of

Algorithm 1 for each level of the sketch, and the former is bounded by the latter. Moreover, at level

ℎ there are at most 𝑛/2ℎ items added to the buffer, implying that the running time of Algorithm 1

decreases exponentially with the level. At level 0, the update time is 𝑂 (1), except for performing

compaction operations (lines 6-13 of Algorithm 1). To make those faster, we maintain the buffer

sorted after each insertion, which can be achieved by using an appropriate data structure in time

𝑂 (log𝐵) per update. Then the time to execute each compaction operation is linear in the number

of items removed from the buffer, making it amortized constant. Hence, the amortized update time

with such adjustments is 𝑂 (log𝐵).

5 HANDLING UNKNOWN STREAM LENGTHS
The algorithm of Section 2.2 and analysis in Sections 3-4 proved Theorem 3 in the streaming setting

assuming that (an upper bound on) 𝑛 is known, where 𝑛 is the true stream length. The space usage

of the algorithm grows polynomially with the logarithm of this upper bound, so if this upper bound

is at most 𝑛𝑐 for some constant 𝑐 ≥ 1, then the space usage of the algorithm will remain as stated

in Theorem 3, with only the hidden constant factor changing.

In the case that such a polynomial upper bound on 𝑛 is not known, we modify the algorithm

slightly, and start with an initial estimate 𝑁0 of 𝑛, namely, 𝑁0 = Θ(Y−1). That is, we begin by running
Algorithm 2 with parameters 𝑘 and 𝑁0. As soon as the stream length hits the current estimate

6
In fact, as we show in Section 6, one may use a variant of our algorithm also for the case of large Y , that is, when

Y > 4 ·
√︁
ln(1/𝛿)/log

2
(1Y𝑛) . Namely, we compute the largest value of 𝑛 such that 1 < 𝑘 = 2 ·

⌈
(4/Y) ·

√︁
ln(1/𝛿)/log

2
(Y𝑛)

⌉
(for given Y and 𝛿); cf. (18) in Section 6. If 𝑛 > 𝑛, then using buffers of size Θ(log Y𝑛) is sufficient and we do not need to use

the compaction schedule (intuitively, the section size 𝑘 is too small to be useful). In this section, we omit these details for

brevity and focus just on the main case of relatively small Y .
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𝑁𝑖 , the algorithm “closes out” the current data structure and continues to store it in “read only”

mode, while initializing a new summary based on the estimated stream length of 𝑁𝑖+1 = 𝑁 2

𝑖 (i.e.,

we execute Algorithm 2 with parameters 𝑘 and 𝑁𝑖+1).7 This process occurs at most log
2
log

2
(Y𝑛)

many times, before the guess is at least the true stream length 𝑛. At the end of the stream, the rank

of any item 𝑦 is estimated by summing the estimates returned by each of the at most log
2
log

2
(Y𝑛)

summaries stored by the algorithm.

To prove a variant of Theorem 3 for unknown stream lengths, we need to bound the space

usage of the algorithm, and the probability of having a too large error for a fixed item 𝑦. We start

with some notation. Let ℓ be the biggest index 𝑖 of estimate 𝑁𝑖 used by the algorithm; note that

ℓ ≤ log
2
log

2
(Y𝑛). Let 𝜎𝑖 denote the substream processed by the summary with the 𝑖-th guess for

the stream length for 𝑖 = 0, . . . ℓ . Let 𝜎 ′ ◦ 𝜎 ′′
denote the concatenation of two streams 𝜎 ′

and 𝜎 ′′
.

Then the complete stream processed by the algorithm is 𝜎 = 𝜎0 ◦ 𝜎1 ◦ · · · ◦ 𝜎ℓ . Let 𝑘𝑖 and 𝐵𝑖 be the
values of parameters 𝑘 and 𝐵 computed for estimate 𝑁𝑖 .

Space bound. We claim that the sizes of summaries for the substreams 𝜎0, 𝜎1, . . . , 𝜎ℓ sum up

to 𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︁
log(1/𝛿)

)
, as required. By Theorem 3, the size of the summary for 𝜎𝑖 is

𝑂

(
Y−1 · log1.5 (Y𝑁𝑖 ) ·

√︁
log(1/𝛿)

)
. In the special case ℓ = 0, the size of the summary for 𝜎0 satisfies

the bound provided that 𝑁0 = 𝑂 (Y−1). For ℓ ≥ 1, since 𝑁ℓ−1 < 𝑛 and 𝑁ℓ = 𝑁 2

ℓ−1, it holds that
𝑁ℓ ≤ 𝑛2 and thus, the size of the summary for 𝜎ℓ satisfies the claimed bound. As 𝑁𝑖+1 = 𝑁 2

𝑖 , the

log
1.5 (Y𝑁𝑖 ) factor in the size bound from Theorem 3 increases by a factor of 2

1.5
when we increase

𝑖 . It follows that the total space usage is dominated, up to a constant factor, by the size of the

summary for 𝜎ℓ . □

Failure probability. We need to show that | Err(𝑦) | = |R̂(𝑦) − R(𝑦) | ≤ Y R(𝑦) with probability at

least 1 − 𝛿 for any fixed item 𝑦. Note that R(𝑦) = R(𝑦;𝜎) = ∑ℓ
𝑖=0 R(𝑦;𝜎𝑖 ).

We apply the analysis in Section 4 to all of the summaries at once. Observe that for the tail

bound in the proof of Theorem 3, we need to show that Err(𝑦) is a zero-mean sub-Gaussian random

variable with a suitably bounded variance. Let Err
𝑖 (𝑦) be the error introduced by the summary

for 𝜎𝑖 . By Lemma 4.6, Err
𝑖 (𝑦) is a zero-mean sub-Gaussian random variable with Var[Err𝑖 (𝑦)] ≤

2
5 · R(𝑦;𝜎𝑖 )2/(𝑘𝑖 · 𝐵𝑖 ). As Err(𝑦) =

∑
𝑖 Err

𝑖 (𝑦) and as the summaries are created with independent

randomness, variable Err(𝑦) is also zero-mean sub-Gaussian and its variance is bounded by

Var[Err(𝑦)] =
ℓ∑︁

𝑖=0

Var[Err𝑖 (𝑦)] ≤
ℓ∑︁

𝑖=0

2
5 · R(𝑦;𝜎𝑖 )

2

𝑘𝑖 · 𝐵𝑖
≤ Y2 · R(𝑦)2

2 · ln(1/𝛿)

where the last inequality uses that

∑ℓ
𝑖=0 R(𝑦;𝜎𝑖 )2 ≤ R(𝑦)2, which follows from R(𝑦) = ∑ℓ

𝑖=0 R(𝑦;𝜎𝑖 ),
and that 𝑘𝑖 · 𝐵𝑖 = Ω(Y−2 · ln(1/𝛿)), which holds by Claim 4.1. Applying the tail bound for sub-

Gaussian variables similarly as in the proof of Theorem 3 concludes the proof of (a variant of)

Theorem 3 for unknown stream lengths. □

7
In a practical implementation, we suggest not to close out the current summary, but rather recompute the parameters

𝑘 and 𝐵 of every relative-compactor in the summary, according to the new estimate 𝑁𝑖+1, and continue with using the

summary. The analysis in Section 6 (which applies in the more general mergeability setting) shows that the same accuracy

guarantees as in Theorem 3 hold for this variant of the algorithm. Here, we choose to have one summary for each estimate

of 𝑛 because it is amenable to a much simpler analysis (it is not clear how to extend this simpler analysis from the streaming

setting to the general mergeability setting of Section 6).
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6 FULL MERGEABILITY
Fully-mergeable sketches allow us to sketch many different streams (or any inputs) and then merge

the resulting sketches (via an arbitrary sequence of pairwise merge operations) to get an accurate

summary of the concatenation of the streams. Mergeable sketches form an essential primitive for

parallel and distributed processing of massive data sets. We show that our sketch maintains its

accuracy guarantees even in these settings, and therefore, it is fully mergeable.

The merge operation takes as input two sketches 𝑆 ′ and 𝑆 ′′ that processed two separate streams

𝜎 ′
and 𝜎 ′′

and outputs a sketch 𝑆 that summarizes the concatenated stream 𝜎 = 𝜎 ′◦𝜎 ′′
(the order of

𝜎 ′
and 𝜎 ′′

does not matter here). For full mergeability, 𝑆 must satisfy the same space and accuracy

guarantees as if it was created by processing stream 𝜎 in one pass. Moreover, we do not assume

that we built 𝑆 ′ by processing stream 𝜎 ′
directly and similarly for 𝑆 ′′, but we allow to create 𝑆 ′ and

𝑆 ′′ using merge operations. Thus, we may create the resulting summary from many summaries by

merging them in an arbitrary way (using an arbitrary merge tree).

We stress that we do not assume any advance knowledge about 𝑛, the total size of all the inputs

merged, which indeed may not be available in many applications.

6.1 Merge Operation
In this section, we describe the merge operation of our sketch, without assuming a foreknowledge

of the total input size 𝑛. The description builds on Section 2.3, which outlines a simplified merge

procedure under the assumption that a polynomial upper bound on 𝑛 is available. To facilitate the

merge operation, each sketch maintains list RelCompactors of its relative-compactors and the

following parameters:

𝐻 = index of the highest level with a relative-compactor in the sketch.

𝑛 = size of the input currently summarized by the sketch.

𝑁 = an upper bound on 𝑛, based on which the subsequent parameters 𝑘 and 𝐵 (defined below) are

calculated.

ˆ𝑘 = a parameter that depends on the desired accuracy Y and failure probability 𝛿 , namely,
ˆ𝑘 =

4Y−1 ·
√︁
ln(1/𝛿). Unlike 𝑁 , the parameter

ˆ𝑘 remains constant during the computation. The

section size parameter 𝑘 (defined below) depends on
ˆ𝑘 in addition to 𝑁 .

𝑘 = size of a buffer section.

𝐵 = size of the buffer at each level.

Parameters 𝑁,𝑘, and 𝐵. The parameter 𝑁 is set similarly as in Section 5, that is, it is equal to 𝑁𝑖

for some 𝑖 , where 𝑁0 = ⌈210 · ˆ𝑘⌉ and 𝑁𝑖+1 = 𝑁 2

𝑖 . We set the parameters 𝑘 and 𝐵 based on 𝑁 similarly

as in Section 4 (cf. Equation (6)) so that 𝑘 decreases and 𝐵 increases as we increase 𝑁 . Importantly,

we no longer change 𝑘 and 𝐵 once
ˆ𝑘 ≤

√︃
log

2
(𝑁𝑖/ ˆ𝑘). To facilitate this, we define _ ≥ 0 as the

smallest integer 𝑖 such that

ˆ𝑘√︃
log

2
(𝑁𝑖/ ˆ𝑘)

≤ 1 , (18)

and then for 𝑖 ≥ 0 we set

𝑘𝑖 := 2
5 ·


ˆ𝑘√︃

log
2
(𝑁𝑖/ ˆ𝑘)

 and 𝐵𝑖 := 2 · 𝑘𝑖 ·
⌈
log

2

(
𝑁𝑖

𝑘𝑖

)⌉
where 𝑁𝑖 = min{𝑁𝑖 , 𝑁_} . (19)

From a practical point of view, since 𝑁_ is about
ˆ𝑘 · 2 ˆ𝑘2

, we have that 𝑁𝑖 = 𝑁𝑖 unless 𝑁𝑖 is extremely

large or
ˆ𝑘 = 4Y−1 ·

√︁
ln(1/𝛿) is small (say, even for Y = 0.2 we have 𝑁_ ≫ 2

400
). We use this
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truncation of 𝑁𝑖 to guarantee the space bound when 𝑛 > 𝑁_ . Furthermore, observe that once we

reach 𝑛 ≥ 𝑁_ , the values of 𝑘𝑖 and 𝐵𝑖 do not change; this is because intuitively the section size 𝑘𝑖
becomes too small to help in the analysis and our algorithm can in fact be simplified by involving

all sections in every compaction, without violating the error guarantees (i.e., when 𝑛 ≥ 𝑁_ , the

compaction schedule is no longer relevant). The most challenging part of the analysis is bounding

the error for 𝑖 ≤ _.

Description of the merge operation. The merge operation that creates sketch 𝑆 from 𝑆 ′ and 𝑆 ′′

goes as follows: Suppose that both 𝑆 ′ and 𝑆 ′′ are based on the same parameter
ˆ𝑘 and that 𝑆 ′ has at

least as many levels as 𝑆 ′′ (otherwise, we swap the sketches). Then, via the following procedure, we

merge 𝑆 ′′ into 𝑆 ′, so 𝑆 ′′ acts as a source sketch, while 𝑆 ′ is a target sketch of the merge operation.

First, we compute the parameters of the resulting sketch. For sketch 𝑆 resulting from the merge

operation, 𝑆.𝑛 is just the sum of 𝑆 ′.𝑛 and 𝑆 ′′.𝑛. If 𝑆 ′.𝑁 ≥ 𝑆.𝑛, then we keep parameters 𝑁,𝑘, and 𝐵

as they are set in 𝑆 ′. Otherwise, 𝑆 ′.𝑁 < 𝑆.𝑛 = 𝑆 ′.𝑛 + 𝑆 ′′.𝑛, so 𝑆 ′.𝑁 would be too small after merging.

In this case, we choose the next upper bound by setting 𝑆.𝑁 = 𝑆 ′.𝑁 2
and also recompute 𝑘 and 𝐵

as described in Equation (19) above.

Recall from Section 2.3 that the crucial part of the merge operation is to combine the states

of the compaction schedules at each level without violating the relative-error guarantees even

when many merge operations are executed.
8
Consider a level ℎ and let 𝐶 ′

and 𝐶 ′′
be the states of

the compaction schedule at level ℎ in 𝑆 ′ and 𝑆 ′′, respectively. The new state 𝐶 at level ℎ will be

the bitwise OR of 𝐶 ′
and 𝐶 ′′

; we explain the intuition behind using the bitwise OR below. Note

that while in the streaming setting, the state corresponds to the number of compaction operations

already performed, after a merge operation this may not hold anymore. Still, if the state is zero,

this indicates that the level-ℎ buffer has not yet been subject to any compactions.

Having set up the parameters and states at each level, we concatenate the level-ℎ buffers of

𝑆 ′ and of 𝑆 ′′ at each level that appears in both of them. Then we perform a single compaction

operation at each level that has at least 𝑆.𝐵 items, in the bottom-up fashion. For such a compaction

operation, all but the smallest 𝑆.𝐵 items in the buffer are automatically included in the compaction,

while the smallest 𝐵 items are treated exactly as a full buffer is treated in the streaming setting

to determine what suffix is compacted. That is, the state variable 𝐶 of the compaction schedule

determines how many sections amongst the smallest 𝐵 items in the buffer are compacted, via the

number of trailing 1s in the binary representation of 𝐶 . If this number of trailing 1s is 𝑗 ≥ 0, then

𝑗 + 1 sections are compacted and we say that the compaction involves exactly 𝑗 + 1 sections of the
buffer. Note that there is at most one compaction per level during the merge operation. Finally,

when 𝑁𝑖 > 𝑁_ , we do not use the compaction schedule as the section size becomes too small.

Algorithm 4 provides pseudocode describing the merge operation specified above. We note that

inserting a single item 𝑥 can be viewed as a trivial merge with a summary consisting just of 𝑥 (with

weight 1).

Several remarks and observations are in order. First, the combined buffer contains at most 2 · 𝑆.𝐵
items before the merge procedure begins performing compactions level-by-level, because each

buffer of 𝑆 ′ and each buffer of 𝑆 ′′ stores at most 𝑆.𝐵 items. Second, when we perform a compaction

on a level-ℎ buffer during the merge procedure, it contains no more than
7

2
· 𝑆.𝐵 items. To see this,

observe that there are three sources of input to the buffer at level ℎ during a merge operation: the

at most 𝑆.𝐵 items in 𝑆 ′ at level ℎ at the start of the merge operation, the at most 𝑆.𝐵 items in 𝑆 ′′ at
level ℎ at the start of the merge operation, and the output of the level-(ℎ − 1) buffer during the

8
By the state of the compaction schedule, we mean the variable that determines how many sections of the buffer to include

in a compaction operation if one is performed. In the streaming setting (Algorithm 1), we denoted this variable by𝐶 , and

maintain this notation in the mergeability setting.
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Algorithm 4Merge operation of ReqSketch

Input: Sketches 𝑆 ′ and 𝑆 ′′ to be merged such that 𝑆 ′. ˆ𝑘 = 𝑆 ′′. ˆ𝑘 and 𝑆 ′.𝐻 ≥ 𝑆 ′′.𝐻
Output: A sketch answering rank queries for the combined inputs of 𝑆 ′ and 𝑆 ′′ ⊲ We merge 𝑆 ′′ into 𝑆 ′

1: Set 𝑆 ′.𝑛 = 𝑆 ′.𝑛 + 𝑆 ′′.𝑛 ⊲ Combined input size

2: if 𝑆 ′.𝑁 < 𝑆 ′.𝑛 then ⊲ Upper bound on input size is too small

3: Set 𝑆 ′.𝑁 = 𝑆 ′.𝑁 2 ⊲ Square the upper bound

4: Set 𝑆 ′.𝑘 and 𝑆 ′.𝐵 according to (19)

5: for ℎ = 0, . . . , 𝑆 ′′.𝐻 do ⊲ Combine buffers and states of compaction schedules

6: Insert all items in 𝑆 ′′.RelCompactors[ℎ] into 𝑆 ′.RelCompactors[ℎ]
7: 𝑆 ′.RelCompactors[ℎ].𝐶 = 𝑆 ′.RelCompactors[ℎ].𝐶 OR 𝑆 ′′.RelCompactors[ℎ].𝐶
8: for ℎ = 0, . . . , 𝑆 ′.𝐻 do
9: if there are at least 𝑆 ′.𝐵 items in 𝑆 ′.RelCompactors[ℎ] then
10: PerformCompaction(𝑆 ′, ℎ)
11: return 𝑆 ′

12: function PerformCompaction(𝑆, ℎ, 𝑠)

13: if ℎ = 𝑆.𝐻 then
14: Increase 𝑆.𝐻 by one

15: Initialize relative-compactor at RelCompactors[ℎ + 1]

16: Set B = 𝑆 .RelCompactors[ℎ] ⊲ The level-ℎ buffer of 𝑆

17: Sort items in B in non-descending order

18: if 𝑆.𝑁 ≤ 𝑁_ then ⊲ _ is defined in (18)

19: Compute 𝑧 = number of trailing 1s in binary representation of B .𝐶

20: Set 𝑠 = 𝑆.𝐵 − (𝑧 + 1) · 𝑆.𝑘 + 1 ⊲ First slot of the buffer involved in the compaction

21: else ⊲ Then 𝑆.𝑘 = Θ(1)
22: Set 𝑠 = 𝑆.𝐵/2 ⊲ Compaction schedule not used when 𝑆.𝑘 is small

23: Let |B| be the number of items stored in B ⊲ |B| may be larger than 𝑆.𝐵

24: Set 𝑍 = equally likely either even or odd indexed items in the range B[𝑠 : |B|]
25: ⊲ Note that the range B[𝑠 : |B|] may be of an odd size, which does not cause any issues

26: Insert each item in 𝑍 to 𝑆 .RelCompactors[ℎ + 1]

27: Mark slots B[𝑠 : |B|] in the buffer as clear

28: Increase B .𝐶 by 1

merge procedure. An easy inductive argument shows that the third source of inputs consists of at

most
3

2
· 𝑆.𝐵 items, as follows: Observe that if the level-(ℎ − 1) buffer has size at most

7

2
𝑆.𝐵 when it

is compacted, then the number of items compacted by that buffer is at most
7

2
𝑆.𝐵 − 1

2
𝑆.𝐵 = 3𝑆.𝐵,

and hence, the number of items output by the compaction is at most
3

2
· 𝑆.𝐵 (here, we also use

that 𝑆.𝐵 as defined in (19) is divisible by four, so
3

2
· 𝑆.𝐵 is even). This guarantees that at the time a

level-ℎ buffer is actually compacted during a merge procedure, it contains no more than
7

2
· 𝑆.𝐵

items.

Third, using the bitwise OR in line 7 to combine the states has two simple but important

implications.

Fact 6.1. When the 𝑗-th bit of 𝐶 ′ or of 𝐶 ′′ is set to 1, then the 𝑗-th bit of 𝐶 = 𝐶 ′ OR 𝐶 ′′ is also set
to 1.

Fact 6.2. The bitwise OR of𝐶 ′ and𝐶 ′′ (interpreted as bitstrings) is no larger than𝐶 ′+𝐶 ′′ (interpreted
as integers).
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Fact 6.2 will be used later to show that the state 𝐶 never has more than ⌈log
2
(𝑆.𝑁 /𝑆.𝑘)⌉ bits, so

we never compact more than ⌈log
2
(𝑆.𝑁 /𝑆.𝑘)⌉ buffer sections during a compaction. See Observation

6.3 for details. (Note that this is only relevant for 𝑆.𝑁 ≤ 𝑁_ .)

6.2 Preliminaries for the Analysis of the Merge Procedure
Consider a sketch 𝑆 built using an arbitrary sequence of merge operations from an input of size 𝑛.

We will show that the space bound holds for 𝑆 using an argument similar to the one in the proof of

Theorem 3, but the calculation of the failure probability needs to be modified compared to Section 4.

The main challenge is that the parameters 𝑘 and 𝐵 change as more and more merge operations are

performed.

To prove that the accuracy guarantees hold for 𝑆 , consider the binary tree 𝑇 in which each of 𝑛

leaves corresponds to a single item of the input. Internal nodes correspond to merge operations

(recall that inserting one item to the sketch can be seen as the merge of the sketch with a trivial

sketch storing the item to be inserted), and hence each internal node 𝑡 in 𝑇 represents a sketch

𝑆𝑡 resulting from the merge operation that corresponds to node 𝑡 . Also, for a particular level ℎ, 𝑡

represents the level-ℎ buffer of 𝑆𝑡 . Finally, we say that 𝑡 represents the level-ℎ compaction operation

(if any); recall that the merge operation captured by an internal node 𝑡 performs at most one

compaction operation at each level ℎ. The root of 𝑇 represents the final merge operation, which

outputs the final sketch.
Recall that we set the upper bounds 𝑁 on the input size used by the sketches as 𝑁0 = ⌈210 · ˆ𝑘⌉

and 𝑁𝑖 = 𝑁 2

𝑖−1 for 1 ≤ 𝑖 ≤ ℓ ≤ ⌈log
2
log

2
(Y𝑛)⌉ (as 𝑁0 ≥ ˆ𝑘 ≥ 1/Y). We may assume that ℓ > 0,

otherwise the whole input can be stored in space 𝑂 ( ˆ𝑘) = 𝑂 (Y−1 ·
√︁
log(1/𝛿)).

We say that an (internal) node 𝑡 in tree 𝑇 is an 𝑖-node for 0 ≤ 𝑖 ≤ ℓ if the sketch 𝑆𝑡 represented

by 𝑡 satisfies 𝑆𝑡 .𝑁 = 𝑁𝑖 , i.e., it uses the parameters 𝑘𝑖 and 𝐵𝑖 . Note that this means that if parameter

𝑁 is updated from 𝑁𝑖−1 to 𝑁𝑖 during the merge operation represented by 𝑡 , then 𝑡 is considered an

𝑖-node. Moreover, we say that node 𝑡 is a topmost 𝑖-node if the parent of 𝑡 is a 𝑗-node for some 𝑗 > 𝑖

or 𝑡 is the root of 𝑇 . Note that for any 𝑖 , the subtrees of topmost 𝑖-nodes are disjoint.

As in Sections 3 and 4, we consider a fixed item 𝑦 and analyze the error of the estimated rank of

𝑦. Let R(𝑦) denote the rank of 𝑦 in the input summarized by the sketch and R̂(𝑦) is the estimated

rank of 𝑦 obtained from the final sketch 𝑆 ; recall that we get this estimate by summing over all

levels ℎ ≥ 0 the number of items 𝑥 ≤ 𝑦 in level-ℎ buffer of the final sketch, multiplied by 2
ℎ
. Our

aim is to show that | Err(𝑦) | = |R̂(𝑦) − R(𝑦) | ≤ Y R(𝑦) with probability at least 1 − 𝛿 .

6.3 Analysis of a Single Level for Mergeability
For the duration of this section, we consider a single level ℎ and solely focus on 𝑖-nodes for 𝑖 ≤ _;

recall that the compaction schedule helps to decrease the error from compactions and that we

do not use the schedule during compactions represented by 𝑖-nodes for 𝑖 > ℓ (since the buffer

section size is too small to make a difference). For convenience, _ refers to min{_, ℓ}, i.e., if _ > ℓ

we decrease _ to ℓ compared to (18). This is to ensure that, e.g., topmost _-nodes are well-defined.

Note that when _ = ℓ , then the only topmost _-node is the root of the merge tree 𝑇 .

We start by showing that the binary representation of the state 𝐶 at level ℎ never has more than

⌈log
2
(𝑆.𝑁 /𝑆.𝑘)⌉ bits, or equivalently, 𝐶 ≤ 𝑆.𝑁 /𝑆.𝑘 . Consequently, 𝐶 (viewed as a bitstring) never

has ⌈log
2
(𝑆.𝑁 /𝑆.𝑘)⌉ trailing ones just before a compaction operation (as after the operation, it

would have more than ⌈log
2
(𝑆.𝑁 /𝑆.𝑘)⌉ bits).

Observation 6.3. Consider a node 𝑡 of tree 𝑇 and sketch 𝑆 represented by 𝑡 . Let 𝐶 be the state of
the level-ℎ buffer of 𝑆 . Then 𝐶 ≤ 𝑆.𝑁 /𝑆.𝑘 .
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Proof. Let 𝑟 be the number of items removed from the level-ℎ buffer of 𝑆 during compactions

represented by nodes in the subtree of 𝑡 . We show that 𝐶 ≤ 𝑟/𝑆.𝑘 by induction. This implies

𝐶 ≤ 𝑆.𝑁 /𝑆.𝑘 as 𝑟 ≤ 𝑆.𝑛 ≤ 𝑆.𝑁 .

The base case of a leaf node follows as 𝐶 = 0 and 𝑟 = 0. Let 𝑆 be the sketch represented by an

internal node and let 𝑆 ′ and 𝑆 ′′ be the sketches represented by its children. Let 𝐶 ′
and 𝐶 ′′

be the

states of the level-ℎ buffers of 𝑆 ′ and 𝑆 ′′, and let 𝑟 ′ and 𝑟 ′′ be the number of items removed from the

level-ℎ buffer during compactions represented by nodes in the subtrees of 𝑆 ′ and 𝑆 ′′, respectively.
By the induction hypothesis, we have 𝐶 ′ ≤ 𝑟 ′/𝑆 ′.𝑘 and 𝐶 ′′ ≤ 𝑟 ′′/𝑆 ′′.𝑘 . Note that 𝑟 equals 𝑟 ′ + 𝑟 ′′
plus the number of items removed from the level-ℎ buffer during the compaction represented by 𝑡

if there is one. Let 𝑏 ∈ {0, 1} be the indicator variable with 𝑏 = 1 iff there is a level-ℎ compaction

represented by 𝑡 . Observe that 𝐶 = (𝐶 ′
OR𝐶 ′′) + 𝑏 and if 𝑏 = 1, then the compaction removes at

least 𝑆.𝑘 items from the level-ℎ buffer. We thus have 𝑟 ≥ 𝑟 ′ + 𝑟 ′′ + 𝑏 · 𝑆.𝑘 and using this, we obtain

𝐶 = (𝐶 ′
OR𝐶 ′′) + 𝑏 ≤ 𝐶 ′ +𝐶 ′′ + 𝑏 ≤ 𝑟 ′

𝑆 ′.𝑘
+ 𝑟 ′′

𝑆 ′′.𝑘
+ 𝑏 ≤ 𝑟 ′

𝑆.𝑘
+ 𝑟 ′′

𝑆.𝑘
+ 𝑏 · 𝑆.𝑘

𝑆.𝑘
≤ 𝑟

𝑆 .𝑘
,

where the penultimate inequality uses 𝑆.𝑘 ≤ min{𝑆 ′.𝑘, 𝑆 ′′.𝑘}, which follows from 𝑘0 ≥ 𝑘1 ≥ · · · ≥
𝑘_ . □

For 𝑖 ≤ _, we recall that the second half of a buffer of size 𝐵𝑖 has ⌈log2 (𝑁𝑖/𝑘𝑖 )⌉ sections of size 𝑘𝑖
(see Equation (19)) and that these sections are indexed from 1 such that the rightmost section (with

slots 𝐵𝑖 −𝑘𝑖 +1, . . . , 𝐵𝑖 ) is section 1 and section 𝑗 consists of slots 𝐵𝑖 − 𝑗 ·𝑘𝑖 +1, . . . , 𝐵𝑖 − ( 𝑗 −1) ·𝑘𝑖 . The
definition of the compaction operation and Observation 6.3 imply that section ⌈log

2
(𝑁𝑖/𝑘𝑖 )⌉ (i.e.,

the leftmost section of the second half of the buffer) is involved only in one compaction represented

by an 𝑖-node on any leaf-to-root path in 𝑇 .

Bounding the number of important compaction operations. As in Section 3, the key part of the

analysis is bounding the number of level-ℎ compaction operations that introduce some error for

the fixed item 𝑦; recall that we call such compactions important and that by Observation 2.1, a

compaction is important if and only if it removes an odd number of important items from the buffer.

Also, recall that we call items 𝑥 ≤ 𝑦 important and that for ℎ > 0, Rℎ (𝑦) denotes the total number

of important items promoted to level ℎ during compaction operations at level ℎ − 1 (represented by

any node in 𝑇 ). For level 0, we have R0 (𝑦) = R(𝑦).
The bound on the number of important level-ℎ compactions in Lemma 6.4 below is more involved

than in the streaming setting (Section 3), but this complexity allows for the tightest and most general

analysis, presented in Section 6.4. In particular, for any 0 ≤ 𝑎 ≤ _, we will need a bound on the

number of important level-ℎ compactions represented by 𝑖-nodes for 𝑖 ∈ [𝑎, _].
To state the bound, we first give a few definitions. We say that a compaction involves important

items iff it removes at least one important item from the buffer; note that compactions involving

important items are a superset of important compactions. Let 𝑄ℎ be the set of nodes 𝑡 such that

(i) 𝑡 is an 𝑖-node for 𝑖 ≤ _ that represents a level-ℎ compaction involving important items (this

compaction may or may not be important), and (ii) there is no node 𝑡 ′ on the path from the parent

of 𝑡 to the topmost _-node containing 𝑡 in its subtree such that 𝑡 ′ represents a level-ℎ compaction

involving important items. Intuitively,𝑄ℎ captures “maximal” nodes (disregarding 𝑖-nodes for 𝑖 > _,

if any) that represent a level-ℎ compaction removing one or more important items from level ℎ.

Note that an important item that remains in the level-ℎ buffer represented by a node 𝑡 ∈ 𝑄ℎ (after

performing the compaction operation represented by 𝑡 ) is never removed from the level-ℎ buffer,

by the definition of 𝑄ℎ . For 𝑖 ∈ [0, _], let 𝑄𝑖
ℎ
be the set of 𝑖-nodes in 𝑄ℎ .

For some 0 ≤ 𝑎 ≤ _, let R
[𝑎,_]
ℎ

(𝑦) be the number of important items that are either (i) removed

from level ℎ during a compaction represented by an 𝑖-node for 𝑖 ∈ [𝑎, _], or (ii) remain at the level-ℎ
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buffer of the sketch represented by a node 𝑡 ∈ 𝑄𝑖
ℎ
for 𝑖 ∈ [𝑎, _] (after the compaction operation

represented by 𝑡 is performed). Note that important items in (ii) also belong to the level-ℎ buffer

represented by a topmost _-node since the level-ℎ buffer is not subject to a compaction removing an

important item, by the definition of 𝑄𝑖
ℎ
. We remark that the level-ℎ buffers represented by topmost

_-nodes may contain items not present in the level-ℎ buffers represented by nodes in 𝑄ℎ (these are

items promoted from level ℎ − 1 to level ℎ during merge operations represented by nodes on the

path from a node 𝑡 ∈ 𝑄ℎ to a topmost _-node).

We now state the bound on the number of important level-ℎ compactions represented by 𝑖-nodes

for 𝑖 ≤ _. Let𝑚𝑖
ℎ
be the number of important compaction operations at level ℎ represented by

𝑖-nodes.

Lemma 6.4. For any level ℎ and any 0 ≤ 𝑎 ≤ _, it holds that
_∑︁
𝑖=𝑎

𝑚𝑖
ℎ
· 𝑘𝑖 ≤ 4 R

[𝑎,_]
ℎ

(𝑦) . (20)

Proof overview. The proof is an extension of the charging argument in Lemma 3.1 to the merge-

ability setting. In a nutshell, we will again charge each important compaction represented by an

𝑖-node for some 𝑎 ≤ 𝑖 ≤ _ to 𝑘𝑖 important items that are removed from the level-ℎ buffer (during

a compaction represented by an 𝑖 ′-node for some 𝑖 ≤ 𝑖 ′ ≤ _) or that remain in the level-ℎ buffer

represented by a node in 𝑄𝑖′

ℎ
for 𝑖 ≤ 𝑖 ′ ≤ _. However, unlike in the streaming setting, we will not

identify specific important items to which we charge an important compaction.

Instead, for each node 𝑡 in the subtree of a node in 𝑄ℎ , we will maintain the overall charge from

𝑡 ’s subtree to the (level-ℎ) buffer represented by 𝑡 . Intuitively, when two buffers are merged during

the merge procedure represented by an 𝑖-node 𝑡 for 𝑎 ≤ 𝑖 ≤ _, the charge to the resulting buffer is

the sum of the charges to the two buffers increased or decreased by the following:

• when the level-ℎ compaction represented by 𝑖-node 𝑡 (if any) is important, we increase the

charge to the buffer by 𝑘𝑖 ,

• removing 𝑟 important items during the compaction operation (not necessarily important)

decreases the charge to the buffer by 3𝑟 , and

• if a child 𝑡 ′ of 𝑡 is a topmost 𝑖 ′-node for 𝑖 ′ < 𝑖 such that there is an important compaction

represented by an 𝑖-node in the subtree of 𝑡 ′, we decrease by 2𝑘𝑖 the charge in the buffer

represented by 𝑡 (not by 𝑡 ′).

The latter decrease helps us to deal with merge operations in which parameters 𝑘 and 𝐵 of the

level-ℎ buffer change (in particular, 𝑘𝑖 decreases and therefore, we need to create a slack in the

analysis). We prove below that (i) the charge to any buffer is always bounded by the number of

important items in the buffer and that (ii) these properties imply (20), proving the lemma. Showing

(ii) is not difficult given (i); the only non-trivial part is bounding the total decrease of the charge

from the third bullet above, which is done in the parents of topmost 𝑖-nodes.

Proving (i) relies on the compaction schedule. We in particular show that for each 𝑖-node 𝑡 either

there is slack at 𝑡 , i.e., the charge to 𝑡 is smaller by at least 𝑘𝑖 than the number of important items

in the level-ℎ buffer represented by 𝑡 , or the schedule state 𝐶 guarantees that at least 𝑘𝑖 important

items would be removed if a compaction is executed.
9

Proof of Lemma 6.4. For simplicity, when we refer to a buffer or a compaction operation repre-

sented by a node we implicitly mean the one at level ℎ. For any node 𝑡 in the subtree of a node in

𝑄ℎ , we define its charge 𝜒 (𝑡) (implicitly w.r.t. item 𝑦 and level ℎ) recursively as follows:

9
A somewhat simpler but weaker proof of the lemma appears in the previous version of this manuscript; see https://arxiv.

org/abs/2004.01668v3. However, this earlier analysis required a modified (and slightly more involved) merge procedure.
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• If 𝑡 is a leaf node or an 𝑖-node for 𝑖 < 𝑎, we set 𝜒 (𝑡) = 0.

• Otherwise, let 𝑡 ′ and 𝑡 ′′ be the children of 𝑡 and let 𝑖 ∈ [𝑎, _] be such that 𝑡 is an 𝑖-node. To

define 𝜒 (𝑡), we need a few quantities and indicators:

𝑟 (𝑡) = the number of important items removed from the buffer during the compaction

represented by 𝑡 (we use 𝑟 (𝑡) = 0 if there is no compaction operation represented by 𝑡 );

𝐼 (𝑡) is the indicator whether the compaction represented by 𝑡 (if any) is important, i.e.,

𝐼 (𝑡) = 1 if there is an important compaction represented by 𝑡 , and 𝐼 (𝑡) = 0 otherwise; and

𝐽 (𝑡) is the indicator whether for a child 𝑡 ∈ {𝑡 ′, 𝑡 ′′} of 𝑡 , it holds that 𝑡 is a topmost 𝑖 ′-node
for some 𝑎 ≤ 𝑖 ′ < 𝑖 and there is an important level-ℎ compaction represented by an 𝑖 ′-node
in the subtree of 𝑡 .

Then, we define

𝜒 (𝑡) = max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 3𝑟 (𝑡) + 𝐼 (𝑡) · 𝑘𝑖 − 𝐽 (𝑡) · 2 · 𝑘𝑖 , 0} . (21)

(We do not define 𝜒 (𝑡) for nodes that are not in the subtree of a node in𝑄ℎ .) This recursive definition

implies that 𝜒 (𝑡) > 0 only if there is an important compaction represented by an 𝑖 ′-node (for

𝑎 ≤ 𝑖 ′ ≤ 𝑖 with 𝑖 ′ ≤ _) in the subtree of 𝑡 , including 𝑡 (the converse may not be true). The key part

is to prove that 𝜒 (𝑡) as defined above is always bounded by the number of important items in the

buffer represented by 𝑡 .

Claim 6.5. For any node 𝑡 in the subtree of a node in 𝑄ℎ , it holds that 𝜒 (𝑡) ≤ R(𝑦;Bℎ (𝑡)), where
Bℎ (𝑡) is the level-ℎ buffer represented by 𝑡 and R(𝑦;Bℎ (𝑡)) is the number of important items in that
buffer.

Proof. We start with some notation. Let 𝐶ℎ (𝑡) be the state of the compaction schedule of the

level-ℎ buffer represented by a node 𝑡 , and for a state 𝐶 and 𝑗 ≥ 1, let 𝐶 [ 𝑗] be the 𝑗-th bit from the

right in the binary representation of 𝐶 .

We prove by an induction over the tree 𝑇 a stronger claim: If 𝑡 is an 𝑖-node for 𝑎 ≤ 𝑖 ≤ _ in the
subtree of a node in 𝑄ℎ , then one of the following holds:

(i) 𝜒 (𝑡) ≤ max{R(𝑦;Bℎ (𝑡)) − 𝑘𝑖 , 0}, or
(ii) there is an important level-ℎ compaction represented by an 𝑖-node in the subtree of 𝑡 and

moreover, letting 𝑗 ≥ 1 be the smallest index of a section which contains important items only,
𝜒 (𝑡) ≤ 𝐵𝑖 − ( 𝑗 − 1) · 𝑘𝑖 and, provided that 𝑗 > 1, 𝐶ℎ (𝑡) [ 𝑗 − 1] = 1.

Note that both (i) and (ii) are stronger requirements than 𝜒 (𝑡) ≤ R(𝑦;Bℎ (𝑡)); specifically, in (ii),

it holds that R(𝑦;Bℎ (𝑡)) ≥ 𝐵𝑖 − ( 𝑗 − 1) · 𝑘𝑖 by the definition of 𝑗 (recall that sections are indexed

from the right).

The claim in (i) clearly holds if 𝜒 (𝑡) = 0 and thus, (i) holds for any leaf node or for any 𝑖-node 𝑡

for 𝑖 < 𝑎 as we define 𝜒 (𝑡) = 0 in both of these cases.

Consider a non-leaf 𝑖-node 𝑡 with 𝑎 ≤ 𝑖 ≤ _ and 𝜒 (𝑡) > 0, and let 𝑡 ′ and 𝑡 ′′ be the children of 𝑡 .

Note that R(𝑦;Bℎ (𝑡)) ≥ R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) − 𝑟 (𝑡); on the RHS of this inequality, we do

not take into account important items added from level ℎ − 1 during a compaction represented by 𝑡 ,

if any. We consider several cases, using the first case that applies:

Case A: 𝑟 (𝑡) ≥ 𝑘𝑖 , i.e., the compaction operation represented by 𝑡 removes at least 𝑘𝑖 important

items from the level-ℎ buffer. Then, from (21), we obtain

𝜒 (𝑡) = max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 3𝑟 (𝑡) + 𝐼 (𝑡) · 𝑘𝑖 − 𝐽 (𝑡) · 2 · 𝑘𝑖 , 0}
≤ max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 𝑟 (𝑡) − 𝑘𝑖 , 0}
≤ max{R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) − 𝑟 (𝑡) − 𝑘𝑖 , 0} ≤ max{R(𝑦;Bℎ (𝑡)) − 𝑘𝑖 , 0} ,
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where the first inequality follows from the case condition and 𝐼 (𝑡) ≤ 1 (that is, we use that

2𝑟 (𝑡) ≥ 𝐼 (𝑡) · 𝑘𝑖 + 𝑘𝑖 ), and the second inequality uses the induction hypothesis. This shows that (i)

holds for 𝑡 .

Case B: 𝜒 (𝑡 ′) = 0 and 𝜒 (𝑡 ′′) = 0. If the compaction operation represented by 𝑡 (if any) is not

important, then 𝜒 (𝑡) = 0 and (i) holds for 𝑡 . Otherwise, there is an important compaction represented

by 𝑡 , which may happen if many important items are added to level ℎ during the level-(ℎ − 1)
compaction. Then, (21) and 𝜒 (𝑡 ′) = 𝜒 (𝑡 ′′) = 0 imply that

𝜒 (𝑡) ≤ 𝑘𝑖 ≤ 𝐵𝑖/2 − 𝑘𝑖 ≤ R(𝑦;Bℎ (𝑡)) − 𝑘𝑖 ,

where the second inequality uses 𝐵𝑖 ≥ 2 · 𝑘𝑖 · log2 (𝑁𝑖/𝑘𝑖 ) and 𝑁𝑖 ≥ 4 · 𝑘𝑖 , and the last inequality

follows from that there must be at least 𝐵𝑖/2 important items remaining in the buffer after the

important compaction represented by 𝑡 . Hence, (i) holds for 𝑡 .

Case C: (i) holds for 𝑡 ′ and 𝜒 (𝑡 ′) > 0, or (i) holds for 𝑡 ′′ and 𝜒 (𝑡 ′′) > 0, or both. This condition

implies that

𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) ≤ R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) − 𝑘𝑖 ; (22)

note that 𝑡 ′ or 𝑡 ′′ may be an 𝑖 ′-node for some 𝑖 ′ < 𝑖 , but this inequality still holds as 𝑘𝑖 ≤ 𝑘𝑖′ for

𝑖 ′ < 𝑖 . We consider two subcases:

Case C.1: 𝐼 (𝑡) = 0, i.e., there is no important compaction represented by 𝑡 . Then, (i) holds for 𝑡 as

𝜒 (𝑡) = max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 3𝑟 (𝑡), 0} ≤ max{R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) − 𝑘𝑖 − 𝑟 (𝑡), 0}
≤ max{R(𝑦;Bℎ (𝑡)) − 𝑘𝑖 , 0} .

Case C.2: 𝐼 (𝑡) = 1, i.e., there is an important compaction represented by 𝑡 . In this case, we show that

(ii) holds for 𝑡 . Since the (level-ℎ) compaction represented by 𝑡 is important, it removes 0 < 𝑟 (𝑡) < 𝑘𝑖
important items from the buffer (for 𝑟 (𝑡) ≥ 𝑘𝑖 , case A applies). Let 𝑗 be the smallest index of a section

that contains important items only; it must be the same before and after the compaction as 𝑟 (𝑡) < 𝑘𝑖
and only the whole sections are compacted. Note that we must have 𝑗 > 1 as section 1 is involved

in any compaction. Since the compaction does not involve section 𝑗 , we have 𝐶 ′
ℎ
(𝑡) [ 𝑗 − 1] = 0 for

the state 𝐶 ′
ℎ
(𝑡) before the compaction (recall that 𝐶 ′

ℎ
(𝑡) [ 𝑗 − 1] is the ( 𝑗 − 1)-st bit from the right in

𝐶 ′
ℎ
(𝑡)), and𝐶 ′

ℎ
(𝑡) [ 𝑗 ′] = 1 for all 0 < 𝑗 ′ < 𝑗 − 1 as the compaction involves section 𝑗 − 1. Thus, after

the compaction, it holds that 𝐶ℎ (𝑡) [ 𝑗 − 1] = 1. Next, observe that R(𝑦;Bℎ (𝑡)) = 𝐵𝑖 − ( 𝑗 − 1) · 𝑘𝑖
since the compaction involves the first 𝑗 − 1 sections and it is important. It thus remains to obtain a

suitable upper bound on 𝜒 (𝑡):
𝜒 (𝑡) = max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 3𝑟 (𝑡) + 𝑘𝑖 , 0} ≤ max{R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) − 𝑘𝑖 − 𝑟 (𝑡) + 𝑘𝑖 , 0}

≤ R(𝑦;Bℎ (𝑡)) = 𝐵𝑖 − ( 𝑗 − 1) · 𝑘𝑖 ,

where the first inequality uses (22). Hence, (ii) holds for 𝑡 .

Case D: None of the previous cases applies. Since we have that 𝜒 (𝑡 ′) > 0 or 𝜒 (𝑡 ′′) > 0 (as case B

does not apply) and since case C does not apply, property (ii) holds for 𝑡 ′ or for 𝑡 ′′ or for both
of them. For simplicity, we assume that (ii) holds for 𝑡 ′ as the other case follows by symmetric

arguments. Let 𝑖 ′ ≤ 𝑖 be such that 𝑡 ′ is an 𝑖 ′-node and let 𝑗 ′ be the index from property (ii) for 𝑡 ′. To
recall, 𝑗 ′ ≥ 1 is the smallest index of a section which contains important items only in Bℎ (𝑡 ′), and
it holds that 𝜒 (𝑡 ′) ≤ 𝐵𝑖′ − ( 𝑗 ′ − 1) · 𝑘𝑖′ and, provided that 𝑗 ′ > 1, 𝐶ℎ (𝑡 ′) [ 𝑗 ′ − 1] = 1. Let 𝐶 ′

ℎ
(𝑡) be

the state of the compaction schedule just before the compaction represented by 𝑡 . Since we use the

bitwise OR when merging states of the compaction schedule, we also have that 𝐶 ′
ℎ
(𝑡) [ 𝑗 ′ − 1] = 1 if

𝑗 ′ > 1; see Fact 6.1.

We consider a few further subcases:
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Case D.1: 𝑖 ′ < 𝑖 . Thus, 𝑡 ′ is a topmost 𝑖 ′-node, which together with property (ii) for 𝑡 ′ implies that

𝐽 (𝑡) = 1 (here, we also use that 𝑡 is in the subtree of a node in 𝑄ℎ). Then, (21) becomes

𝜒 (𝑡) = max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 3𝑟 (𝑡) + 𝐼 (𝑡) · 𝑘𝑖 − 2 · 𝑘𝑖 , 0}
≤ max{𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 𝑟 (𝑡) − 𝑘𝑖 , 0}
≤ max{R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) − 𝑟 (𝑡) − 𝑘𝑖 , 0} ≤ max{R(𝑦;Bℎ (𝑡)) − 𝑘𝑖 , 0} ,

where the second inequality uses the induction hypothesis for 𝑡 ′ and 𝑡 ′′, namely, that 𝜒 (𝑡 ′) ≤
R(𝑦;Bℎ (𝑡 ′)) and 𝜒 (𝑡 ′′) ≤ R(𝑦;Bℎ (𝑡 ′′)). This shows (i).
Case D.2: 𝑖 ′ = 𝑖 . We show that 𝜒 (𝑡 ′′) = 0 in such a case. Indeed, for a contradiction suppose that

𝜒 (𝑡 ′′) > 0, which implies that property (ii) holds for 𝑡 ′′ since otherwise, case C applies. Then, if 𝑡 ′′

is an 𝑖 ′-node for 𝑖 ′ < 𝑖 , we use case D.1 with 𝑡 ′′ acting as 𝑡 ′. Thus, 𝑡 ′′ is an 𝑖-node and (ii) holds for

both 𝑡 ′ and 𝑡 ′′, from which we obtain R(𝑦;Bℎ (𝑡 ′)) ≥ 𝐵𝑖/2 and R(𝑦;Bℎ (𝑡 ′′)) ≥ 𝐵𝑖/2 (as there is an
important compaction represented by an 𝑖-node in the subtree of each of 𝑡 ′ and 𝑡 ′′). It follows that
R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) ≥ 𝐵𝑖 and since all items with position at least 𝐵𝑖 − 𝑘𝑖 + 1 in the sorted

buffer when merging (cf. line 20 in Algorithm 4) are always involved in the compaction, we must

have that 𝑟 (𝑡) ≥ 𝑘𝑖 — a contradiction with the assumption that case A does not apply. This shows

𝜒 (𝑡 ′′) = 0.

Let 𝑎(𝑡) be the number of important items added to the level-ℎ buffer from level ℎ − 1 during

the level-(ℎ − 1)compaction represented by 𝑡 , if any. Let B ′
ℎ
(𝑡) be the sorted buffer obtained from

merging the (level-ℎ) buffers of 𝑡 ′ and 𝑡 ′′ and adding 𝑎(𝑡) important items from level ℎ − 1, but

before performing the level-ℎ compaction represented by 𝑡 , if any; thus B ′
ℎ
(𝑡) may contain more

than 𝐵𝑖 items.

Note that section 𝑗 ′ is not involved in the level-ℎ compaction represented by 𝑡 (if any), otherwise

we would have 𝑟 (𝑡) ≥ 𝑘𝑖 as section 𝑗 ′ contains important items only in Bℎ (𝑡 ′) and thus also in

B ′
ℎ
(𝑡). This implies that section 𝑗 ′ − 1 is not involved in the compaction either, which follows from

𝐶 ′
ℎ
(𝑡) [ 𝑗 ′ − 1] = 1 (here, we refer to the state just before the compaction). We consider a few further

subcases:

Case D.2.a: R(𝑦;Bℎ (𝑡 ′)) +R(𝑦;Bℎ (𝑡 ′′)) +𝑎(𝑡) < 𝐵𝑖 − ( 𝑗 ′− 2) ·𝑘𝑖 . This means that in B ′
ℎ
(𝑡), section

𝑗 ′ − 2 contains no important items and moreover, section 𝑗 ′ − 1 contains an item 𝑧 > 𝑦 (we suppose

buffer B ′
ℎ
(𝑡) is sorted). Since section 𝑗 ′−1 is not involved in the compaction, it follows that 𝑟 (𝑡) = 0,

so the compaction represented by 𝑡 (if any) is not important, i.e., 𝐼 (𝑡) = 0. As 𝜒 (𝑡 ′′) = 0, we get

𝜒 (𝑡) ≤ 𝜒 (𝑡 ′) ≤ 𝐵𝑖 − ( 𝑗 ′ − 1) · 𝑘𝑖 .
We show (ii) holds for 𝑡 . Indeed, section 𝑗 ′ − 1 of Bℎ (𝑡) contains a non-important item, so 𝑗 ′ is still
the smallest index of a section with important items only. Furthermore,𝐶ℎ (𝑡) [ 𝑗 ′ − 1] = 1 and there

is an important level-ℎ compaction represented by an 𝑖-node in the subtree of 𝑡 ′ as (ii) holds for 𝑡 ′,
concluding that (ii) holds for 𝑡 .

Case D.2.b: R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) + 𝑎(𝑡) ≥ 𝐵𝑖 − ( 𝑗 ′ − 2) · 𝑘𝑖 and 𝐼 (𝑡) = 0, i.e., the compaction

represented by 𝑡 (if any) is not important. As section 𝑗 ′ − 1 is not involved in this compaction, we

have that R(𝑦;Bℎ (𝑡)) ≥ 𝐵𝑖 − ( 𝑗 ′ − 2) · 𝑘𝑖 . Then, (i) holds for 𝑡 as
𝜒 (𝑡) ≤ 𝜒 (𝑡 ′) ≤ 𝐵𝑖 − ( 𝑗 ′ − 1) · 𝑘𝑖 ≤ R(𝑦;Bℎ (𝑡)) − 𝑘𝑖 .

Case D.2.c: R(𝑦;Bℎ (𝑡 ′)) + R(𝑦;Bℎ (𝑡 ′′)) + 𝑎(𝑡) ≥ 𝐵𝑖 − ( 𝑗 ′ − 2) · 𝑘𝑖 and 𝐼 (𝑡) = 1, i.e., the compaction

represented by 𝑡 is important. We show that (ii) holds. Let 𝑗 > 1 be the smallest index of a section

that contains important items only in Bℎ (𝑡), i.e., after the compaction. By the case condition

and since section 𝑗 ′ − 1 is not involved in the compaction, we have 𝑗 ≤ 𝑗 ′ − 1. Observe that

R(𝑦;Bℎ (𝑡)) = 𝐵𝑖 − ( 𝑗 − 1) · 𝑘𝑖 as the compaction removes important items from the buffer and thus,
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it involves the first 𝑗 − 1 sections by the definition of 𝑗 . After the compaction, the ( 𝑗 − 1)-st bit of
the state is set to 1, i.e., 𝐶ℎ (𝑡) [ 𝑗 − 1] = 1, by the definition of the compaction. Finally, we upper

bound 𝜒 (𝑡) as follows:

𝜒 (𝑡) ≤ 𝜒 (𝑡 ′) + 𝑘𝑖 ≤ 𝐵𝑖 − ( 𝑗 ′ − 1) · 𝑘𝑖 + 𝑘𝑖 = 𝐵𝑖 − ( 𝑗 ′ − 2) · 𝑘𝑖 ≤ 𝐵𝑖 − ( 𝑗 − 1) · 𝑘𝑖 ,

where the last inequality uses 𝑗 ≤ 𝑗 ′ − 1. Hence, (ii) holds. □

It remains to show that Claim 6.5 together with the definition of 𝜒 (𝑡) in (21) implies Lemma 6.4,

i.e., that (20) holds. To this end, first note that the definition of 𝜒 (𝑡) for a non-leaf 𝑖-node 𝑡 with
𝑎 ≤ 𝑖 ≤ _ implies

𝜒 (𝑡) ≥ 𝜒 (𝑡 ′) + 𝜒 (𝑡 ′′) − 3𝑟 (𝑡) + 𝐼 (𝑡) · 𝑘𝑖 − 𝐽 (𝑡) · 2 · 𝑘𝑖 , (23)

where 𝑡 ′ and 𝑡 ′′ are the children of 𝑡 . For a node 𝑞 ∈ 𝑄
𝑗

ℎ
with 𝑎 ≤ 𝑗 ≤ _, consider the sum of (23)

over all non-leaf 𝑖-nodes 𝑡 for 𝑎 ≤ 𝑖 ≤ 𝑗 such that 𝑡 is in the subtree of 𝑞, and observe that 𝜒 (𝑡)
either appears exactly once on both sides of the resulting inequality, or 𝑡 appears only on the

right-hand side and 𝜒 (𝑡) = 0, or 𝑡 = 𝑞 and 𝑞 appears only on the left-hand side. Letting 𝑇𝑞 denote

the subtree of 𝑞 and 𝑇 𝑖
𝑞 be the set of 𝑖-nodes in 𝑇𝑞 , we obtain

𝜒 (𝑞) ≥
𝑗∑︁

𝑖=𝑎

∑︁
𝑡 ∈𝑇 𝑖

𝑞

−3𝑟 (𝑡) + 𝐼 (𝑡) · 𝑘𝑖 − 𝐽 (𝑡) · 2 · 𝑘𝑖 . (24)

Next, consider the sum of (24) over all nodes 𝑞 ∈ 𝑄
𝑗

ℎ
for 𝑎 ≤ 𝑗 ≤ _. Observe that if an 𝑖-node 𝑡 for

𝑎 ≤ 𝑖 ≤ _ represents a compaction removing at least one important item, then 𝑡 must be in the

subtree 𝑇𝑞 of a node 𝑞 ∈ 𝑄
𝑗

ℎ
for 𝑎 ≤ 𝑗 ≤ _. Furthermore, subtrees 𝑇𝑞 are disjoint by the definition

of 𝑄ℎ . Letting 𝑟 (𝑇 [𝑎,_]) be the total number of important items removed from level ℎ during a

compaction represented by an 𝑖-node for 𝑎 ≤ 𝑖 ≤ _ that is in the subtree of a node in 𝑄ℎ , we thus

have the following two equalities:

_∑︁
𝑗=𝑎

∑︁
𝑞∈𝑄 𝑗

ℎ

𝑗∑︁
𝑖=𝑎

∑︁
𝑡 ∈𝑇 𝑖

𝑞

𝑟 (𝑡) = 𝑟 (𝑇 [𝑎,_])

_∑︁
𝑗=𝑖

∑︁
𝑞∈𝑄 𝑗

ℎ

∑︁
𝑡 ∈𝑇 𝑖

𝑞

𝐼 (𝑡) =𝑚𝑖
ℎ

for any 𝑖 ∈ [𝑎, _] .

Hence, summing (24) over all nodes 𝑞 ∈ 𝑄
𝑗

ℎ
for 𝑎 ≤ 𝑗 ≤ _, we get

_∑︁
𝑗=𝑎

∑︁
𝑞∈𝑄 𝑗

ℎ

𝜒 (𝑞) ≥ −3 · 𝑟 (𝑇 [𝑎,_]) +
_∑︁
𝑖=𝑎

𝑚𝑖
ℎ
· 𝑘𝑖 −

_∑︁
𝑗=𝑎

∑︁
𝑞∈𝑄 𝑗

ℎ

𝑗∑︁
𝑖=𝑎

∑︁
𝑡 ∈𝑇 𝑗

𝑞

𝐽 (𝑡) · 2 · 𝑘𝑖 . (25)

We now upper bound the last term on the RHS of (25). Let 𝜏𝑖′ be the number of topmost 𝑖 ′-nodes 𝑡 ′

for 𝑖 ′ ≤ _ satisfying that there is an important level-ℎ compaction represented by an 𝑖 ′-node in the

subtree of 𝑡 ′ and that 𝑡 ′ is in the subtree of a node 𝑞 ∈ 𝑄
𝑗

ℎ
for 𝑎 ≤ 𝑗 ≤ _. Recall that if 𝐽 (𝑡) = 1 for

an 𝑖-node 𝑡 , then at least one of the children of 𝑡 is a topmost 𝑖 ′-node for 𝑎 ≤ 𝑖 ′ < 𝑖 accounted for

in 𝜏𝑖′ . Using 𝑘0 ≥ 𝑘1 ≥ · · · ≥ 𝑘_ , we thus have

_∑︁
𝑗=𝑎

∑︁
𝑞∈𝑄 𝑗

ℎ

𝑗∑︁
𝑖=𝑎

∑︁
𝑡 ∈𝑇 𝑗

𝑞

𝐽 (𝑡) · 2 · 𝑘𝑖 ≤
_∑︁

𝑖′=𝑎

𝜏𝑖′ · 2 · 𝑘𝑖′ . (26)
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For any 𝑖 ′ ∈ [𝑎, _], we claim that

𝜏𝑖′ ·
𝐵𝑖′

2

≤ R
[𝑎,_]
ℎ

(𝑦) . (27)

Indeed, any topmost 𝑖 ′-node 𝑡 ′ accounted for in 𝜏𝑖′ has an important level-ℎ compaction represented

by an 𝑖 ′-node in the subtree of 𝑡 ′. At the time of this compaction operation, the buffer needs to

have more than 𝐵𝑖′/2 important items (otherwise, the compaction would not be important). Since

the lowest-ranked 𝐵𝑖′/2 important items are never removed from the buffer (when its capacity is

𝐵𝑖′), the buffer represented by 𝑡 ′ has at least 𝐵𝑖′/2 important items. Furthermore, these sets of at

least 𝐵𝑖′/2 important items are disjoint for any two topmost 𝑖 ′-nodes 𝑡 ′ ≠ 𝑡 ′′ accounted for in 𝜏𝑖′ .

Finally, all these important items are accounted for in R
[𝑎,_]
ℎ

(𝑦) as they are either removed from the

level-ℎ buffer by a compaction represented by an 𝑖 ′′-node for 𝑖 ′ ≤ 𝑖 ′′ ≤ _, or remain at the level-ℎ

buffer represented by a node 𝑞 ∈ 𝑄
𝑗

ℎ
for 𝑖 ′ ≤ 𝑗 ≤ _. This shows (27).

Thus, the last term on the RHS of (25) is bounded by

_∑︁
𝑗=𝑎

∑︁
𝑞∈𝑄 𝑗

ℎ

𝑗∑︁
𝑖=𝑎

∑︁
𝑡 ∈𝑇 𝑗

𝑞

𝐽 (𝑡) · 2 · 𝑘𝑖 ≤
_∑︁

𝑖′=𝑎

𝜏𝑖′ · 2 · 𝑘𝑖′

≤ 2 ·
_∑︁

𝑖′=𝑎

𝜏𝑖′ · 1

2
· 𝐵𝑖′

log
2
(𝑁𝑖′/𝑘𝑖′)

≤ 2 ·
_∑︁

𝑖′=𝑎

R
[𝑎,_]
ℎ

(𝑦)
log

2
(𝑁𝑖′/𝑘𝑖′)

≤ R
[𝑎,_]
ℎ

(𝑦) , (28)

where the first inequality is (26), the second inequality uses the definition of 𝐵𝑖′ in (19), the third

inequality follows from (27), and the last inequality holds as

∑_
𝑖′=𝑎 1/log2 (𝑁𝑖′/𝑘𝑖′) ≤ 2 log

2
(𝑁0/𝑘0) ≤

1

2
(in more detail, here we use that log

2
(𝑁𝑖′/𝑘𝑖′) increases with 𝑖 ′ by a factor of at least 2 for 𝑖 ′ ≤ _

and that log
2
(𝑁0/𝑘0) ≥ 4, which holds by the definition of 𝑁0).

To upper bound the LHS of (25), we use Claim 6.5 for each 𝑞 ∈ 𝑄
𝑗

ℎ
with 𝑎 ≤ 𝑗 ≤ _ to get that

𝜒 (𝑞) ≤ R(𝑦;Bℎ (𝑞)) for any such 𝑞. Plugging this together with (28) into (25), we obtain

_∑︁
𝑗=𝑎

∑︁
𝑞∈𝑄 𝑗

ℎ

R(𝑦;Bℎ (𝑞)) ≥ −3 · 𝑟 (𝑇 [𝑎,_]) +
_∑︁
𝑖=𝑎

𝑚𝑖
ℎ
· 𝑘𝑖 − R

[𝑎,_]
ℎ

(𝑦) , (29)

which implies (20) by rearranging and using R
[𝑎,_]
ℎ

(𝑦) = 𝑟 (𝑇 [𝑎,_]) + ∑_
𝑗=𝑎

∑
𝑞∈𝑄 𝑗

ℎ

R(𝑦;Bℎ (𝑞)) (the
second term equals the total number of important items in the buffers represented by nodes in 𝑄

𝑗

ℎ

for 𝑎 ≤ 𝑗 ≤ _). □

Lemma 6.4 with 𝑎 = 0 has a simple corollary.

Corollary 2. Consider levelℎ and let𝑚≤_
ℎ

=
∑_

𝑖=0𝑚
𝑖
ℎ
be the total number of important compactions

at level ℎ represented by 𝑖-nodes for 𝑖 ≤ _. Suppose that Rℎ (𝑦) ≤ 2
−ℎ+2

R(𝑦) and let 𝑖 (ℎ) ≥ 0 be the
largest integer 0 ≤ 𝑖 ≤ _ satisfying 2−ℎ+2 R(𝑦) > 𝐵𝑖/2. Then𝑚≤_

ℎ
≤ 4 Rℎ (𝑦)/𝑘𝑖 (ℎ) .

Proof. This follows from Lemma 6.4 by observing that𝑚𝑖
ℎ
= 0 for 𝑖 (ℎ) < 𝑖 ≤ _ and by using

𝑘𝑖 ≥ 𝑘𝑖 (ℎ) for any 𝑖 ≤ 𝑖 (ℎ) and R
[0,_]
ℎ

(𝑦) ≤ Rℎ (𝑦) □

6.4 Analysis of the Full Sketch for Mergeability
In this section, we complete the proof of full mergeability that matches our result in the streaming

setting (Theorem 3). The crucial part of analyzing the full sketch, similarly as in the streaming

setting (Section 4), is bounding the variance of Err(𝑦), using the bounds on the number of important

level-ℎ compactions from the previous section. The bound of this section is, however, substantially

J. ACM, Vol. V, No. N, Article A. Publication date: January 202X.



Relative Error StreamingQuantiles A:33

more involved than in the streaming setting, mainly because parameters 𝑘 and 𝐵 of the sketches

change as merge operations are processed. Here, we again stress that we assume no advance

knowledge of 𝑛, the total size of the input.

Before presenting the most general and tight analysis, we will however describe that a simple

extension of the arguments used in the streaming setting readily gives the result with an additional

factor of min{log log(Y𝑛), log(Y−1) + log log(𝛿−1)} in the asymptotic space complexity, relative to

our result in the streaming setting (Theorem 3).
10
This simpler, non-tight analysis of the full sketch

is less delicate than our analysis that avoids the additional factor, thereby establishing Theorem 1.

We nevertheless do not assume any advance knowledge about the final input size 𝑛.

6.4.1 A Sketch of a Simpler Analysis with an Additional Double Logarithmic Factor. The key trick

that allows to apply similar arguments as in Section 4 is to modify the definition of 𝑘𝑖 for 𝑖 ≥ 0

compared to (19), as follows:

𝑘𝑖 = Θ(1) ·

min{𝑖 + 1, _} · ˆ𝑘√︃

log
2
(𝑁𝑖/ ˆ𝑘)

 , (30)

where _ and 𝑁𝑖 are defined similarly as in (19) and the multiplicative constant is set appropriately.

In particular, relative to Equation (19), note the extra factor of 𝑖 + 1; including it considerably

simplifies the analysis, but it is responsible for an additional min{log log(Y𝑛), _} term in the space

bound, where _ = 𝑂 (log(Y−1) + log log(𝛿−1)). Recall that 𝐵𝑖 = 2 · 𝑘𝑖 ·
⌈
log

2
(𝑁𝑖/𝑘𝑖 )

⌉
.

We omit the detailed analysis and only highlight where we use the modified definition of the

parameter 𝑘𝑖 . As in the subsequent tight analysis, the error from compactions represented by 𝑖-

nodes for 𝑖 > _ (if any) will be analyzed separately (and is much simpler to deal with). In particular,

a similar calculation as in (7) gives us that for 0 ≤ 𝑖 ≤ _,

𝑘𝑖 · 𝐵𝑖 ≥ Θ(1) · (𝑖 + 1)2
Y2

· ln 1

𝛿
, (31)

so we have an extra factor of (𝑖 + 1)2 compared to (7). Using Corollary 2, one can show that

Var[Err(𝑦)] ≤
_∑︁
𝑖=0

Θ(1) · R(𝑦)
2

𝑘𝑖 · 𝐵𝑖
≤ Y2 · R(𝑦)2

4 · ln(1/𝛿) ·
_∑︁
𝑖=0

1

(𝑖 + 1)2 ≤ Y2 · R(𝑦)2
2 · ln(1/𝛿) ,

where the second inequality uses (31) and the last step holds as

∑_
𝑖=0 1/(𝑖 + 1)2 < 𝜋2/6 < 2; the fact

that this sum is bounded allows us to deal with the challenge of changing parameters 𝑘 and 𝐵 in a

simple way. The application of the tail bound for sub-Gaussian variables and the derivation of the

space bound is otherwise the same as in Theorem 3.

6.4.2 A Tight Analysis. Recall that ˆ𝑘 = 4Y−1 ·
√︁
ln(1/𝛿) and that by (19), 𝑘𝑖 = 2

5 ·
⌈
ˆ𝑘/

√︃
log

2
(𝑁𝑖/ ˆ𝑘)

⌉
and 𝐵𝑖 = 2 ·𝑘𝑖 · ⌈log2 (𝑁𝑖/𝑘𝑖 )⌉, where 𝑁𝑖 = min {𝑁𝑖 , 𝑁_} by (19). Here, _ ≥ 0 is the smallest integer

𝑖 such that
ˆ𝑘/

√︃
log

2
(𝑁𝑖/ ˆ𝑘) ≤ 1. If _ > ℓ , we decrease _ to ℓ for convenience. Using a similar

calculation as in Claim 4.1, we show a lower bound on 𝑘𝑖 · 𝐵𝑖 .

Claim 6.6. Parameters 𝑘𝑖 and 𝐵𝑖 set according to (19) satisfy

𝑘𝑖 · 𝐵𝑖 ≥ 2
14 · 1

Y2
· ln 1

𝛿
. (32)

10
We provide a detailed description of a simpler analysis with an additional log log(Y𝑛) factor in a prior version of this

manuscript; see https://arxiv.org/abs/2004.01668v3.
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Proof. We first need to relate log
2
(𝑁𝑖/𝑘𝑖 ) (used to define 𝐵𝑖 ) and log

2
(𝑁𝑖/ ˆ𝑘) (that appears in

the definition of 𝑘𝑖 ). As 𝑘𝑖 ≤ 2
5 · ˆ𝑘 , it holds that log

2
(𝑁𝑖/𝑘𝑖 ) ≥ log

2
(𝑁𝑖/ ˆ𝑘) − 5 ≥ log

2
(𝑁𝑖/ ˆ𝑘)/2,

where we use that 𝑁𝑖 ≥ 𝑁0 ≥ 2
10 · ˆ𝑘 , so log

2
(𝑁𝑖/ ˆ𝑘) ≥ 10. Using this, we bound 𝑘𝑖 · 𝐵𝑖 as follows:

𝑘𝑖 · 𝐵𝑖 = 2 · 𝑘2𝑖 ·
⌈
log

2

𝑁𝑖

𝑘𝑖

⌉
≥ 2 · 210 · 16

Y2
·

ln
1

𝛿

log
2
(𝑁𝑖/ ˆ𝑘)

·
log

2
(𝑁𝑖/ ˆ𝑘)
2

= 2
14 · 1

Y2
· ln 1

𝛿
.

□

For analyzing the case 𝑛 > 𝑁_ , the following bound will be useful:

𝐵_ ≥ 2
5 · ˆ𝑘2 (33)

This is because the definition of _ implies that

√︃
log

2
(𝑁_/ ˆ𝑘) ≥ ˆ𝑘 while 𝑘_ ≥ 2

5
, thus 𝐵_ ≥

2
6 · log

2
(𝑁_/𝑘_) ≥ 2

6 · log
2

(
𝑁_/ ˆ𝑘

)
/2 ≥ 2

5 · ˆ𝑘2, where the second inequality follows from the same

argument as in Claim 6.6.

For any 0 ≤ 𝑖 ≤ ℓ , let 𝐻𝑖 (𝑦) be the minimal ℎ for which 2
−ℎ+2

R(𝑦) ≤ 𝐵𝑖/2. As 𝑦 is fixed, we write

𝐻𝑖 rather than 𝐻𝑖 (𝑦) for brevity. In particular, by considering ℎ = 𝐻𝑖 − 1 (assuming 𝐻𝑖 > 0), it can

be seen that 2
3−𝐻𝑖

R(𝑦) ≥ 𝐵𝑖/2, or equivalently

2
𝐻𝑖 ≤ 2

4 · R(𝑦)/𝐵𝑖 . (34)

As increasing 𝑖 by one increases 𝐵𝑖 , we have 𝐻0 ≥ 𝐻1 ≥ · · · ≥ 𝐻ℓ .

We show below that no important item (i.e., one smaller than or equal to 𝑦) can ever reach level

𝐻0 + 1.

Lemma 6.7. Assuming 𝐻0 > 0, with probability at least 1 − 𝛿 it holds that Rℎ (𝑦) ≤ 2
−ℎ+2

R(𝑦) for
any ℎ ≤ 𝐻0.

Proof. The proof is similar to that of Lemma 4.4, except that we need to deal with parameters 𝑘

and 𝐵 changing over time. To deal with it, we use an idea from the KLL paper [15] to analyze the

top log log 1/𝛿 levels deterministically. We define

𝐻 ′
0
= max

(
0, 𝐻0 −

⌈
log

2

√︂
ln

1

𝛿

⌉)
.

We first show by induction on 0 ≤ ℎ ≤ 𝐻 ′
0
that Rℎ (𝑦) ≤ 2

−ℎ+1
R(𝑦) with probability at least

1 − 𝛿 · 2ℎ−𝐻 ′
0
−1
, conditioned on Rℎ′ (𝑦) ≤ 2

−ℎ′+1
R(𝑦) for any ℎ′ < ℎ. The base case holds by

R0 (𝑦) = R(𝑦).
Consider 0 < ℎ ≤ 𝐻 ′

0
, and recall that𝑚ℎ′ denotes the number of important compactions at level

ℎ′
over all merge operations represented in the merge tree 𝑇 . As in the proof of Lemma 4.4,

Pr[Rℎ (𝑦) > 2
−ℎ+1

R(𝑦)] ≤ Pr[𝑍ℎ > 2
−ℎ

R(𝑦)],

where 𝑍ℎ =
∑ℎ−1

ℎ′=0 2
−ℎ+ℎ′ · Binomial(𝑚ℎ′) is a zero-mean sub-Gaussian random variable. To bound

the variance of 𝑍ℎ , first note that for any ℎ
′ < ℎ, since each important compaction needs to remove

at least one important item from the buffer, we have that𝑚ℎ′ ≤ Rℎ′ (𝑦) ≤ 2
−ℎ′+1 · R(𝑦), using the

assumption that Rℎ′ (𝑦) ≤ 2
−ℎ′+1 · R(𝑦). (While this may seem like a very crude bound compared

to Lemma 6.4, it is sufficient due to analyzing top levels deterministically and furthermore, it can

be used for compactions represented by 𝑖-nodes for 𝑖 > _, where we do not use the deterministic

compaction schedule.)
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As Var[Binomial(𝑛)] = 𝑛, the variance of 𝑍ℎ is

Var[𝑍ℎ] ≤
ℎ−1∑︁
ℎ′=0

2
−2ℎ+2ℎ′ ·𝑚ℎ′ ≤

ℎ−1∑︁
ℎ′=0

2
−2ℎ+2ℎ′ · 2−ℎ′+1 · R(𝑦) =

ℎ−1∑︁
ℎ′=0

2
−2ℎ+ℎ′+1 · R(𝑦) ≤ 2

−ℎ+1 · R(𝑦) .

To bound Pr[𝑍ℎ > 2
−ℎ · R(𝑦)], we apply the tail bound for sub-Gaussian variables (Fact 4.3) to

get

Pr[𝑍ℎ > 2
−ℎ · R(𝑦)] < exp

(
− 2

−2ℎ · R(𝑦)2

2 · (2−ℎ+1 · R(𝑦))

)
= exp

(
−2−ℎ−2 · R(𝑦)

)
= exp

(
−2𝐻0−𝐻 ′

0 · 2−ℎ+𝐻 ′
0
−6 · 24−𝐻0

R(𝑦)
)

≤ exp

(
−
√︂
ln

1

𝛿
· 2−ℎ+𝐻 ′

0
−6 · 𝐵0

)
≤ exp

(
− ln

1

𝛿
· 2−ℎ+𝐻 ′

0
+1

)
= 𝛿2

−ℎ+𝐻 ′
0
+1
≤ 𝛿 · 2−𝐻 ′

0
+ℎ−1 ,

where the second inequality uses the definition of 𝐻 ′
0
and 2

4−𝐻0
R(𝑦) ≥ 𝐵0 by (34), the third

inequality follows from 𝐵0 ≥ 2 · 𝑘0 · log2 (𝑁0/𝑘0) ≥ 2
7 ·

√︁
ln(1/𝛿), and the last inequality uses

𝛿 ≤ 0.5. Hence, taking the union bound over levels ℎ ≤ 𝐻 ′
0
, with probability at least 1 − 𝛿 it holds

that Rℎ (𝑦) ≤ 2
−ℎ+1

R(𝑦) for any ℎ ≤ 𝐻 ′
0
.

Finally, consider level ℎ with 𝐻 ′
0
< ℎ ≤ 𝐻0 and condition on R𝐻 ′

0

(𝑦) ≤ 2
−𝐻 ′

0
+1
R(𝑦). (In the case

𝐻 ′(𝑦) = 0, we have R0 (𝑦) = R(𝑦).) We again proceed by induction and assume that Rℎ′ (𝑦) ≤
2
−ℎ′+2 · R(𝑦) for any ℎ′ < ℎ. First, we argue that for any ℎ with 𝐻 ′

0
< ℎ ≤ 𝐻0 it holds that∑

𝑖>_𝑚
𝑖
ℎ′ = 0, so we can use Corollary 2. Indeed, it is sufficient to show R𝐻 ′

0

(𝑦) ≤ 𝐵_/2 as follows:

R𝐻 ′
0

(𝑦) ≤ 2
−𝐻 ′

0
+1
R(𝑦) = 2

𝐻0−𝐻 ′
0 · 2−2 · 2−𝐻0+3

R(𝑦) ≤ 2

√︂
ln

1

𝛿
· 2−2 · 𝐵0 ≤ 2

4 · ˆ𝑘2 ≤ 1

2

𝐵_ , (35)

whrere the penultimate inequality uses the definition of 𝐵0 in (19) together with Y ≤ 1/2 and the

last inequality is by (33).

We now observe that for any 𝐻 ′
0
< ℎ′ ≤ ℎ, it holds that Rℎ′ (𝑦) ≤ 1

2
· (1 + 4/𝑘𝑖 (ℎ′) ) · Rℎ′−1 (𝑦),

where 𝑖 (ℎ′) ≤ _ is the largest integer 𝑖 satisfying 2
−ℎ′+3

R(𝑦) > 𝐵𝑖/2. Indeed, Rℎ′ (𝑦) ≤
1

2
· (Rℎ′−1 (𝑦) + Binomial(𝑚ℎ′−1)) (see Equation 9) and Binomial(𝑚ℎ′−1) ≤ 𝑚ℎ′−1 ≤ 4 Rℎ′−1 (𝑦)/𝑘𝑖 (ℎ′)

by Corollary 2, using the definition of 𝑖 (ℎ′) and the induction hypothesis for level ℎ′ − 1, i.e.,

Rℎ′−1 (𝑦) ≤ 2
−ℎ′+3 ·R(𝑦). That is, regardless of the outcome of the random choices, we always obtain

this bound on the rank of an item. By using this deterministic bound for levels 𝐻 ′
0
< ℎ′ ≤ ℎ, we get

Rℎ (𝑦) ≤ 2
−ℎ+𝐻 ′

0 · R𝐻 ′
0

(𝑦) ·
ℎ∏

ℎ′=𝐻 ′
0
+1

(
1 + 4

𝑘𝑖 (ℎ′)

)
≤ 2

−ℎ+𝐻 ′
0 · 2−𝐻 ′

0
+1 · R(𝑦) ·

ℎ∏
ℎ′=𝐻 ′

0
+1

(
1 + 4

𝑘𝑖 (ℎ′)

)
. (36)

It remains to show that the product

∏ℎ
ℎ′=𝐻 ′

0
+1

(
1 + 4

𝑘𝑖 (ℎ′)

)
is bounded by 2, which implies Rℎ (𝑦) ≤

2
−ℎ+2 · R(𝑦). We first observe that 𝑘𝑖 (𝐻 ′

0
+1) ≥ 𝑘_ ≥ 2

5
, since 𝑖 (𝐻 ′

0
+ 1) ≤ _. Next, recall that the

sequence of 𝑘𝑖 ’s decreases exponentially with a factor of

√
2 (up to rounding) with increasing

𝑖 . Thus, it is sufficient to show that the sequence 𝑖 (ℎ′) decreases for ℎ′ = 𝐻 ′
0
+ 1, . . . , ℎ. More

precisely, we show that 𝑖 (ℎ′ + 1) ≤ 𝑖 (ℎ′) − 1. This latter inequality holds as increasing ℎ′
by one in

2
−ℎ′+3

R(𝑦) > 𝐵𝑖/2 implies that the largest 𝑖 satisfying the inequality should decrease by one (recall
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that the sequence of 𝐵𝑖 ’s increases by a factor of

√
2 (up to rounding) with increasing 𝑖). Note that

we always have 2
−ℎ′+3

R(𝑦) > 𝐵0/2 as ℎ′ ≤ ℎ ≤ 𝐻0. Summing up, we get

ℎ∏
ℎ′=𝐻 ′

0
+1

(
1 + 4

𝑘𝑖 (ℎ′)

)
≤

∏
𝑗≥0

(
1 + 1

2
3 ·

√
2

𝑗

)
≤ exp

(∑︁
𝑗≥0

log

(
1 + 1

2
3 ·

√
2

𝑗

))
≤ exp

(∑︁
𝑗≥0

1

2
3 ·

√
2

𝑗

)
≤ 2 .

□

As a corollary, we obtain a bound on the highest level with a compaction removing important

items from the level-ℎ buffer (no matter whether such a compaction is important or not). Recall

from Section 6.3 that a compaction involves important items iff it removes at least one important

item from the buffer. Recall that we only consider a compaction to be important if it affects an odd

number of important items, so these compactions involving important items are a superset of the

important compactions.

Lemma 6.8. Conditioned on the bounds in Lemma 6.7 holding, for any 0 ≤ 𝑖 ≤ ℓ , no compaction
involving important items occurs at level 𝐻𝑖 or above during any merge procedure represented by any
𝑖-node in the merge tree 𝑇 .

Proof. By Lemma 6.7, R𝐻𝑖
(𝑦) ≤ 2

−𝐻𝑖+2
R(𝑦) ≤ 𝐵𝑖/2, where the second inequality follows

from the definition of 𝐻𝑖 . Hence, no important item is ever removed from level 𝐻𝑖 during merge

operations represented by 𝑖-nodes when the buffer size is 𝐵𝑖 . The same argument also works for

any level ℎ > 𝐻𝑖 . □

Consider level ℎ. Recall from Section 6.3 that𝑄ℎ is the set of nodes 𝑡 such that (i) 𝑡 is an 𝑖-node for

𝑖 ≤ _ that represents a level-ℎ compaction involving important items (this compaction may or may

not be important), and (ii) there is no node 𝑡 ′ on the path from the parent of 𝑡 to the topmost _-node

containing 𝑡 in its subtree such that 𝑡 ′ represents a level-ℎ compaction involving important items.

Intuitively, 𝑄ℎ captures “maximal” nodes (with index 𝑖 ≤ _) that represent a level-ℎ compaction

removing one or more important items from level ℎ. Note that an important item that remains

in the level-ℎ buffer represented by a node 𝑡 ∈ 𝑄ℎ (after performing the compaction operation

represented by 𝑡 ) is never removed from the level-ℎ buffer, by the definition of 𝑄ℎ . For 0 ≤ 𝑖 ≤ _,

let 𝑄𝑖
ℎ
be the set of 𝑖-nodes in 𝑄ℎ and let 𝑞𝑖

ℎ
= |𝑄𝑖

ℎ
|.

Note that 𝑞𝑖
ℎ
= 0 for ℎ ≥ 𝐻0 by Lemma 6.8 (conditioned on the bounds in Lemma 6.7 holding).

Now we observe that values 𝑞𝑖
ℎ
for 𝑖 = 0, . . . , _ give upper bounds on the number of important items

at level ℎ. This follows from the fact that the level-ℎ buffer represented by a node in 𝑄𝑖
ℎ
contains at

most 𝐵𝑖 items.

Observation 6.9. For any ℎ ≥ 0 and 0 ≤ 𝑔 ≤ _, the level-ℎ buffers of the sketches represented by
nodes in 𝑄𝑖

ℎ
for some 𝑖 ≥ 𝑔 contain at most

∑_
𝑖=𝑔 𝑞

𝑖
ℎ
· 𝐵𝑖 important items in total (after performing

compaction operations represented by these nodes).

Next, in Observation 6.10, we show that the 𝑞𝑖
ℎ
values can as well be used to lower bound the

total number of important items at level ℎ in topmost _-node. Combined with Lemma 6.11, this

will give us a useful bound on

∑
ℎ≥0

∑_
𝑖=0 2

ℎ · 𝑞𝑖
ℎ
· 𝐵𝑖 at the very end of the analysis. Intuitively, the

observation also implies that the 𝑞𝑖
ℎ
values cannot be too big, namely, 𝑞𝑖

ℎ
≤ 2𝐵_/𝐵𝑖 = 𝑂 (log𝑁_) as

there are at most 𝐵_ items in the level-ℎ buffer represented by a topmost _-node.

In the observation, we also take into account items added to level ℎ from compactions (at level

ℎ − 1 if ℎ > 0) that are not represented by a node in the subtree of a node in 𝑄ℎ . Namely, for

ℎ > 0 and any 0 ≤ 𝑖 ≤ _, let 𝑧𝑖
ℎ
be the number of items added to level ℎ during merge operations
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represented by 𝑖-nodes that are not in the subtree of a node in 𝑄ℎ . For ℎ = 0, we define 𝑧𝑖
0
= 0 for

any 𝑖 .

Observation 6.10. For any level ℎ, the level-ℎ buffers of topmost _-nodes contain at least
∑_

𝑖=0 𝑞
𝑖
ℎ
·

𝐵𝑖/2 + 𝑧𝑖
ℎ
important items.

Proof. Consider an 𝑖-node 𝑡 ∈ 𝑄𝑖
ℎ
and the level-ℎ buffer represented by 𝑡 . As the level-ℎ

compaction represented by 𝑡 removes one or more important items and as 𝑡 is an 𝑖-node, there

must be at least 𝐵𝑖/2 important items in the level-ℎ buffer that remain there after the compaction

operation is done. Furthermore, by condition (ii) in the definition of𝑄ℎ , these 𝐵𝑖/2 important items

are not removed from the level-ℎ buffer and the sets of these 𝐵𝑖/2 important items for two nodes

𝑡, 𝑡 ′ ∈ 𝑄ℎ are disjoint. Finally, the 𝑧𝑖
ℎ
items added to level ℎ during merge operations represented

by 𝑖-nodes that are not in the subtree of a node in 𝑄ℎ are disjoint (w.r.t index 𝑖) and distinct from

items in the buffers of nodes in 𝑄ℎ , which shows the claim. □

Note that using Observation 6.10, the values of

∑_
𝑖=0 𝑞

𝑖
ℎ
·𝐵𝑖/2+𝑧𝑖ℎ give a lower bound on the rank

of 𝑦 estimated by the topmost _-nodes (if ℓ = _, then the only topmost _-node is the root of the

merge tree𝑇 ). We now complement it with an upper bound showing that the rank of 𝑦 estimated by

the topmost _-nodes cannot be too far from R(𝑦). This can be seen as an initial bound on the error

which will be used within the proof of the final, more refined bound on the variance of Err(𝑦).

Lemma 6.11. Conditioned on the bounds in Lemma 6.7 holding, with probability at least 1 − 𝛿 it
holds that

_∑︁
𝑖=0

𝐻𝑖∑︁
ℎ′=0

2
ℎ′ ·

(
𝑞𝑖
ℎ′ ·

𝐵𝑖

2

+ 𝑧𝑖
ℎ′

)
≤ 2 R(𝑦) (37)

Proof. Note that 𝑞𝑖
ℎ
= 0 for ℎ ≥ 𝐻𝑖 and that there is no important compaction represented by

an 𝑖-node at any level ℎ ≥ 𝐻𝑖 by Lemma 6.8. Let Err
≤_ (𝑦) be the error introduced by compactions

represented by 𝑖-nodes for 𝑖 ≤ _. By Observation 6.10, it is sufficient to show that Err
≤_ (𝑦) ≤ R(𝑦).

Recall that Err
≤_ (𝑦) is a zero-mean sub-Gaussian random variable. Similarly as in Lemma 6.7, we

define

𝐻 ′
0
= max

(
0, 𝐻0 −

⌈
log

2

√︂
ln

1

𝛿

⌉)
.

We split Err
≤_ (𝑦), the error of the rank estimate for 𝑦, into two parts (we drop the superscript

≤ _ for simplicity):

Err
′(𝑦) =

𝐻 ′
0
−1∑︁

ℎ=0

2
ℎ · Errℎ (𝑦) and Err

′′(𝑦) =
𝐻0−1∑︁
ℎ=𝐻 ′

0

2
ℎ · Errℎ (𝑦) .

Note that Err
≤_ (𝑦) = Err

′(𝑦) + Err
′′(𝑦); we bound both these parts by

1

2
R(𝑦) w.h.p., starting with

Err
′(𝑦). If 𝐻 ′

0
= 0, then clearly Err

′(𝑦) = 0. Otherwise, we analyze the variance of the zero-mean
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sub-Gaussian variable Err
′(𝑦)

Var[Err′(𝑦)] =
𝐻 ′

0
−1∑︁

ℎ=0

2
2ℎ · Var[Errℎ (𝑦)]

≤
𝐻 ′

0
−1∑︁

ℎ=0

2
2ℎ · Rℎ (𝑦)

≤
𝐻 ′

0
−1∑︁

ℎ=0

2
2ℎ · 2−ℎ+2 R(𝑦)

≤ 2
𝐻 ′

0
+2 · R(𝑦) = 2

𝐻 ′
0
−𝐻0+2 · 2𝐻0 · R(𝑦) ≤ 2

𝐻 ′
0
−𝐻0+6 · R(𝑦)

2

𝐵0

≤ R(𝑦)2

8 ln
1

𝛿

where the first inequality is using a simple bound of Var[Errℎ (𝑦)] ≤ Rℎ (𝑦), the second follows

from Lemma 6.7, and the fourth inequality uses 2
𝐻0 ≤ 2

4 · R(𝑦)/𝐵0 by (34), and the last inequality

follows from the definition of 𝐻 ′
0
and 𝐵0 ≥ 2

8 ·
√︁
ln(1/𝛿) (using (19) and Y ≤ 1/2). We again apply

Fact 4.3 to obtain

Pr

[
Err

′(𝑦) > 1

2

R(𝑦)
]
< exp

(
−

R(𝑦)2 · ln 1

𝛿
·

4 · 2 · 1

8
R(𝑦)2

)
= exp

(
− ln

1

𝛿

)
= 𝛿 .

Finally, we use deterministic bounds to analyze Err
′′(𝑦), using that we only care about 𝑖-nodes

for 𝑖 ≤ _ As in Lemma 6.7, let 𝑖 (ℎ) ≤ _ be the largest integer 𝑖 satisfying 2
−ℎ+2

R(𝑦) > 𝐵𝑖/2. Then

Err
′′(𝑦) ≤

𝐻0−1∑︁
ℎ=𝐻 ′

0

2
ℎ ·𝑚≤_

ℎ

≤
𝐻0−1∑︁
ℎ=𝐻 ′

0

2
ℎ · 4 Rℎ (𝑦)

𝑘𝑖 (ℎ)
≤

𝐻0−1∑︁
ℎ=𝐻 ′

0

2
ℎ · 2

−ℎ+4
R(𝑦)

𝑘𝑖 (ℎ)
=

𝐻0−1∑︁
ℎ=𝐻 ′

0

2
4 · R(𝑦)
𝑘𝑖 (ℎ)

≤ R(𝑦)
2

,

where the first inequality is by Corollary 2, the second by Lemma 6.7, and the last inequality uses that

𝑘𝑖 (𝐻 ′
0
) ≥ 2

5
and that the values of 𝑘𝑖 (ℎ) for ℎ ∈ [𝐻 ′

0
, 𝐻0 − 1] increase exponentially with increasing

ℎ, which follows from similar arguments as in the paragraph below (36) in Lemma 6.7. □

The following technical lemma bounds the variance on each level in a somewhat different way

than in the streaming setting (Section 4). The idea is to bound the variance in terms of the 𝑞𝑖
ℎ
values

so that we can then use Observation 6.10. To this end, we first use Observation 6.9 to bound Rℎ (𝑦)
in terms of the 𝑞𝑖

ℎ
values, using the following observation: For each important item at level ℎ + 1,

there are roughly two important items removed from level ℎ. Here, “roughly” refers to the fact

that each level-ℎ compaction operation that promotes 𝑏 ≥ 1 important items removes at most

2𝑏 + 1 ≤ 3𝑏 important items from the level-ℎ buffer. Applying this observation together with

Observation 6.9, we show by an induction on ℎ that R
≥0
ℎ

(𝑦) ≤ ∑_
𝑖=0

∑
ℎ′≥ℎ 2 · 3ℎ

′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′).
Recall that R

[𝑎,_]
ℎ

(𝑦) is the number of important items that are either removed from level ℎ during

a compaction represented by an 𝑖-node for 𝑎 ≤ 𝑖 ≤ _, or remain at the level-ℎ buffer represented by

a node 𝑡 ∈ 𝑄𝑖
ℎ
for 𝑎 ≤ 𝑖 ≤ _ (after the compaction operation represented by 𝑡 is done). Note that

this provides alternative rank bounds to Lemma 6.7, which we do not use in the subsequent proof.

Then we apply Lemma 6.4 to get our variance bound, which however brings additional technical

difficulties. To overcome them, we use a careful proof by induction over 𝑔 ∈ [0, _]. We will only
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focus on 𝑖-nodes with 𝑖 ≤ _ and on levels ℎ ≥ 𝐻_ ; the error from remaining nodes and levels will

be analyzed later.

Lemma 6.12. Conditioned on the bounds in Lemma 6.7 holding, for any ℎ ≥ 𝐻_+1, it holds that

Var[Errℎ (𝑦)] ≤
_∑︁
𝑖=0

∑︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′)
𝑘𝑖

. (38)

Proof. We first note that by Lemma 6.8 (conditioned on Lemma 6.7), there is no important

compaction at any level ℎ ≥ 𝐻_+1 represented by an 𝑖-node for 𝑖 > _. Therefore, our focus will

again be solely on 𝑖-nodes for 𝑖 ≤ _. As outlined above, we first bound R
≥𝑔
ℎ

(𝑦) for any 0 ≤ 𝑔 ≤ _

and in particular, we prove by a “backward” induction on ℎ = 𝐻,𝐻 − 1, . . . , 0 that the following

inequality holds for any fixed 0 ≤ 𝑔 ≤ _:

R
≥𝑔
ℎ

(𝑦) ≤
_∑︁
𝑖=𝑔

( ∑︁
ℎ′≥ℎ+1

(
2 · 3ℎ′−ℎ · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

)
+ 2 · 𝑞𝑖

ℎ
· 𝐵𝑖

)
. (39)

At level ℎ = 𝐻 , there is no important compaction, implying that R
≥𝑔
𝐻

(𝑦) = 0 and 𝑞𝑖
𝐻
= 0 for any 𝑖 ,

which establishes the base case.

Consider ℎ < 𝐻 and suppose that (39) holds for ℎ + 1, i.e., we have that

R
≥𝑔
ℎ+1 (𝑦) ≤

_∑︁
𝑖=𝑔

( ∑︁
ℎ′≥ℎ+2

(
2 · 3ℎ′−ℎ−1 · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

)
+ 2 · 𝑞𝑖

ℎ+1 · 𝐵𝑖

)
. (40)

To show (39), we first bound the number of important items removed from level ℎ in terms

of R
≥𝑔
ℎ+1 (𝑦). For brevity, let 𝑧

≥𝑔
ℎ+1 =

∑_
𝑖=𝑔 𝑧

𝑖
ℎ+1. Note that there are at most R

≥𝑔
ℎ+1 (𝑦) + 𝑧

≥𝑔
ℎ+1 important

items added to level ℎ + 1 during compactions represented by 𝑖-nodes for some 𝑖 ∈ [𝑔, _], since
each such important item either gets removed from level ℎ + 1 or remains in the level-(ℎ + 1)
buffer represented by a node in 𝑄𝑖

ℎ+1 for some 𝑖 ∈ [𝑔, _] or is added to level ℎ + 1 during a merge

operation represented by an 𝑖-node 𝑡 for 𝑖 ∈ [𝑔, _] such that 𝑡 is not in the subtree of a node in

𝑄ℎ+1. Further, observe that each compaction which adds 𝑏 important items to level ℎ + 1 removes

at most 2𝑏 + 1 important items from the level-ℎ buffer — more precisely, it removes 2𝑏 important

items if it is not important, and otherwise, it removes either 2𝑏 − 1, or 2𝑏 + 1 important items. The

number of important compactions represented by 𝑖-nodes for some 𝑖 ∈ [𝑔, _] is at most R
≥𝑔
ℎ

(𝑦)/5
by Lemma 6.4 with 𝑎 = 𝑔 and by 𝑘𝑖 ≥ 20 for any 𝑖 ≤ _. Thus the number of important items

removed from level ℎ during compactions represented by 𝑖-nodes for 𝑖 ∈ [𝑔, _] is upper bounded
by 2 R

≥𝑔
ℎ+1 (𝑦) + 2𝑧

≥𝑔
ℎ+1 + (R≥𝑔

ℎ
(𝑦)/5).

By Observation 6.9, at most

∑_
𝑖=𝑔 𝑞

𝑖
ℎ
· 𝐵𝑖 important items remain at the level-ℎ buffers of the

sketches represented by nodes in 𝑄𝑖
ℎ
for some 𝑖 ≥ 𝑔. We thus have that

R
≥𝑔
ℎ

(𝑦) ≤ 2 R
≥𝑔
ℎ+1 (𝑦) + 2𝑧

≥𝑔
ℎ+1 +

1

5

· R≥𝑔
ℎ

(𝑦) +
_∑︁
𝑖=𝑔

𝑞𝑖
ℎ
· 𝐵𝑖 .
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After subtracting R
≥𝑔
ℎ

(𝑦)/5 from both sides of this inequality, and then multiplying both sides of

the inequality by 5/4, we get

R
≥𝑔
ℎ

(𝑦) ≤ 5

2

· R≥𝑔
ℎ+1 (𝑦) +

5

2

· 𝑧≥𝑔
ℎ+1 +

5

4

·
_∑︁
𝑖=𝑔

𝑞𝑖
ℎ
· 𝐵𝑖

≤ 5

2

·
(

_∑︁
𝑖=𝑔

( ∑︁
ℎ′≥ℎ+2

(
2 · 3ℎ′−ℎ−1 · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

)
+ 2 · 𝑞𝑖

ℎ+1 · 𝐵𝑖
))

+ 5

2

· 𝑧≥𝑔
ℎ+1 +

5

4

·
_∑︁
𝑖=𝑔

𝑞𝑖
ℎ
· 𝐵𝑖

≤
_∑︁
𝑖=𝑔

( ∑︁
ℎ′≥ℎ+1

(
2 · 3ℎ′−ℎ · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

)
+ 2 · 𝑞𝑖

ℎ
· 𝐵𝑖

)
,

where the second inequality uses the induction hypothesis (40). Thus, (39) holds.

Using 𝑧𝑖
ℎ
≥ 0, we simplify (39) and get

R
≥𝑔
ℎ

(𝑦) ≤
_∑︁
𝑖=𝑔

∑︁
ℎ′≥ℎ

(
2 · 3ℎ′−ℎ · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

)
. (41)

Finally, we bound the variance Var[Errℎ (𝑦)], which is at most

∑_
𝑖=0𝑚

𝑖
ℎ
as 𝑚𝑖

ℎ
= 0 for 𝑖 >

_ and ℎ ≥ 𝐻_+1, by Lemma 6.8. Recall from Section 6.3 that 𝑚𝑖
ℎ
is the number of important

compaction operations at level ℎ represented by 𝑖-nodes. We prove by a “backward” induction on

𝑔 = _, _ − 1, . . . , 0 that the following inequality holds for any ℎ ≥ 0:

_∑︁
𝑖=𝑔

𝑚𝑖
ℎ
≤

_∑︁
𝑖=𝑔

1

𝑘𝑖
·
∑︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′) . (42)

Note that (42) for 𝑔 = 0 gives (38) and that for ℎ = 𝐻 , there is no important compaction, thus we

have that ℎ < 𝐻 . Consider 0 ≤ 𝑔 ≤ _ and suppose that for any 𝑔′ > 𝑔 (in the case 𝑔 < _), we have

that

_∑︁
𝑖=𝑔′

𝑚𝑖
ℎ
≤

_∑︁
𝑖=𝑔′

1

𝑘𝑖
·
∑︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′) . (43)

To show (42), we use Lemma 6.4 with 𝑎 = 𝑔 to get

∑_
𝑖=𝑔𝑚

𝑖
ℎ
· 𝑘𝑖 ≤ 4 R

≥𝑔
ℎ

(𝑦). Dividing this inequality

by 𝑘𝑔 and using (41) gives

_∑︁
𝑖=𝑔

𝑘𝑖

𝑘𝑔
·𝑚𝑖

ℎ
≤

_∑︁
𝑖=𝑔

1

𝑘𝑔
·
∑︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′) .

If𝑔 = _, this proves the base case of the induction. Otherwise, for every𝑔′ > 𝑔, we add inequality (43)

(that holds by the induction hypothesis) multiplied by (𝑘𝑔′−1 − 𝑘𝑔′)/𝑘𝑔 (which is non-negative as

𝑘𝑔′−1 ≥ 𝑘𝑔′) to obtain

_∑︁
𝑖=𝑔

(
𝑘𝑖

𝑘𝑔
+

𝑖∑︁
𝑔′=𝑔+1

𝑘𝑔′−1 − 𝑘𝑔′

𝑘𝑔

)
·𝑚𝑖

ℎ

≤
_∑︁
𝑖=𝑔

(
𝑘𝑖

𝑘𝑔 · 𝑘𝑖
+

𝑖∑︁
𝑔′=𝑔+1

𝑘𝑔′−1 − 𝑘𝑔′

𝑘𝑔 · 𝑘𝑖

)
·
∑︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′) . (44)
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Note that the sum of fractions of 𝑘𝑖 ’s on the RHS of (44) equals 1/𝑘𝑖 for any 𝑖 , and similarly the

sum of fractions of 𝑘𝑖 ’s on the LHS of (44) equals 1 for any 𝑖 , so the LHS equals

∑_
𝑖=𝑔𝑚

𝑖
ℎ
. This

shows (42). □

Finally, we have all ingredients needed to show that we can match the streaming result of

Theorem 3 even when creating the sketch using an arbitrary sequence of merge operations without

any advance knowledge about the total size of the input. That is, we now prove the full mergeability

claim of Theorem 1, which we restate for convenience.

Theorem 1. For any parameters 0 < 𝛿 ≤ 0.5 and 0 < Y ≤ 1, there is a randomized, comparison-
based, one-pass streaming algorithm that, when processing a data stream consisting of 𝑛 items from a
totally-ordered universe U, produces a summary 𝑆 satisfying the following property. Given 𝑆 , for any
𝑦 ∈ U one can derive an estimate R̂(𝑦) of R(𝑦) such that

Pr

[
|R̂(𝑦) − R(𝑦) | > Y R(𝑦)

]
< 𝛿 ,

where the probability is over the internal randomness of the streaming algorithm. The size of 𝑆 in
memory words11 is

𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︂
log

1

𝛿

)
.

Moreover, the summary produced is fully mergeable.

Proof. We condition on the bounds from Lemmas 6.7 and 6.11, which together hold with

probability at least 1 − 2𝛿 . Using Lemma 6.12, we first bound the error on levels ℎ ≥ 𝐻_+1, where
we have that𝑚𝑖

ℎ
= 0 for 𝑖 > _ and ℎ ≥ 𝐻_+1 by Lemma 6.8:∑︁

ℎ≥𝐻_+1

2
2ℎ · Var[Errℎ (𝑦)] ≤

∑︁
ℎ≥𝐻_+1

2
2ℎ ·

_∑︁
𝑖=0

∑︁
ℎ′≥ℎ

8 · 3ℎ′−ℎ · (𝑞𝑖
ℎ′ · 𝐵𝑖 + 𝑧𝑖

ℎ′)
𝑘𝑖

=

_∑︁
𝑖=0

∑︁
ℎ′≥𝐻_+1

ℎ′∑︁
ℎ=𝐻_+1

2
2ℎ
8 · 3ℎ′−ℎ · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

𝑘𝑖

≤
_∑︁
𝑖=0

∑︁
ℎ′≥𝐻_+1

2
2ℎ′+5 · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′)

𝑘𝑖
(45)

≤
_∑︁
𝑖=0

𝐻𝑖∑︁
ℎ′=𝐻_+1

2
ℎ′+8 · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′) · R(𝑦)

𝑘𝑖 · 𝐵𝑖
(46)

≤ Y2 · R(𝑦)
2
5
ln(1/𝛿) ·

_∑︁
𝑖=0

𝐻𝑖∑︁
ℎ′=𝐻_+1

2
ℎ′ · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′) , (47)

where inequality (45) follows from

ℎ′∑︁
ℎ=𝐻_+1

2
2ℎ · 8 · 3ℎ′−ℎ = 8 · 3ℎ′ ·

ℎ′∑︁
ℎ=𝐻_+1

(
4

3

)ℎ
≤ 8 · 3ℎ′ · 3 ·

(
4

3

)ℎ′+1
= 8 · 4ℎ′+1 = 2

2ℎ′+5 ,

11
A memory word can store any universe item or an integer with𝑂 (log(𝑛 + |U |)) bits. We express all the space bounds in

memory words.
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inequality (46) uses that 𝑞𝑖
ℎ′ = 0 and 𝑧𝑖

ℎ′ = 0 for ℎ′ > 𝐻𝑖 by Lemma 6.8 and that 2
𝐻𝑖 ≤ 2

3 · R(𝑦)/𝐵𝑖
by (34), and inequality (47) follows from the bound on 𝑘𝑖 · 𝐵𝑖 in (32).

By Lemma 6.11,

∑_
𝑖=0

∑𝐻𝑖

ℎ′=𝐻_+1
2
ℎ′ · (𝑞𝑖

ℎ′ · 𝐵𝑖 + 𝑧𝑖
ℎ′) ≤ 4 R(𝑦), which implies our final variance

bound for levels ℎ ≥ 𝐻_+1: ∑︁
ℎ≥𝐻_+1

2
2ℎ · Var[Errℎ (𝑦)] ≤

Y2 · R(𝑦)2
8 ln(1/𝛿) .

Let Err≥𝐻_+1 (𝑦) be the error in the estimate of 𝑦 from compactions at levels ℎ ≥ 𝐻_+1. Plugging the

variance bound into the tail bound for sub-Gaussian variables (Fact 4.3) we conclude that

Pr

[
| Err≥𝐻_+1 (𝑦) | > Y R(𝑦)/2

]
< 2 exp

(
− Y2 · R(𝑦)2
8 · Y2 · R(𝑦)2/(8 ln(1/𝛿))

)
= 2 exp

(
− ln

1

𝛿

)
= 2𝛿 .

Next, we bound the error from compactions on levels below 𝐻_+1, denoted Err<𝐻_+1 (𝑦). The
variance of this error is

𝐻_+1−1∑︁
ℎ=0

2
2ℎ · Var[Errℎ (𝑦)] ≤

𝐻_+1−1∑︁
ℎ=0

2
2ℎ · Rℎ (𝑦)

≤
𝐻_+1−1∑︁
ℎ=0

2
2ℎ · 2−ℎ+2 · R(𝑦) (48)

≤ 2
𝐻_+1+2 · R(𝑦) ≤ 2

6 · R(𝑦)
2

𝐵_+1
≤ Y2 · R(𝑦)2

8 ln(1/𝛿)

where (48) uses Lemma 6.7 and the last two steps use (34) and (33), respectively. Using Fact 4.3 as

above we get that Pr

[
| Err<𝐻_+1 (𝑦) | > Y R(𝑦)/2

]
< 2𝛿 . Rescaling 𝛿 , this completes the calculation

of the failure probability.

Lastly, we bound the size of the final sketch 𝑆 . Let𝐻 be the index of the highest level in 𝑆 . Observe

that 𝐻 ≤ ⌈log
2
(𝑛/𝐵0)⌉. Indeed, since each item at level ℎ = ⌈log

2
(𝑛/𝐵0)⌉ has weight 2ℎ , there are

fewer than 𝐵0 items inserted to level ℎ and consequently, level 𝐻 is never compacted (here, we also

use that 𝐵0 ≤ 𝐵1 ≤ · · · ≤ 𝐵ℓ ). Hence, there are 𝑂 (log(Y𝑛)) levels in 𝑆 as 𝐵0 ≥ 1/Y. Each level has

capacity 𝐵ℓ = 2 · 𝑘ℓ · ⌈log2 (𝑁ℓ/𝑘ℓ )⌉, where 𝑁ℓ = min{𝑁ℓ , 𝑁_}, so the total memory requirement of

𝑆 is

𝑂

(
log(Y𝑛) · 𝑘ℓ · log

(
𝑁ℓ

𝑘ℓ

))
= 𝑂

©«log(Y𝑛) ·
ˆ𝑘√︃

log(𝑁ℓ/ ˆ𝑘)
· log

(
𝑁ℓ

𝑘ℓ

)ª®®¬
= 𝑂

©«log(Y𝑛) · ˆ𝑘 ·

√√√
log

(
𝑁ℓ

𝑘ℓ

)ª®¬
= 𝑂

(
Y−1 · log1.5 (Y𝑛) ·

√︂
log

1

𝛿

)
,

where we use that log
2
(𝑁ℓ/𝑘ℓ ) = 𝑂 (log(𝑁ℓ/ ˆ𝑘)) = 𝑂 (log(Y𝑁ℓ )) = 𝑂 (log(Y𝑛)) (as 𝑘ℓ ≥

ˆ𝑘/
√︃
log

2
(𝑁ℓ/ ˆ𝑘), ˆ𝑘 ≥ 1/Y, and 𝑁ℓ ≤ 𝑛2). □
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7 ANALYSIS WITH EXTREMELY SMALL FAILURE PROBABILITY
In this section, we provide a somewhat different analysis of our algorithm, which yields an improved

space bound for extremely small values of 𝛿 , at the cost of a worse dependency on 𝑛. In particular,

we show a space upper bound of 𝑂 (Y−1 · log2 (Y𝑛) · log log(1/𝛿)) for any 𝛿 > 0. For simplicity,

we only give the subsequent analysis in the streaming setting, although we conjecture that an

appropriately adjusted analysis in Section 6 would yield the same bound under arbitrary merge

operations. We further assume foreknowledge of (a polynomial bound on) 𝑛, the stream length;

this assumption can be removed in a similar fashion to Section 5. As a byproduct, we show at the

end of this section that this result implies a deterministic space upper bound of 𝑂 (Y−1 · log3 (Y𝑛))
for answering rank queries with multiplicative error Y, thus matching the state-of-the-art result of

Zhang and Wang [27].

To this end, we use Algorithm 2 with a different setting of 𝑘 , namely,

𝑘 = 2
4 ·

⌈
1

Y
· log

2
ln

1

𝛿

⌉
. (49)

We remark that, unlike in Section 4, the value of 𝑘 does not depend on 𝑛 directly (only possibly

indirectly if 𝛿 or Y is set based on 𝑛). Note that the analysis of a single relative-compactor in

Section 3 still applies and in particular, there are at most Rℎ (𝑦)/𝑘 important steps at each level ℎ

by Lemma 3.1.

We enhance the analysis for a fixed item 𝑦 of Section 4. The crucial trick to improve the de-

pendency on 𝛿 from

√︁
ln(1/𝛿) to log

2
ln(1/𝛿) is to analyze the sketch using Chernoff bounds only

below a certain level 𝐻 ′(𝑦) and provide deterministic bounds for levels 𝐻 ′(𝑦) ≤ ℎ < 𝐻 (𝑦). This
idea was first used by Karnin et al. [15] to get their optimal result for the additive error guarantee.

We define

𝐻 ′(𝑦) = max

(
0, 𝐻 (𝑦) − ⌈log

2
ln(1/𝛿)⌉

)
;

here 𝐻 (𝑦) is defined as in Section 4 as the minimal ℎ for which 2
2−ℎ

R(𝑦) ≤ 𝐵/2. Next, we provide
modified rank bounds.

Lemma 7.1. Assuming 𝐻 (𝑦) > 0, for any ℎ < 𝐻 (𝑦) it holds that Rℎ (𝑦) ≤ 2
−ℎ+2

R(𝑦) with
probability at least 1 − 𝛿 .

Proof. We first show by induction on 0 ≤ ℎ < 𝐻 ′(𝑦) that Rℎ (𝑦) ≤ 2
−ℎ+1

R(𝑦) with probability

at least 1 − 𝛿 · 2ℎ−𝐻 ′ (𝑦)
, conditioned on Rℓ (𝑦) ≤ 2

−ℓ+1
R(𝑦) for any ℓ < ℎ. This part of the proof is

similar to that of Lemma 4.4. The base case holds by R0 (𝑦) = R(𝑦).
Consider 0 < ℎ < 𝐻 ′(𝑦). As in Lemma 4.4,

Pr[Rℎ (𝑦) > 2
−ℎ+1

R(𝑦)] ≤ Pr[𝑍ℎ > 2
−ℎ

R(𝑦)],
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where 𝑍ℎ is a zero-mean sub-Gaussian variable with variance at most Var[𝑍ℎ] ≤ 2
−ℎ+1 · R(𝑦)/𝑘 .

We apply the tail bound for sub-Gaussian variables (Fact 4.3) on 𝑍ℎ to get

Pr[𝑍ℎ > 2
−ℎ

R(𝑦)] < exp

(
− 2

−2ℎ · R(𝑦)2

2 · (2−ℎ+1 · R(𝑦)/𝑘)

)
= exp

(
−2−ℎ−2 · R(𝑦) · 𝑘

)
= exp

(
−2−ℎ+𝐻 ′ (𝑦)−6 · 2𝐻 (𝑦)−𝐻 ′ (𝑦) · 24−𝐻 (𝑦)

R(𝑦) · 𝑘
)

≤ exp

(
−2−ℎ+𝐻 ′ (𝑦)−6 · 2𝐻 (𝑦)−𝐻 ′ (𝑦) · 𝐵 · 𝑘

)
≤ exp

(
−2−ℎ+𝐻 ′ (𝑦) · ln 1

𝛿

)
= 𝛿2

−𝐻 ′ (𝑦)+ℎ ≤ 𝛿 · 2−𝐻 ′ (𝑦)+ℎ ,

where the second inequality uses 2
4−𝐻 (𝑦)

R(𝑦) ≥ 𝐵 (by the definition of 𝐻 (𝑦)), the third inequality

follows from 2
𝐻 (𝑦)−𝐻 ′ (𝑦) ≥ ln

1

𝛿
and 𝐵 · 𝑘 ≥ 𝑘2 ≥ 2

6
, and the last inequality uses 𝛿 ≤ 0.5. This

concludes the proof by induction. Taking the union bound over levels ℎ < 𝐻 ′(𝑦), it holds that
Rℎ (𝑦) ≤ 2

−ℎ+1
R(𝑦) for any ℎ < 𝐻 ′(𝑦) with probability at least 1 − 𝛿 .

Finally, consider level ℎ ≥ 𝐻 ′(𝑦) and condition on R𝐻 ′ (𝑦)−1 (𝑦) ≤ 2
−𝐻 ′ (𝑦)+2

R(𝑦). (In the case

𝐻 ′(𝑦) = 0, we have R0 (𝑦) = R(𝑦).) Note that for any ℓ > 0, it holds that Rℓ (𝑦) ≤ 1

2
· (1+1/𝑘) ·Rℓ−1 (𝑦).

Indeed, Rℓ (𝑦) ≤ 1

2
· (Rℓ−1 (𝑦) + Binomial(𝑚ℓ−1)) (see Equation 9) and Binomial(𝑚ℓ−1) ≤ 𝑚ℓ−1 ≤

Rℓ−1 (𝑦)/𝑘 by Lemma 3.1. That is, regardless of the outcome of the random choices, we always

obtain this weaker bound on the rank of an item.

By using this deterministic bound for levels 𝐻 ′(𝑦) ≤ ℓ ≤ ℎ, we get

Rℎ (𝑦) ≤ 2
−ℎ+𝐻 ′ (𝑦)−1 ·

(
1 + 1

𝑘

)ℎ−𝐻 ′ (𝑦)+1
· R𝐻 ′ (𝑦)−1 (𝑦)

≤ 2
−ℎ+𝐻 ′ (𝑦)−1 ·

(
1 + 1

𝑘

)
0.5·𝑘

· 2−𝐻 ′ (𝑦)+2 · R(𝑦) ≤ 2
−ℎ+2 · R(𝑦) ,

where in the second inequality, we use ℎ −𝐻 ′(𝑦) + 1 ≤ 0.5 · 𝑘 (which follows from ℎ < 𝐻 (𝑦) and
𝐻 (𝑦) −𝐻 ′(𝑦) ≤ log

2
ln

1

𝛿
≤ 0.5 · 𝑘) together with the bound on R𝐻 ′ (𝑦)−1 (𝑦), and the last inequality

uses the fact that (1 + 1/𝑘)0.5·𝑘 ≤
√
𝑒 < 2. □

We now state the main result of this section, which proves Theorem 2 assuming an advance

knowledge of (a polynomial upper bound on) the stream length 𝑛. This assumption can be removed

using the technique described in Section 5.

Theorem 4. Assume that (a polynomial upper bound on) the stream length 𝑛 is known in advance.
For any parameters 0 < 𝛿 ≤ 0.5 and 0 < Y ≤ 1, let 𝑘 be set as in (49). Then, for any fixed item
𝑦, Algorithm 2 with parameters 𝑘 and 𝑛 computes an estimate R̂(𝑦) of R(𝑦) with error Err(𝑦) =

R̂(𝑦) − R(𝑦) such that
Pr [| Err(𝑦) | > Y R(𝑦)] < 3𝛿 .

The overall memory used by the algorithm is 𝑂
(
Y−1 · log2 (Y𝑛) · log log(1/𝛿)

)
.

Proof. We condition on the bounds in Lemma 7.1, which together hold with probability at least

1 − 𝛿 . We split Err(𝑦), the error of the rank estimate for 𝑦, into two parts:

Err
′(𝑦) =

𝐻 ′ (𝑦)−1∑︁
ℎ=0

2
ℎ · Errℎ (𝑦) and Err

′′(𝑦) =
𝐻∑︁

ℎ=𝐻 ′ (𝑦)
2
ℎ · Errℎ (𝑦) .
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Note that Err(𝑦) = Err
′(𝑦) + Err

′′(𝑦); we bound both these parts by
1

2
Y R(𝑦) w.h.p., starting with

Err
′(𝑦). If𝐻 ′(𝑦) = 0, then clearly Err

′(𝑦) = 0. Otherwise, we analyze the variance of the zero-mean

sub-Gaussian variable Err
′(𝑦)

Var[Err′(𝑦)] =
𝐻 ′ (𝑦)−1∑︁

ℎ=0

2
2ℎ · Var[Errℎ (𝑦)]

≤
𝐻 ′ (𝑦)−1∑︁

ℎ=0

2
2ℎ · Rℎ (𝑦)

𝑘

≤
𝐻 ′ (𝑦)−1∑︁

ℎ=0

2
2ℎ · 2

−ℎ+2
R(𝑦)

𝑘

≤ 2
𝐻 ′ (𝑦)+2 · R(𝑦)

𝑘
= 2

𝐻 ′ (𝑦)−𝐻 (𝑦)+2 · 2𝐻 (𝑦) · R(𝑦)
𝑘

≤ 2
𝐻 ′ (𝑦)−𝐻 (𝑦)+6 · R(𝑦)

2

𝑘 · 𝐵
where the first inequality is by Lemma 3.1, the second by Lemma 7.1, and the last inequality uses

2
𝐻 (𝑦) ≤ 2

4 · R(𝑦)/𝐵, which follows from the definition of 𝐻 (𝑦).
We again apply Fact 4.3 to obtain

Pr

[
| Err′(𝑦) | > Y R(𝑦)

2

]
< 2 exp

(
− Y2 · R(𝑦)2

4 · 2 · 2𝐻 ′ (𝑦)−𝐻 (𝑦)+6 · R(𝑦)2/(𝑘 · 𝐵)

)
= 2 exp

(
−Y2 · 𝑘 · 𝐵 · 2−𝐻 ′ (𝑦)+𝐻 (𝑦)−9

)
≤ 2 exp

(
−2−𝐻 ′ (𝑦)+𝐻 (𝑦)

)
= 2 exp

(
− ln

1

𝛿

)
= 2𝛿 ,

where the second inequality uses 𝑘 · 𝐵 ≥ 2 · 𝑘2 ≥ Y−2 · 29.
Finally, we use deterministic bounds to analyze Err

′′(𝑦). Note that

R𝐻 (𝑦) (𝑦) ≤ 2
−𝐻 (𝑦)+2

R(𝑦) ≤ 𝐵/2,
where the first inequality holds because we have conditioned on the bounds of Lemma 7.1 holding,

and the second inequality holds by the definition of 𝐻 (𝑦). It follows that there is no important step

at level 𝐻 (𝑦), and hence no error introduced at any level ℎ ≥ 𝐻 (𝑦), i.e., Errℎ (𝑦) = 0 for ℎ ≥ 𝐻 (𝑦).
We thus have

Err
′′(𝑦) =

𝐻 (𝑦)−1∑︁
ℎ=𝐻 ′ (𝑦)

2
ℎ · Errℎ (𝑦)

≤
𝐻 (𝑦)−1∑︁
ℎ=𝐻 ′ (𝑦)

2
ℎ · Rℎ (𝑦)

𝑘
≤

𝐻 (𝑦)−1∑︁
ℎ=𝐻 ′ (𝑦)

2
ℎ · 2

−ℎ+2
R(𝑦)

𝑘
≤

𝐻 (𝑦)−1∑︁
ℎ=𝐻 ′ (𝑦)

Y R(𝑦)
2 · ⌈log

2
ln

1

𝛿
⌉
≤ Y R(𝑦)

2

,

where the first inequality is by Lemma 3.1, the second by Lemma 7.1, the third inequality follows

from the definition of 𝑘 in (49), and the last step uses that the sum is over𝐻 (𝑦)−𝐻 ′(𝑦) ≤ ⌈log
2
ln

1

𝛿
⌉

levels. This concludes the analysis of Err(𝑦) and the calculation of the failure probability.

Regarding the space bound, there are at most𝐻 ≤ ⌈log
2
(𝑛/𝐵)⌉+1 ≤ log

2
(Y𝑛) relative-compactors

by Observation 4.7, and each requires 𝐵 = 2 · 𝑘 · ⌈log
2
(𝑛/𝑘)⌉ = 𝑂

(
Y−1 · log log(1/𝛿) · log(Y𝑛)

)
memory words. □

The proof of Theorem 4 implies a deterministic sketch of size 𝑂 (Y−1 · log3 (Y𝑛)), which matches

the state-of-the-art result by Zhang and Wang [27]. Indeed, when log
2
ln(1/𝛿) ≥ log

2
(Y𝑛) ≥ 𝐻
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(i.e., 𝛿 < exp(−Y𝑛)), we have 𝐻 ′(𝑦) = 0, and in this case, inspecting the proofs of Lemma 7.1 and

Theorem 4 yields that the entire analysis holds with probability 1. In more detail, when 𝐻 ′(𝑦) = 0,

the bounds in Lemma 7.1 hold with probability 1, and the quantity Err
′(𝑦) in the proof of Theorem 4

is deterministically 0, while the bound on Err
′′(𝑦) in the proof of Theorem 4 holds with probability 1

as well. This is sufficient to conclude that the error guarantee holds for any choice of the algorithm’s

internal randomness. The resulting algorithm is reminiscent of deterministic algorithms for the

uniform quantiles problem [17].

8 DISCUSSION AND OPEN PROBLEMS
For constant failure probability 𝛿 , we have shown an 𝑂 (Y−1 · log1.5 (Y𝑛)) space upper bound for

relative error quantile approximation over data streams. Our algorithm is provably more space-

efficient than any deterministic comparison-based algorithm, and is within an �̃�

(√︁
log(Y𝑛)

)
factor of

the known lower bound for randomized algorithms (even non-streaming algorithms, see Appendix

A). Moreover, the sketch output by our algorithm is fully mergeable, with the same accuracy-space

trade-off as in the streaming setting, rendering it suitable for a parallel or distributed environment.

The main open question is to close the aforementioned �̃� (
√︁
log(Y𝑛))-factor gap.

Acknowledgments. The authors wish to thank anonymous reviewers for many helpful suggestions.

The research is performed in close collaborationwith DataSketches https://datasketches.apache.org/,

the Apache open source project for streaming data analytics. G. Cormode and P. Veselý were

supported by European Research Council grant ERC-2014-CoG 647557. P. Veselý was also partially

supported by the project 19-27871X of GA ČR and by Center for Foundations of Modern Computer

Science (Charles University project UNCE/SCI/004). J. Thaler was supported by NSF SPX award

CCF-1918989, and NSF CAREER award CCF-1845125.

REFERENCES
[1] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei Wei, and Ke Yi. Mergeable summaries.

ACM Transactions on Database Systems (TODS), 38(4):26, 2013.
[2] Rakesh Agrawal and Arun Swami. A one-pass space-efficient algorithm for finding quantiles. In Proc. 7th Intl. Conf.

Management of Data (COMAD-95), Pune, India, 1995.
[3] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding windows. In Proceedings of

the 23rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS ’04, pages 286–296. ACM,

2004.

[4] Omri Ben-Eliezer, Rajesh Jayaram, David P.Woodruff, and Eylon Yogev. A framework for adversarially robust streaming

algorithms. J. ACM, 69(2):17:1–17:33, 2022.

[5] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Effective computation of biased quantiles

over data streams. In Proceedings of the 21st International Conference on Data Engineering, ICDE ’05, pages 20–31,

Washington, DC, USA, 2005. IEEE Computer Society.

[6] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. Space- and time-efficient deterministic

algorithms for biased quantiles over data streams. In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, PODS ’06, pages 263–272. ACM, 2006.

[7] Graham Cormode, Abhinav Mishra, Joseph Ross, and Pavel Veselý. Theory meets practice at the median: A worst case

comparison of relative error quantile algorithms. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, KDD ’21, page 2722–2731, New York, NY, USA, 2021. Association for Computing Machinery.

[8] Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based quantile summaries. In Proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS’20, page 81–93, New York,

NY, USA, 2020. ACM.

[9] Ted Dunning. The t-digest: Efficient estimates of distributions. Software Impacts, 7:100049, 2021.
[10] Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles using t-digests. CoRR, abs/1902.04023, 2019.
[11] David Felber and Rafail Ostrovsky. A randomized online quantile summary in O(1/epsilon * log(1/epsilon)) words. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015),

J. ACM, Vol. V, No. N, Article A. Publication date: January 202X.

https://datasketches.apache.org/


Relative Error StreamingQuantiles A:47

volume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages 775–785, Dagstuhl, Germany, 2015. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] Sumit Ganguly. A nearly optimal and deterministic summary structure for update data streams. arXiv preprint
cs/0701020, 2007.

[13] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile summaries. In ACM SIGMOD
Record, volume 30, pages 58–66. ACM, 2001.

[14] Anupam Gupta and Francis X. Zane. Counting inversions in lists. In Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’03, pages 253–254, Philadelphia, PA, USA, 2003. Society for Industrial and

Applied Mathematics.

[15] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in streams. In Proceedings of the 57th
Annual Symposium on Foundations of Computer Science (FOCS ’16), pages 71–78. IEEE, 2016.

[16] Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams: Experimental comparisons, new analyses,

and further improvements. The VLDB Journal, 25(4):449–472, August 2016.
[17] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate medians and other quantiles in one

pass and with limited memory. In ACM SIGMOD Record, volume 27, pages 426–435. ACM, 1998.

[18] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Random sampling techniques for space efficient

online computation of order statistics of large datasets. In ACM SIGMOD Record, volume 28, pages 251–262. ACM,

1999.

[19] Charles Masson, Jee E. Rim, and Homin K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error

guarantees. PVLDB, 12(12):2195–2205, 2019.
[20] J Ian Munro and Michael S Paterson. Selection and sorting with limited storage. Theoretical computer science,

12(3):315–323, 1980.

[21] Ira Pohl. A minimum storage algorithm for computing the median. IBM TJ Watson Research Center, 1969.

[22] Viswanath Poosala, Venkatesh Ganti, and Yannis E. Ioannidis. Approximate query answering using histograms. IEEE
Data Eng. Bull., 22(4):5–14, 1999.

[23] Lee Rhodes, Kevin Lang, Jon Malkin, Alexander Saydakov, Edo Liberty, and Justin Thaler. DataSketches: A library of

stochastic streaming algorithms. Open source software: https://datasketches.apache.org/, 2013.

[24] Philippe Rigollet. 18.s997: High dimensional statistics: Lecture notes. https://ocw.mit.edu/courses/18-s997-high-

dimensional-statistics-spring-2015/pages/lecture-notes/, 2015.

[25] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians and beyond: new

aggregation techniques for sensor networks. In Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 239–249. ACM, 2004.

[26] Gil Tene. How NOT to measure latency. https://www.youtube.com/watch?v=lJ8ydIuPFeU, 2015.

[27] Qi Zhang and Wei Wang. An efficient algorithm for approximate biased quantile computation in data streams. In

Proceedings of the 16th ACM conference on Conference on information and knowledge management, pages 1023–1026,
2007.

[28] Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. Space-efficient relative error order sketch over data

streams. In Proceedings of the 22nd International Conference on Data Engineering (ICDE’06), pages 51–51. IEEE, 2006.

J. ACM, Vol. V, No. N, Article A. Publication date: January 202X.

https://datasketches.apache.org/
https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/pages/lecture-notes/
https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/pages/lecture-notes/
https://www.youtube.com/watch?v=lJ8ydIuPFeU


A:48 Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý

A A LOWER BOUND FOR NON-COMPARISON BASED ALGORITHMS
Cormode and Veselý [8, Theorem 6.5] proved an Ω(Y−1 · log2 (Y𝑛)) lower bound on the number of

items stored by any deterministic comparison-based streaming algorithm for the relative-error

quantiles problem. Below, we provide a lower bound which also applies to offline, non-comparison-

based randomized algorithms, but at the (necessary) cost of losing a log(Y𝑛) factor in the resulting

space bound. This result appears not to have been explicitly stated in the literature, though it follows

from an argument similar to [5, Theorem 2]. We provide details in this appendix for completeness.

Theorem 5. For any randomized algorithm that processes a data stream of items from universe
U of size |U| ≥ Ω(Y−1 · log(Y𝑛)) and outputs a sketch that solves the all-quantiles approxima-
tion problem for multiplicative error Y with probability at least 2/3 requires the sketch to have size
Ω

(
Y−1 · log(Y𝑛) · log(Y |U|)

)
bits of space.

Proof. We show that any multiplicative-error sketch for all-quantiles approximation can be

used to losslessly encode an arbitrary subset 𝑆 of the data universe U of size |𝑆 | = Θ
(
Y−1 log(Y𝑛)

)
.

This requires log
2

( |U |
|𝑆 |

)
= Θ

(
log(( |U|/|𝑆 |) |𝑆 |)

)
= Θ (|𝑆 | log (Y |U|)) bits of space. The theorem

follows.

Let ℓ = 1/(8Y) and 𝑘 = log
2
(Y𝑛); for simplicity, we assume that both ℓ and 𝑘 are integers. Let

𝑆 be a subset of U of size 𝑠 := ℓ · 𝑘 . We will construct a stream 𝜎 of length less than ℓ · 2𝑘 ≤ 𝑛

such that a sketch solving the all-quantiles approximation problem for 𝜎 enables reconstruction of

𝑆 . To this end, let {𝑦1, . . . , 𝑦𝑠 } denote the elements of 𝑆 in increasing order. Consider the stream

𝜎 where items 𝑦1, . . . , 𝑦ℓ each appear once, items 𝑦ℓ+1, . . . , 𝑦2ℓ appear twice, and in general items

𝑦𝑖ℓ+1, . . . , 𝑦 (𝑖+1)ℓ appear 2
𝑖
times, for 𝑖 = 0, . . . , 𝑘 − 1. Let us refer to all universe items in the interval

[𝑦𝑖ℓ+1, 𝑦 (𝑖+1)ℓ ] as “phase-𝑖” items.

The construction of 𝜎 means that the multiplicative error Y in the estimated rank of any phase-𝑖

item is at most 2
𝑖+1/8 < 2

𝑖−1
. This means that for any phase 𝑖 ≥ 0 and integer 𝑗 ∈ [1, ℓ], one can

identify item 𝑦𝑖ℓ+𝑗 by finding the smallest universe item whose estimated rank is strictly greater

than (2𝑖 − 1) · ℓ + 2
𝑖 · 𝑗 − 2

𝑖−1
. Here, (2𝑖 − 1) · ℓ is the number of stream updates corresponding to

items in phases 0, . . . , 𝑖 − 1, while 2
𝑖−1

is an upper bound on the error of the estimated rank of any

phase-𝑖 item. Hence, from any sketch solving the all-quantiles approximation problem for 𝜎 one

can obtain the subset 𝑆 , which concludes the lower bound. □

Theorem 5 is tight up to constant factors as an optimal summary consisting of 𝑂 (Y−1 · log(Y𝑛))
items can be constructed offline. For ℓ = Y−1, this summary stores all items of rank 1, . . . , 2ℓ

appearing in the stream and assigns them weight one, stores every other item of rank between

2ℓ + 1 and 4ℓ and assigns them weight 2, stores every fourth item of rank between 4ℓ + 1 and 8ℓ and

assigns them weight 4, and so forth. This yields a weighted coreset 𝑆 for the relative-error quantiles

approximation, consisting of |𝑆 | = Θ (ℓ · log(Y𝑛)) many items. Such a set 𝑆 can be represented with

log
2

( |U |
|𝑆 |

)
= Θ

(
Y−1 · log(Y𝑛) · log(Y |U|)

)
many bits.

B PROOF OF COROLLARY 1
Here we prove Corollary 1, restated for the reader’s convenience.

Corollary 1 (All-Quantiles Approximation). The error bound from Theorem 1 holds for all
𝑦 ∈ U simultaneously with probability 1 − 𝛿 when the size of the sketch in memory words is

𝑂
©«Y−1 · log1.5 (Y𝑛) ·

√︄
log

(
log(Y𝑛)

Y𝛿

)ª®¬ .
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Proof. Let 𝑆∗ be the offline optimal summary of the stream with multiplicative error Y/3, i.e., a
subset of items in the stream such that for any item𝑥 , there is𝑦 ∈ 𝑆∗ with | R(𝑦)−R(𝑥) | ≤ (Y/3)·R(𝑥).
Here, 𝑦 is simply the closest item to 𝑥 in the total order that is an element of 𝑆∗. Observe that 𝑆∗ has
𝑂 (Y−1 · log(Y𝑛)) items; see the remark below Theorem 5 in Appendix A for a construction of 𝑆∗.

Thus, if our sketch with parameter Y ′ = Y/3 is able to compute for any 𝑦 ∈ 𝑆∗ a rank estimate

R̂(𝑦) such that |R̂(𝑦) − R(𝑦) | ≤ (Y/3) · R(𝑦), then we can approximate R(𝑥) by R̂(𝑦) using 𝑦 ∈ 𝑆∗

with | R(𝑦) − R(𝑥) | ≤ (Y/3) · R(𝑥) and the multiplicative guarantee for 𝑥 follows from

|R̂(𝑦) − R(𝑥) | ≤ |R̂(𝑦) − R(𝑦) | + | R(𝑦) − R(𝑥) |

≤ Y

3

· R(𝑦) + Y

3

· R(𝑥)

≤
( Y
3

· (1 + Y

3

) + Y

3

)
· R(𝑥)

≤ Y · R(𝑥) .
It remains to ensure that our algorithm provides a good-enough rank estimate for any 𝑦 ∈ 𝑆∗.

We apply Theorem 1 with error parameter Y ′ = Y/3 and with failure probability set to 𝛿 ′ = 𝛿/|𝑆∗ | =
Θ (𝛿 · Y/log(Y𝑛)). By the union bound, with probability at least 1 − 𝛿 , the resulting sketch satisfies

the (1± Y/3)-multiplicative error guarantee for any item in 𝑆∗. In this event, the previous paragraph

implies that the (1± Y)-multiplicative guarantee holds for all 𝑥 ∈ U. The space bound follows from

Theorem 1 with Y ′ and 𝛿 ′ as above. □
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