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ABSTRACT
We study the communication complexity of evaluating functions
when the input data is randomly allocated (according to some known
distribution) amongst two or more players, possibly with informa-
tion overlap. This naturally extends previously studied variable par-
tition models such as the best-case and worst-case partition models
[32, 29]. We aim to understand whether the hardness of a commu-
nication problem holds for almost every allocation of the input, as
opposed to holding for perhaps just a few atypical partitions.

A key application is to the heavily studied data stream model.
There is a strong connection between our communication lower
bounds and lower bounds in the data stream model that are “ro-
bust” to the ordering of the data. That is, we prove lower bounds
for when the order of the items in the stream is chosen not adver-
sarially but rather uniformly (or near-uniformly) from the set of all
permuations. This random-order data stream model has attracted
recent interest, since lower bounds here give stronger evidence for
the inherent hardness of streaming problems.

Our results include the first random-partition communication lower
bounds for problems including multi-party set disjointness and gap-
Hamming-distance. Both are tight. We also extend and improve
previous results [19, 7] for a form of pointer jumping that is relevant
to the problem of selection (in particular, median finding). Collec-
tively, these results yield lower bounds for a variety of problems
in the random-order data stream model, including estimating the
number of distinct elements, approximating frequency moments,
and quantile estimation.
Categories and Subject Descriptors:
F.2.2[Theory of Computation]: ANALYSIS OF ALGORITHMS
AND PROBLEM COMPLEXITY
General Terms: Theory
Keywords: Communication Complexity, Lower Bounds, Data Streams
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1. INTRODUCTION
Since its introduction in 1979 by Yao, communication complex-

ity [37, 28] has proven to be a powerful technique for proving lower
bounds in a variety of settings, including the cell-probe and data
stream models, circuit and decision tree complexity and VLSI de-
sign. The majority of results in this area involve a fixed-partition
model of communication complexity, where the goal is for two or
more players to evaluate a function of an input that has been par-
titioned between them in a particular way, e.g., computing f (x, y)
when one player holds x and the other has y. Many functions can
be shown to require a large amount of communication to evaluate
when the input is partitioned between the players in this manner.
These can imply lower bounds for various models of computation,
via arguments that such partitions necessarily arise in the course of
the computation.

To a lesser extent, variable-partition models, such as best-case
and worst-case partition, have also been studied: see, e.g., [2, 29,
32] and [28, Chap. 7] for a survey. For example, understanding
the best-case partition complexity, where the data is partitioned in
the most advantageous manner (subject to constraints such as each
player receiving an equal amount of the input), is important for un-
derstanding various problems in VSLI design [2]. Another kind
of worst-case partition arises when the corresponding bits of two
equal-length input strings are written on opposite sides of opaque
cards (the “two-sided card model” [11, 33]). However, a natural
question that, to the best of our knowledge, has not been explored
to date, is what happens when the input is partitioned amongst the
players at random. In other words, does evaluating a given func-
tion require significant communication for only a few pathological
partitions or does such a requirement apply to an overwhelming
fraction of all partitions?

In this paper we initiate a study of communication complexity
under random partitions of the input. In fact, we consider more
general allocations of the input to the players, possibly allowing in-
formation overlap, where bits of data may be known to more than
one player. A particularly interesting case is when each token of
data is given to a player chosen uniformly at random; this pro-
vides a convenient way to count “bad” partitions. We consider a
communication lower bound to be robust if it applies to all but a
small fraction of possible partitions. One can think of our work as
a form of average-case analysis. However, it is important to note
that our work stands in contrast to the usual notion of distributional
complexity: rather than considering a random input, we consider
worst-case inputs allocated randomly amongst the players.

Data Stream Computation: A strong motivation for our study is
the goal of proving robust lower bounds for problems in the data
stream model. The data stream model has enjoyed significant at-
tention in recent years owing to some influential work in the late



1990s [3, 22, 13]. Study of this model has thrived both because
of the rich theoretical questions it raises and its applicability to
numerous real world applications such as network monitoring and
query planning in databases. Consequently, it is important to un-
derstand the complexity of problems not just in worst-case but also
in “average-case” settings. To this end we prove lower bounds in
the setting that the ordering of tokens in the data stream is chosen
not adversarially but randomly, from the set of all permutations.
Arguably, such a lower bound provides a stronger indication that a
problem cannot be solved efficiently in the data stream model than
a “fragile” lower bound that might depend on a clever adversarial
ordering. (For further, more detailed, justification see the recent
papers [17, 7]).

Random-order data streams were considered by Munro and Pa-
terson [31] in one of the first studies of the data stream model. In
recent years there has a been a resurgence of interest in this model
for a variety of reasons [7, 10, 17, 21, 19, 20]. Uniform or near-
uniform orderings can arise in a number of ways, such as when
processing a stream of samples that are drawn independently from
a non-time-varying distribution. For problems such as quantile es-
timation and finding frequent items it has been shown that there is
a considerable difference between processing random-order stream
and adversarial streams. In particular, streaming algorithms to find
the median using polylog space require exponentially fewer passes
if the stream is ordered randomly [17] and this is tight [19, 7].

In this paper, we use robust lower bounds on communication
complexity in order to deduce robust data stream lower bounds.
Once the communication bounds have been shown, the data stream
bounds follow by simple reductions to appropriate instances of com-
munication. Where such bounds were known before, our method
yields much cleaner proofs and tighter bounds. It also yields a num-
ber of new bounds for random-order data streams.
Our Results and Overview: We begin in Section 2 with a formal
definition of our model and introduce some techniques and termi-
nology. We prove the following results:

• Multi-Party Set Disjointess: We consider the problem of t-
party set disjointness where each entry of the relevant t ×

n matrix is given to one of p players chosen uniformly at
random. If p = �(t2) then we show that any randomized
protocol requires �(n/t) communication. See Section 3.

• Pointer Jumping and Selection: We consider a natural vari-
ant of tree pointer jumping, called weight-based tree pointer
jumping, that is related to the problem of selection. In this
problem, instead of an explicit pointer at each node, we have
a binary string at each node whose weight encodes the pointer.
We consider t-ary trees of depth p + 1 and show that if the
bits of these strings are distributed uniformly between multi-
ple players, we require about �(n(2+ε)−p

) bits of communi-
cation for a p-round protocol. See Section 4.

• Hamming Distance and Index: For x, y ∈ {0, 1}
n , let 1(x, y)

:= {i ∈ [n] : xi 6= yi } denote the Hamming distance be-
tween x and y. We show that, for some constant c, any one-
way protocol that can distinguish between the cases 1(x, y) ≤

n/2−c
√

n and 1(x, y) ≥ n/2+c
√

n requires �(n) commu-
nication if the 2n input bits are split uniformly between two
players. We also show that a one-way protocol for the index
problem — INDEX(x, j) := x j , with x ∈ {0, 1}

n , j ∈ [n]
— requires �(n) communication if the n +1 tokens ( j being
a single token) are split uniformly between two players. See
Section 5.

The above communication lower bounds lead to a wide variety of

lower bounds for data stream problems in the random-order model.
In Section 6, we deduce such bounds, many of which are tight, for
approximating frequency moments, the number of distinct values,
entropy, information divergences, selection, and graph connectiv-
ity. Two of these bounds deserve particular emphasis. For the kth
frequency moment, we obtain a robust lower bound of �(n1−3/k),
which comes close to the optimal �(n1−2/k) bound under adver-
sarial ordering. For the problem of median finding, our framework
greatly simplifies the proof of a recent �(log log n) lower bound [7]
on the number of passes required to achieve polylogarithmic space.
Further, our pass-space tradeoff for this problem greatly improves
the results of [7]: for instance, with two passes, we obtain a space
lower bound of �(n1/10) as opposed to their �(n3/80).

2. NOTATION AND PRELIMINARIES
We summarize some notation that we need repeatedly. Define

the weight |x | of a Boolean vector x ∈ {0, 1}
N to be |{i : xi = 1}|.

Let ei denote the vector that is 1 at location i and 0 elsewhere. For
random variables X and Y : E[X ] denotes the expectation and H(X)
the entropy of X , H(X | Y ) the conditional entropy of X given Y
and I(X : Y ) the mutual information between X and Y . We write
X ∼ µ to indicate that X is drawn from the probability distribution
µ, and X ≡ Y to indicate that X and Y have the same distribution.
We denote by V (µ, ν) the total variation distance between the dis-
tributions µ and ν, i.e., V (µ, ν) =

1
2‖µ − ν‖1. We denote the

product distribution of µ and ν by µ ⊗ ν.
The Binomial distribution with parameters n (number of trials)

and p (success probability) is denoted B(n, p). The notation X ∈R
S indicates that X is chosen uniformly at random from the set S.
For an integer k,

(S
k
)

denotes the set of all k-subsets of S and 2S de-
notes the power set of S. We say that Q′ is an (ε, δ)-approximation
for Q if Pr[|Q′

− Q| > εQ] ≤ δ.

2.1 The Communication Model
Traditionally, a two-party communication problem (between Al-

ice and Bob, say) is formalised as a function, or partial function,
on a domain of the form X × Y , where the finite set X (resp. Y ) is
the set of Alice’s (resp. Bob’s) possible inputs. For our purposes, it
is helpful to think of the input domain represented differently. We
shall think of an input as an m-tuple of tokens, where the tokens are
given to the players according to a random allocation drawn from a
known distribution. Thus, it will help to represent the input domain
as X1 × X2 × · · · × Xm , where Xi is the set of possible values
for the i th token. Typically, each Xi will be either the set {0, 1}

or the set [N ] := {1, 2, . . . , N }, for some positive integer N . An
allocation amongst p players is then a function σ : [m] → 2[p].

A natural and interesting special case of an allocation is a split,
where each token is given to exactly one player selected at random
from amongst all players. It will be convenient to think of splits
as functions σ : [m] → [p]. A further special case is that of a
uniform split, where each token is equally likely to go to each of the
players: we let Up denote the probability distribution of a uniform
split amongst p players.

DEFINITION 2.1. A random-partition communication problem
for p players consists of a function f : X1 × · · · × Xm → Z
and a probability distribution ν on allocations σ : [m] → 2[p].
A traditional communication problem is a special case, where ν is
supported on a single allocation (that often happens to be a split).
For a random-partition protocol P, let P(x, σ ) denote the (possi-
bly random) transcript of P, and out(P, x, σ ) the output of P, on
input x allocated according to σ . For a traditional protocol, where
σ has only one possible value, we drop σ from these notations.



DEFINITION 2.2 (ERROR, COST, COMPLEXITY). Let P be a
protocol for a random-partition communication problem ( f, ν). We
define the error

err(P, f, ν) := max
x

Pr[out(P, x, S) 6= f (x)],

where S ∼ ν. If µ is a distribution on the inputs to f , we define the
distributional error

errµ(P, f, ν) := Pr[out(P, X, S) 6= f (X)],

where X ∼ µ and S ∼ ν. Let cost(P) := maxx,σ |P(x, σ )| denote
the communication cost of P.

Define the δ-error communication complexity of ( f, ν) to be

Rδ( f, ν) := min{cost(P) : err(P, f, ν) ≤ δ}

and the δ-error µ-distributional complexity to be

Rµ,δ( f, ν) := min{cost(P) : errµ(P, f, ν) ≤ δ}.

Let R→ and Rk denote the restrictions of these notions to one-way
and k-round protocols, respectively. For traditional communica-
tion problems, we drop ν from these notations.

Informally, a communication lower bound is robust if it applies
to Rδ( f, ν) or Rµ,δ( f, ν) for some high-entropy distribution ν,
such as the aforementioned Up .

2.2 Technique Preliminaries
In this section we introduce some of the main techniques that

we use to establish our results. These are all based on considering
random input in addition to random splits.

The notion of information complexity has been used on many
occasions in the study of communication protocols [9, 5, 8, 25].
Loosely speaking, information complexity is used to establish a di-
rect sum result, which reduces the problem of lower bounding the
complexity of a “compound” problem (here, disjointness) to that of
lower bounding the complexity of a simpler “base” problem (here,
the AND function). The direct sum result follows from a simulation
argument, where we design a protocol for the base problem that
randomly pads its input to generate an artificial input for the com-
pound problem and then simulates a protocol for the compound
problem. Here, for our robust lower bounds for set disjointness, we
need to extend the methods of Bar-Yossef et al. [5] to handle public
coin protocols. This is a subtle matter: we must condition on the
public coin to have a meaningful notion of information complexity.
At the same time, we must be careful about how the public coin is
used in the simulation argument, ensuring that we do not introduce
undesirable correlations in the random padding.

DEFINITION 2.3 (INFORMATION COST AND COMPLEXITY).
For a traditional private coin protocol P and a distribution µ on its
inputs, we define icostµ(P) = I(X : P(X)), where X ∼ µ. If D is
a random variable (possibly correlated with X), we define the D-
conditional µ-information cost icostµ(P | D) = I(X : P(X) | D).
We extend these notions to public coin protocols thus: if P R is a
public coin protocol that uses a public random string R, we define

icostpub
µ (P R) = I(X : P R(X) | R) ,

where X ∼ µ and

icostpub
µ (P R

| D) = I(X : P R(X) | D, R) .

For each information cost measure above, we define a correspond-
ing information complexity measure in the natural way, e.g., for a

communication problem f ,

ICµ,δ( f ) = inf {icostµ(P) : err(P, f ) ≤ δ} .

We write ICpub and ICpub,→ for the information complexity of pub-
lic coin protocols, and public coin one-way protocols, respectively.

We also consider random inputs X ∼ µ in another setting. Some
of our lower bounds will use a reduction from a communication
problem in the fixed-partition model to one where the partition
σ ∼ ν. In these reductions, the players choose σ using public
random bits, but then distributing the input tokens according to σ
would seem to necessitate communicating a large fraction of the
data and this would render the reduction useless. The solution is to
use distributional lower bounds on fixed-partition problems. This
suggests that the players may “guess” data that they do not know.
Unfortunately, the issue that arises is that this guessing may be cor-
related to the distribution of σ . However, the following lemma
connects us back to the “usual” situation, when inputs and allo-
cations are independent of each other, provided this correlation is
sufficiently weak.

LEMMA 2.4. If a protocol P satisfies Pr(x,σ )∼ξ [out(P, x, σ ) 6=

f (x)] ≤ δ, for some joint distribution ξ , then errµ(P, f, ν) ≤

δ + V (µ ⊗ ν, ξ).

PROOF. Simply observe that

errµ(P, f, ν) = Pr
x∼µ,σ∼ν

[out(P, x, σ ) 6= f (x)]

≤ Pr
(x,σ )∼ξ

[out(P, x, σ ) 6= f (x)] + V (µ ⊗ ν, ξ) .

3. MULTI-PARTY SET DISJOINTNESS
Let DISJn,t : {0, 1}

nt
→ {0, 1} denote the following problem.

The input is an (nt)-tuple of bits denoted {xi j }i∈[t], j∈[n], to be
thought of as the entries of a t × n Boolean matrix. The input sat-
isfies a unique intersection promise, namely, each column of the
matrix has weight in {0, 1, t} and at most one column has weight
t . The desired output is

∨n
j=1

∧t
i=1 xi j . Chakrabarti, Khot and

Sun [8] show that Rδ(DISJn,t ) = �(n/(t log t)) and R→
δ (DISJn,t ) =

�(n/t), under a t-player split where each player receives one row
of the matrix.

Let ANDt : {0, 1}
t
→ {0, 1} be shorthand for DISJ1,t . Let D ∈R

[t] and X ∈R {0, eD}. Denote the resulting joint distribution of
(X, D) by λ and the marginal distribution of X by µ. The lower
bound of [8] follows by carefully analysing ICµ,δ(ANDt | D) and
using the direct sum techniques of Bar-Yossef et al. [5] to link this
quantity with ICµn ,δ(DISJn,t | Dn).

Here, we consider the random-partition communication problem
(DISJn,t ,Up) for some suitably large number, p, of players. We
now prove a robust lower bound on its complexity by extending the
earlier techniques. We start with the following well-known fact.

FACT 3.1 (BIRTHDAY PROBLEM). For t, p ∈ N+, let α(t, p)
denote the probability that t independent random variables, each
drawn uniformly from [p], do not take t distinct values. Then

1 − e−t (t−1)/(2p)
≤ α(t, p) ≤ t (t − 1)/(2p) .

LEMMA 3.2. Let δ′
= δ + α(t, p). Then

Rδ(DISJn,t ,Up) ≥ n · ICpub
µ,δ′(ANDt | D).



PROOF. Let P be an optimal δ-error protocol for (DISJn,t ,Up),
i.e., a protocol that achieves cost(P) = Rδ(DISJn,t ,Up). Consider
n independent pairs of random variables (X1, D1), . . . , (Xn, Dn),
each drawn from λ. Then X := X1 X2 . . . Xn ∼ µn is a suitable
random input for DISJn,t . Let S ∼ Up be a random split. Then, by
standard information theoretic arguments, we have

cost(P) = max
x,σ

|P(x, σ )| ≥ H(P(X, S))

≥ I(X : P(X, S) | D1 D2 . . . Dn, S)

≥

∑
j∈[n]

I(X j : P(X, S) | D1 D2 . . . Dn, S) (1)

=

∑
j∈[n]

Ed [I(X j : P(X, S) | D j , S, D− j = d)] ,

where (1) holds because the X j s are independent even after con-
ditioning on D1 D2 . . . Dn and S. Here, D− j denotes the vector
(D1, . . . , D j−1, D j+1, . . . , Dn) and the final expectation is over
d drawn uniformly from [t][n]\{ j}. To finish the proof, it suffices to
show that

c j,d := I(X j : P(X, S) | D j , S, D− j = d) ≥ ICpub
µ,δ′(ANDt | D) ,

for each j ∈ [n] and each d ∈ [t][n]\{ j}. To this end, we shall
design a certain δ′-error t-party traditional protocol QS

j,d for ANDt ,
parametrised by j and d , that uses S as a public random string.
Further, for each possible value σ of S, the transcript Qσ

j,d (X j ) is
either constant or distributed identically to (P(X, σ ) | D− j = d).
Then, as required, we shall have

ICpub
µ,δ′(ANDt | D) ≤ icostpub

µ (QS
j,d | D j )

= I(X j : QS
j,d (X j ) | D j , S)

≤ c j,d .

The protocol Qσ
j,d works as follows. On input x = (x1, . . . , xt ) ∈

{0, 1}
t , the players create a random virtual input {Zik}i,k ∈ {0, 1}

t×n

for DISJn,t , pretend that this input has been split according to σ
amongst p virtual players, and then, if possible, simulate the be-
haviour of these virtual players when they execute P on the virtual
input. The virtual input is obtained by embedding x into the j th
column of a random Boolean matrix drawn from (µn

|D− j = d).
To wit:

Zik ∈R


{xi } , if k = j ,

{0} , if k 6= j and d(k) 6= i ,

{0, 1} , if k 6= j and d(k) = i .

Therefore, the simulation is possible iff σ assigns each of the in-
puts (Z1 j , . . . , Zt j ) to a distinct virtual player; we shall say that σ
ramifies if this condition is met. If σ does not ramify, the players
abort, leading to a constant empty transcript and an error probabil-
ity of 1. If σ does ramify, then Player i plays the role of that vir-
tual player who is assigned Zi j by σ . The crucial observation that
makes this role-playing possible is that all the other bits assigned
to that virtual player are available to Player i , because they are ei-
ther set to 0 or can be drawn uniformly at random from {0, 1} using
Player i’s private coin. All virtual players who are not assigned any
of the inputs {Zi j }i∈[t] are simulated by Player 1 (say). Thus, if σ

ramifies, then Qσ
j,d (X j ) ≡ (P(X, σ ) | D− j = d). Finally, QS

j,d

is indeed a δ′-error protocol, because

err(QS
j,d , ANDt ) ≤ Pr[σ does not ramify] + err(P, DISJn,t ,Up)

= α(t, p) + δ = δ′ .

LEMMA 3.3. If δ ≤ 1/20, then

ICpub
µ,δ(ANDt | D) =�(1/(t log t))

and ICpub,→
µ,δ (ANDt | D) =�(1/t).

PROOF. From the work of Chakrabarti, Khot and Sun [8] we
can deduce that for a private coin traditional protocol P such that
err(P, ANDt ) ≤ 1/10, we have icostµ(P | D) = �(1/(t log t)).
Now, consider a public coin δ-error protocol QS for ANDt that uses
a public random string S. For each possible value σ of S, define
cσ := icostµ(Qσ

| D), so that Eσ [cσ ] = icostpub
µ (QS

| D) and
Eσ [err(Qσ , ANDt )] ≤ δ.

Suppose δ ≤ 1/20. Call a particular split σ “good” if

err(Qσ , ANDt ) ≤ 2δ ≤ 1/10.

By Markov’s inequality, Pr[σ is good] ≥ 1/2. For each good σ ,
considering the private coin protocol Qσ shows cσ = �(1/(t log t)).
Thus, Eσ [cσ ] = �(1/(t log t)). We conclude that

ICpub
µ,δ(ANDt | D) = �(1/(t log t)).

The proof for one way protocols follows similarly.

Putting together Fact 3.1, Lemma 3.2 and Lemma 3.3 yields the
following theorem.

THEOREM 3.4. For δ ≤ 1/40 and p ≥ 20t2, we have the ro-
bust lower bounds

Rδ(DISJn,t ,Up) = �(n/(t log t))

and R→
δ (DISJn,t ,Up) = �(n/t).

We note that in order to get this kind of robust lower bound for
DISJn,t under Up that increases linearly with n, we must make p,
the number of players, as large as �(t2). This is because when
an input x such that DISJn,t (x) = 1 is allocated to p players,
with probability α(t, p) there exists a player that receives at least
two tokens from the all-ones column. Therefore, a simple O(p)-
communication protocol, where each player announces whether
or not they have received two 1s from the same column, has er-
ror probability at most 1 − α(t, p). By Fact 3.1, we now have
Rδ(DISJn,t ,Up) = O(p) for p ≤ t (t − 1)/(2 ln(1/δ)) = O(t2).

4. POINTER JUMPING AND SELECTION
We now consider the tree pointer jumping problem TPJk,t , de-

fined as follows. Consider a complete k-level t-ary tree, T , rooted
at v0. The input is a function φ : V (T ) → [t], with φ(v) ∈ {0, 1}

if v is a leaf of T . Define g(v) to be the φ(v)-th child of v if v
is an internal node, and φ(v) if v is a leaf. The desired output is
TPJk,t (φ) := g(k)(v0) = g(g(· · · g(v0) · · · )).

There are at least two natural ways to make a traditional com-
munication problem out of TPJk,t , both of which are of interest to
us. The first way is to have two players, Alice and Bob, with Alice
(resp. Bob) receiving the values of φ(v) for odd-level (resp. even-
level) vertices v; we use the convention that leaves are at level 1.



The second way is to have k players, with Player i receiving the
values of φ(v) for vertices v on level i . When speaking of com-
munication problems, we shall use TPJk,t to denote the former, and
M-TPJk,t to denote the latter (“M” for “multi-player”). For k = 2
the two definitions coincide and we obtain the well-studied INDEX
problem, for which strong one-way lower bounds are known [1],
with numerous implications for stream computation. In particular,
Guha and McGregor [19] use a reduction from INDEX to obtain
a tight (up to logarithmic factors) space lower bound for estimat-
ing the median of a randomly ordered stream of numbers in one
pass. This lower bound was recently extended to multiple passes
by Chakrabarti, Jayram and Pǎtraşcu [7] via a rather different (and
intricate) proof.

Here, we give a considerably simpler proof of a multi-pass lower
bound for median finding,1 and in fact improve upon previous bounds,
by using a suitable reduction from TPJk,t . As an intermediate step,
we consider a problem we call weight-based tree pointer jump-
ing, or W-TPJk,n . This problem is closely related to TPJk,t (with
n determined by k and t) but the input is presented differently: in-
stead of specifying φ(v) directly, the input includes a binary string
xv ∈ {0, 1}

ai for each level-i node of T , where the weight |xv |

determines φ(v). The lengths ai are parameters that will be fixed
later. The encoding works as follows. If v is a leaf (i = 1), then
xv = φ(v). Otherwise, xv is any string with

|xv | =
1
2

ai +

(
1
2

t − φ(v) +
1
2

)
bi−1,

where bi is the total length of all strings associated with nodes in
the subtree of a level-i node, i.e., bi = ai + tbi−1 and b1 = 1.2

Let x ∈ {0, 1}
n be the concatenation of all xv . Define

W-TPJk,n(x) := TPJk,t (φ).

The proof of the next theorem involves a reduction from W-TPJ to
MEDIAN similar to that in [18].

THEOREM 4.1. Let MEDIANm,N denote the random-partition
communication problem where the input consists of m tokens
(x1, . . . , xm) ∈ [N ]m and the desired output is the median of this
collection of tokens. For any δ > 0, any allocation distribution
ν, and any number p ≥ 1 of rounds of communication, we have
Rp

δ (MEDIANn,2(n), ν) ≥ Rp
δ (W-TPJk,n, ν).

PROOF. The proof follows from the following reduction from
W-TPJ to MEDIAN. We start by defining some notation:

1. Let v[i1, . . . , i j ] denote the i j th child of v[i1, . . . , i j−1] where
v[] is the root of the tree.

2. Let the (p + 1) tuple 〈h p, . . . , h0〉 denote the base (t + 2)

representation of
∑p

i=0 hi (t + 2)i .

The reduction proceeds as follows:

1. For each internal node of level j , e.g., v = v[i p, . . . , i j ],
with associated binary string xv , we generate a set of values
A(v) containing

|xv | copies of 〈i p, . . . , i j , 0, 0, . . . 0〉

and ai − |xv | copies of 〈i p, . . . , i j , t + 1, 0, . . . 0〉 .

This can be done by generating a copy of 〈i p, . . . , i j , 0, 0, . . . 0〉

for each bit of xv that is 1 and then generating a copy of
〈i p, . . . , i j , t + 1, 0, . . . 0〉 for each bit of xv that is 0.

1Our results, like the earlier ones [19, 7], apply to the more general
problem of selection.
2Note that for |xv | to be a positive integer this implies that
ai /bi−1 ∈ {t − 1, t + 1, t + 3, . . .}.

2. For leaf node, e.g., v = v[i p, . . . , i1], we generate a single
element (i p, . . . , i1, f (v)).

By construction, the least significant bit of median(∪v∈V (T ) A(v))
equals W-TPJ( f ).

4.1 A Robust Two-Player Lower Bound
Our starting point is a bounded-round lower bound for the tradi-

tional two-player communication problem TPJk,t described above,
where a “round” consists of one message from either Alice or Bob.
This bound can be deduced from the work of Klauck et al. [27],
who in fact studied the problem in the more general quantum com-
munication setting. The underlying intuition is that of round elimi-
nation à la Miltersen et al. [30] and Sen [34].

THEOREM 4.2. We have Rp
µ,1/3(TPJ p+1,t ) = �(t/p2), where

µ is the uniform distribution over inputs.

To obtain the desired robust lower bound for W-TPJ, we use a re-
duction from TPJ that introduces a slight correlation between input
and split, and then appeal to Lemma 2.4 to correct for this.

THEOREM 4.3. We have

Rp
1/24(W-TPJ p+1,n,U2) = �

(
n

1
((p−1)2p+1+2) ·(log n)

−1
(2(p−1)) ·p−2).

Thus, for any constant ε > 0, for n and p large enough with
p = O(log log n), we have

Rp
1/24(W-TPJ p+1,n,U2) = �

(
n(2+ε)−p )

.

PROOF. Let P be a protocol for (W-TPJ,U2), between players
Carol and Dave, such that err(P, W-TPJ,U2) ≤

1
24 . Consider a

uniform random instance φ of TPJ that Alice and Bob must solve.
We construct a protocol Q for this. In Q, Alice and Bob use public
randomness to construct a random input for W-TPJ together with a
random split of its tokens between Carol and Dave. They then pro-
ceed to simulate P on this instance, with Alice and Bob simulating
Carol and Dave, respectively. Define

ai = (ct2(p+2) log n)2i−1
−1t−2(3·2i−1

−i−2)

for some large constant c to be determined. For each internal node
v in level i , using public randomness:

• Alice and Bob pick d1v ∼ B
(

1
2 ai ,

1
2

)
, d2v ∼ B

(
1
2 ai ,

1
2

)
and Sv ∈R

(
[ai ]

d1v + d2v

)
.

• Assume level(v) is even. Alice determines xv, j for j ∈ Sv
and, uniformly at random, sets d1v of these tokens to 1 and
the remaining d2v tokens to 0. Bob determines xv, j for j /∈
Sv and, uniformly at random, sets |xv | − d1v of these tokens
to 1 and the remaining ai −|xv |−d2v tokens to 0. If level(v)
is odd then Alice and Bob’s roles are reversed.

For each leaf node v, using public randomness:

• With probability 1
2 , Alice determines xv,1 = φ(v).

Otherwise Bob determines xv,1 ∈R {0, 1}.

The resulting instance of W-TPJ consists of the random input x so
generated together with the random split σ where Carol receives
all the tokens determined by Alice, and Dave receives all those de-
termined by Bob. This completes the description of Q. Note that,
with probability 3/4, W-TPJ(x) = TPJ(φ).



It remains to show that x and σ are sufficiently close to being in-
dependent. Note that the marginals are correct: we do have σ ∼ U2
and the values of xv, j are indeed chosen according to a uniform set-
ting of φ(v). The issue is that the joint distribution is not a product
distribution. However, note that had d1,v and d2,v been chosen ac-
cording to B(|xv |, 1

2 ) and B(ai − |xv |, 1
2 ), respectively, then σ and

x would have been independent. For each internal node v at level
i , let

Ãv := B
(

1
2

ai ,
1
2

)
, B̃v := B

(
1
2

ai ,
1
2

)
,

Av := B
(

|xv |,
1
2

)
, Bv := B

(
ai − |xv |,

1
2

)
.

Hence, we need to show that the product distribution of all Ãv and
B̃v is sufficiently close to that of all Av and Bv . Using Lemma A.1,
we can bound the total variation distance in terms of ai and bi as
follows,

V
(⊗

v

( Ãv ⊗ B̃v),
⊗
v

(Av⊗Bv)

)
≤

∑
v

V
(

Ãv, Av
)
+

∑
v

V
(
B̃v, Bv

)
≤ O(

√
log n)

p+1∑
i=2

t p+2−i bi−1
√

ai

where the first inequality follows from the triangle inequality. Not-
ing that bi−1 ≤ 2ai−1 and substituting in the value for ai , the
distance can be made less than 1

24 for sufficiently large constant c.
By Lemma 2.4,

errµ(Q, TPJ p+1,t ) ≤
1
4

+
1

24
+ err(P, W-TPJ p+1,n,U2) ≤

1
3
.

Therefore, by Theorem 4.2,

Rp
1/24(W-TPJ p+1,n,U2) = �(t/p2).

Note that

n = bp+1 = O((ct2(p+2) log n)2p
−1t−2(3·2p

−p−3))

and hence

t = �
(

n
1

(p−1)2p+1+2
/

(c log n)
2p

−1
(p−1)2p+1+2

)
≥ �

(
n

1
(p−1)2p+1+2

/
(c log n)

1
2(p−1)

)
.

4.2 A Robust Multi-Player Lower Bound
The two-player lower bound above is already sufficient to im-

prove upon previous data stream lower bounds for selection in ran-
domly ordered streams. We now prove a multi-player variant of
Theorem 4.2 that gives even tighter data stream lower bounds.

THEOREM 4.4. Let Vp be the (non-uniform) split distribution
that gives each token to Player 1 with probability 1

2 and to Player
i with probability γ := 1/(2p) for each i ∈ {2 . . . , p + 1}. Then,
we have

Rp
1/10(W-TPJ p+1,n,Vp) = �

(
n

1
((p−1)2p+1+2) ·(log n)

−1
(2(p−1)) ·p−2).

As before, for any constant ε > 0, for n and p large enough with
p = O(log log n), we have

Rp
1/10(W-TPJ p+1,n,Vp) = �

(
n(2+ε)−p )

.

The proof is similar to that of Theorem 4.3 so we outline the
main differences. The starting point is the traditional (p+1)-player
problem M-TPJ p+1,t , for which we can prove the following lower
bound, analogous to Theorem 4.2. The proof uses Sen’s version of
the round elimination lemma [34]; the details are in the full version
of the paper.

THEOREM 4.5. We have Rp
µ,1/3(M-TPJ p+1,t ) = �(t/p2) where

µ is the uniform distribution over inputs. Here, a “round” consists
of one message from each player, in the order Player 1, . . . , Player
(p + 1).

The construction of the reduction differs as follows. For a node
v with i = level(v), using public randomness, the players all pick
d1v ∼ B

( ai
2 , 1 − γ

)
, d2v ∼ B

( ai
2 , 1 − γ

)
, and Sv ∈R

( [ai ]
d1v+d2v

)
.

The players other than the i th player set d j
1v values of {xv,k : k ∈

Sv} to 1 and the rest to 0.
If σ and the data were independent they should be distributed as

B(|xv |, 1 − γ ) and B(ai −|xv |, 1 − γ ) respectively. However, if ai
is chosen as

ai = (cp2t2(p+2) log n)2i−1
−1t−2(3·2i−1

−i−2)

for some sufficiently large constant, then by appealing to Lemma A.1,
the total variation distance can be made arbitrarily small. The extra
p2i

−2 term in ai has only a constant factor effect on the bound as

n = bp+1 = O((cp2t2(p+2) log n)2p
−1t−2(3·2p

−p−3))

and, because p
1

2(p−1) = O(1) for p ≥ 2,

t = �

(
n

1
(p−1)2p+1+2

/(
c log np2

) 2p
−1

(p−1)2p+1+2

)

≥ �

(
n

1
(p−1)2p+1+2

/
(c log n)

1
2(p−1)

)
.

5. HAMMING DISTANCE AND INDEX
In this section, we prove robust lower bounds for INDEX and

HAM-DISTG , in the one-way communication model. For our pur-
poses, we define the INDEX problem over inputs x ∈ [n]×{0, 1}

n as
follows: INDEX(x) := x j where j := x0. Traditionally, one con-
siders the worst-case partition where Alice (the player who speaks)
holds x1 . . . xn and Bob holds j . Strong randomized lower bounds
are known in this setting [1]. HAM-DISTG [26, 35, 23] is defined
based on the function 1(x) = |{i : x2i 6= x2i−1}| over inputs
x ∈ {0, 1}

2n . With the promise that 1(x) does not fall between
n/2 − G and n/2 + G,

HAM-DISTG(x) :=
{

0, if 1(x) ≥ n/2 + G ,
1, if 1(x) ≤ n/2 − G .

5.1 Hamming Distance
The main idea is to create an instance of HAM-DIST in the fixed

partition model, and then pad this with carefully chosen random
bits so that the resulting split appears almost uniform.

THEOREM 5.1. There exists a constant c3 such that

R→
1/4(HAM-DISTc3

√
n,U2) = �(n).



PROOF. We reduce the traditional one-way INDEX problem to
our HAM-DIST problem. Suppose Alice holds a string x ∈ {0, 1}

n′

with n′
= c2n and Bob holds j ∈ [n′], where c2 < 1 will be a

constant to be fixed later. We know that R→,pub
0.49 (INDEX) = �(n).

Suppose there exists a one-way protocol P such that

errµ(P, HAM-DISTc3
√

n,U2) ≤ 1/4 ,

where µ is the uniform distribution over inputs. Let r ∈R {−1, 1}
n′

be determined by public random bits. Define the indicator random
variables Ti1 and Ti2 for the events “

∑n′

i=1 ri xi > 0” and “r j > 0,”
respectively. It can be shown (see [26] for a proof) that, for some
constant c1 > 0,

Pr
[
Ti1 = Ti2

]
=

{
1/2 − c1/

√
n′, if INDEX(x, j) = 0 ,

1/2 + c1/
√

n′, if INDEX(x, j) = 1 .

The players now generate an instance y of HAM-DIST using shared
randomness. They first pick a split σ ∼ U2. For each i such that
σ(2i) 6= σ(2i − 1), with probability p = c1/4

2 , the players set
(y2i , y2i−1) based on Ti1 and Ti2: since Ti1 is known to Alice,
she sets whichever input bit was allocated to her as Ti1, and Bob
similarly uses Ti2. Otherwise, set (y2i , y2i−1) ∈R {0, 1}

2. Define
1 = 1(y) = |{i : y2i 6= y2i−1}|.

CLAIM 5.2. For sufficiently small c2,

(x j = 0) ⇒ Pr
[

1

n
>

1
2

+
c1

5
√

n′

]
≥ 0.99,

and (x j = 1) ⇒ Pr
[

1

n
<

1
2

−
c1

5
√

n′

]
≥ 0.99.

PROOF OF CLAIM. Let t be the number of times Alice and Bob
insert bits from T into their constructed strings. Note that E [t] =

pn and, by an application of the Chernoff bound, for sufficiently
large n, we have Pr

[
t ≤ np/2

]
≤ 1/1000.

(x j = 1) ⇒ Pr
[

1
n ≤

1
2 −

c1
5
√

n′

]
= Pr

[
1
n − E

[
1
n

]
≤ −

c1
5
√

n′

]
≤ exp

(
−c2

1

25c1/4
2

)
(x j = 0) ⇒ Pr

[
1
n ≥

1
2 −

2c1
5
√

n′

]
= Pr

[
1
n − E

[
1
n

]
≥ +

c1
5
√

n′

]
≤ exp

(
−c2

1

25c1/4
2

)
Hence the claim holds true for sufficiently small c2.

While σ is not fully independent of y, it has sufficient indepen-
dence, as shown by the following claim:

CLAIM 5.3. For sufficiently small c2, with probability at least
5/8, P answers HAM-DISTc3

√
n correctly on y.

PROOF OF CLAIM. Let µp be the distribution over y ∈ {0, 1}
2n .

For p = 0 both y and the partition, are uniformly and indepen-
dently chosen. We argue that |µp − µ0| ≤ 1/8 for sufficiently
small c2 and so by Lemma 2.4, P would answer HAM-DISTc3

√
n

with probability at least 3/4 − 1/8 = 5/8 as required.
Define I = {i : σ(2i) 6= σ(2i − 1)}. For i /∈ I , (y2i−1, y2i ) ∈R

{0, 1}
2 under both µ0 and µp . For i ∈ I , define the probability that

a pair of bits differ as

q = Pr
µp

[y2i 6= y2i−1|i ∈ I ] = 1/2 − pc1/
√

n′.

Therefore

|µp − µ0| =

∑
y

| Pr
µp

[y] − Pr
µ0

[y]|

≤

∑
y

|2−nq1(1 − q)n−1
− 2−2n

|

=

∑
d∈[n]

(
n
d

)
|qd (1 − q)n−d

− 2−n
|

By appealing to Lemma A.1 we can make this smaller than 1/8
by choosing c2 sufficiently small.

Hence if c3
√

n ≤ n c1
5
√

n′
, i.e., c3 ≥

c1
5
√

c2
, the linear lower bound

holds for HAM-DISTc3
√

n : otherwise, by Claim 5.2, HAM-DISTc3
√

n
on y reveals INDEX(x, j) with probability at least 5/8 − 1/100 >
51/100.

5.2 Index
In the usual fixed-partition model, INDEX can be thought of as

a special case of DISJn,2, where one string is of the form ei . This
is no longer the case under uniform splits, since the zeros in ei get
spread between the players, and leak information about which in-
dices are not of interest. For INDEX, we prove a bound for a more
general distribution ν that allocates multiple copies of input items
amongst the players. This generalization is needed for proving sub-
sequent data stream bounds.

THEOREM 5.4. For a, b = O(1), R1/2a+b+2(INDEX, ν) = �(n)

where ν is the distribution that distributions a copies of each xi
(i ∈ [n]) and b copies of x0 uniformly between two players.

PROOF. The proof is by reduction from INDEX when player 1
holds y = y1 . . . yn ∈ {0, 1}

n and player 2 holds index x0 = j .
Let µ be the uniform distribution over all possible inputs. Even
when the players share public random bits, any one-way protocol
succeeding with probability 1/2+1/2a+b+2 (for a, b constant) for
instances of INDEX drawn from µ requires �(n) bits to be commu-
nicated [28].

Suppose there exists a one-way protocol P with the property that
err(P, INDEX, µ, ν) ≤ 1/2a+b+2. The players agree on a parti-
tion σ ∼ ν using their public random bits. Let B be the event that
{1} ⊆ σ(0) or that {2} ⊆ σ(x0), and note that Pr [B] = 1−1/2a+b.
If B occurs then player 2 outputs 0 with probability 1/2 and 1 oth-
erwise. Otherwise, using public random bits, the players choose
a string r where ri ∈R {0, 1}. They construct the string y′ where
y′

i = ri for i ≥ 1, {2} ⊆ σ(i)} and y′
i = yi otherwise. They run

protocol P for σ and y′.
The new protocol is correct with probability

Pr [B] /2 + Pr [¬B and P is correct] ≥ 1/2 + 1/2a+b+2

and therefore the protocol must communicate �(n) bits.

6. ROBUST LOWER BOUNDS FOR DATA
STREAM COMPUTATION

Finally, we use our results on communication complexity to de-
rive robust lower bounds for problems in the data stream model.

Frequency Moments: These are some of the most well-studied
problems in the data stream model [3]. The stream comprises a
sequence of m values a j ∈ [n]. Define fi = |{ j : a j = i}|. The
kth frequency moment is

Fk :=
∑

i∈[n]

f k
i .



We consider constant k ≥ 3. It is known that any O(1)-pass algo-
rithm that returns an (ε, δ)-approximation of Fk requires �̃(n1−2/k)
space and that this is tight under worst-case orderings [24, 8]. How-
ever, it was observed that for random orderings and m = �̃ε(an)
there exists a single pass Õ((n/a)1−2/k)-space algorithm that (ε, δ)-
approximates Fk [20]. The following theorem is a consequence of
Theorem 3.4 by setting t = n1/k . Since the result in Theorem 3.4
bounds the total amount of communication, the per-message bound
implied scales with the reciprocal of the number of players (here,
�(t2)).

THEOREM 6.1. Any one-pass (1/10, 1/10)-approximation for
Fk of a randomly ordered stream requires �(n1−3/k) space. If
we assume that m = �(an) then �(n1−3/k/a3) space is required.
For O(1)-pass algorithms, we have the corresponding lower bounds
of �(n1−3/k/ log n) and �(n1−3/k/(a3 log n)), respectively.

Distinct Elements and Entropy: The number of distinct elements
in a stream is F0 := |{i : fi 6= 0}|, and the empirical entropy is
H :=

∑
i∈[n]( fi /m) log(m/ fi ). One-pass, Õ(ε−2)-space, (ε, δ)-

approximation algorithms are known for both problems [6, 14, 4].
We prove that the known algorithms are essentially tight even un-
der random order. These results follow from Theorem 5.1 and the
reductions in [6, Theorem 2] and [35, Section 3.2].

THEOREM 6.2. For constant k 6= 1, a one-pass (ε, δ)-approx-
imation for Fk of a randomly ordered stream requires �(ε−2) space.
A one-pass (ε, δ)-approximation for H of a randomly ordered stream
requires �(ε−2/ log2 ε−1) space.

Selection: Selection is one of the most well studied problems in
the data stream model [31, 15]. The following result improves upon
the previous best single and multi-pass lower bounds [18, 7]. As an
example, our theorem implies a �̃(n1/10) space lower bound for
3-pass algorithms whereas the best previous result was �̃(n3/80)
[7]. The following theorem is immediate from Theorem 4.4.

THEOREM 6.3. Any p-pass algorithm to return the median of a
length-m randomly ordered stream which succeeds with probability
at least 3/4 requires �(m1/((p−1)2p+1

+2)/(p2p)) space.

Graph Streaming: We now consider bounds on estimating graph
problems given a stream of edges in arbitrary order. Using Theo-
rem 5.4 and reductions from [12, 22] it is possible to show:

THEOREM 6.4. Given a stream of edges in random order, �(n)
space is required to determine if the resulting graph is connected.
Furthermore, any t-approximation of the distance between two nodes
requires O(n1+1/t ) space.

Information Divergences: The next theorem extends a result by
Guha et al. [16] on the approximation of information divergences.
The results follows from Theorem 5.4 using a variant of the reduc-
tion from [16].

THEOREM 6.5. Given a randomly ordered stream defining two
empirical distributions p and q on [n], �(n) space is required to
find an

√
1/2 + a/2 multiplicative approximation to

Hellinger(p, q) =

∑
(
√

pi −
√

qi )
2

with probability at least 1 − 2−a−3 (for some even a ∈ N+.)
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APPENDIX
A. VARIATIONAL DISTANCE BETWEEN

BINOMIAL DISTRIBUTIONS

LEMMA A.1. There exist constants c1, c2 > 0 such that, for
a ∈ N sufficiently large, q = 1−γ ∈ [1/2, 1−o(a)], and w ∈ [a],

V (B(a, q),B(a − w, q)) ≤ c1w
√

ln(a)/(γ a) ,

and for q = 1/2 + δ,

V (B(a, 1/2),B(a, q)) ≤ cδ2a .

PROOF. We may assume that w = O(
√

aγ ln(a/w)) because
otherwise the bound is trivial. Then by an application of the Cher-
noff bounds, there exists a constant c′

1 such that

max
(

Pr
[
|B(a, q) − aq| ≥ c′

1

√
aγ ln a

w

]
,

Pr
[
|B(a − w, q) − aq| ≥ c′

1
√

aγ ln(a/w)
] )

≤
w√

a
.

Let t = c′
1
√

aγ ln(a/w). Then,

V(B(a, q),B(a − w, q))

≤
2w√

a
+
∑aq+t

r=aq−t

∣∣∣(ar)qr (1 − q)a−r
−
(a−w

r
)
qr (1 − q)a−w−r

∣∣∣
≤

2w√
a

+ maxr∈aq±t

∣∣∣ a!(a−w−r)!
(a−r)!(a−w)! (1 − q)w − 1

∣∣∣
=

2w√
a

+ maxr∈aq±t

∣∣∣ a(a−1)...(a−w+1)
(a−r)(a−r−1)...(a−w−r+1) (1 − q)w − 1

∣∣∣
≤

2w√
a

+ max
{∣∣∣( a

a−aq+t γ
)w

− 1
∣∣∣ , ∣∣∣( a−w+1

a−aq−t−w+1γ
)w

− 1
∣∣∣}

=
2w√

a
+ max

{∣∣∣(1 −
t

γ a+t

)w
− 1

∣∣∣ , ∣∣∣(1 +
qw−q+t

γ a−t−w+1

)w
− 1

∣∣∣}
≤ 2

c′′

1w
√

a
+ max

{
tw

γ a+t , exp
(

qw2
−qw+tw

γ a−t−w+1

)
− 1

}
= O(1) · w

√
ln(a)/(γ a) .

For the second part of lemma, we proceed in a similar fashion.
By Chernoff bounds, there exists a constant c′

2 such that

max
(

Pr
[
|B(a, 1/2) − a/2| ≥ c′

2

√
a ln 1

δa

]
,

Pr
[
|B(a, q ′) − a/2| ≥ c′

2

√
a ln 1

δ2a

] )
≤ δ2a ,

where we have assumed that δa = O(
√

a ln 1
δ2a

), since otherwise

the bound is trivial. Let s = c′
2

√
a ln 1

δ2a
. Then,

V(B(a, 1/2),B(a, q)) ≤

∑
r∈[a]

(
a
r

)
|1/2a

− qr (1 − q)a−r
|

= 2δ2a + max
r∈a/2±s

∣∣(1 + 2δ)r (1 − 2δ)a−r
− 1

∣∣
≤ 2δ2a + max

u∈±s

∣∣∣(1 + 2δ)1/2+u/a(1 − 2δ)1/2−u/a
− 1

∣∣∣a
≤ 2δ2a + max

u∈±s

∣∣∣∣∣(1 − 4δ2)1/2
(

1 +
4δ

1 − 2δ

)u/a
− 1

∣∣∣∣∣
a

= O(1) ·
(
δ2a + δ

√
a ln(δa)−1

)
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