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ABSTRACT
In analyzing data from social and communication networks, we encounter
the problem of classifying objects where there is an explicit link structure
amongst the objects. We study the problem of inferring the classification of
all the objects from a labeled subset, using only the link-based information
amongst the objects.

We abstract the above as a labeling problem on multigraphs with weighted
edges. We present two classes of algorithms, based on local and global sim-
ilarities. Then we focus on multigraphs induced by blog data, and carefully
apply our general algorithms to specifically infer labels such as age, gen-
der and location associated with the blog based only on the link-structure
amongst them. We perform a comprehensive set of experiments with real,
large-scale blog data sets and show that significant accuracy is possible from
little or no non-link information, and our methods scale to millions of nodes
and edges.

Categories and Subject Descriptors: I.2.6 [Learning]: Graphs

General Terms: Algorithms, Experimentation.

Keywords: Graph labeling, Relational learning, Social Networks.

1. INTRODUCTION
In recent years there has been rapid growth in the massive net-

works which store and encode information—most obviously, the
emergence of the World Wide Web, but also in the social networks
explicit or implicit from collections of emails, phone calls, blogs,
and services such as myspace and facebook. It is now feasible to
collect and store such data on a scale many orders of magnitude
greater than initial hand-curated collections of friendship networks
by sociologists.

Many fundamental problems in analyzing such data can be mod-
eled as instances of classification. That is, we wish to attach a label
to each entity in the data based on a small initially labeled subset.
This is motivated by applications as varied as (web) search, mar-
keting, expert finding, topic analysis, fraud detection, network ser-
vice optimization, customer analysis and even matchmaking. The
problem of “link-based classification” [10], or “relational learn-
ing” [19], has received significant study: we later survey the most
relevant works. However, such studies have typically been over
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relatively small collections, i.e. thousands of carefully curated data
items such as movies, companies, and university web pages.

In this paper, we address the challenge of labeling network data
in the face of substantially larger datasets, motivated by the ex-
amples of large social networks. In particular, we study the net-
works induced by blogs, and the rich structure they create, although
our methods and observations are sufficiently general to be more
widely applicable. Our choice of blogs is motivated by our ear-
lier experiences with this data source [3]: working closely with this
data reveals questions to serious analysis, such as:
• How to work across multiple networks?
Typically, entities of interest do not reside within a single network,
but are spread across multiple interlinked networks. For example,
blogs are hosted by multiple different providers, and link offsite to
websites; in the telecoms world, calls are handled by a mixture of
long distance and wireless providers. Although one can focus in
on just a single network, this will often lose vital information, and
lead to a disconnected view of the data. Instead, one needs to work
across networks (and hence develop data collection techniques for
each network type) to see a fuller picture, and recognize that differ-
ent (sub)networks have different behavior.
• What information may be used to infer labels?
We focus on situations where there are explicit links between ob-
jects, and study how to use these to propagate labels. We use the
fact that there is often some amount of initially labeled data, such as
customer information in telecoms, or profile information for blogs.
In some applications, there may be additional features, such as text
in blogs. However, in many cases we can obtain no other features
apart from graph edges: for technical, legal, or privacy reasons we
often see only the links, and little additional data associated with
them. In this study, we explore the power of inference based solely
on link information, and conclude that for many applications this
alone can give a powerful result.
• How to collect data and ensure data quality?
Data collection is a non-trivial part of applying any classification
algorithm. Especially when collecting data self-reported by indi-
viduals, (e.g. from web repositories), there are issues of reliability
in trustworthiness in the collected values. Additionally, one has to
be aware of an inherent bias in the data due to the perspective of
the observer, since some networks are easier to poll, or yield more
information, than others. For example, we must choose which sub-
set of blog hosting sites to crawl and write parsers for, and what
crawling strategy to employ.
• How to scale to large data sizes?
With numbers of nodes in the hundreds of thousands, and edges
in the millions, many sophisticated structural analysis techniques,
such as matrix-style decompositions, fail to scale. Moreover, we
also need methods which can provide relatively simple explana-



tions of their inferences if we are to justify them to decision mak-
ers. Here, we seek to understand the power of relatively simple
methods whose computational cost is near linear in the input size.
Our Contributions. Our study here is on the problem of inferring
the classification labels for objects with explicit structure linking
them. We can view this a problem over enormous graphs, or more
correctly, multigraphs, due to the multiple object types, edge types,
and multiple edges inherent in any detailed study of such networks.
Our main contributions are as follows:
1. We formalize our problem of graph labeling as an instance of
(semi-)supervised learning, and introduce two simple classes of al-
gorithms, local iterative and global nearest neighbor.
2. We give a detailed description of data collection and modeling in
order to apply these algorithms to blog data and to infer labels such
as age, location and gender, given the challenges outlined above.
3. We show experimental results with large scale blog data that
demonstrate these methods are quite accurate using link informa-
tion only, and are highly scalable: for some tasks we can accurately
assign labels with accuracy of 80-90% on graphs of hundreds of
thousands of nodes in a matter of tens of seconds.

Our chosen methods succeed due to inherent structure in the blog
network: people tend to link to others with similar demographics,
or alike people link to similar objects. It remains a challenge to
extend them to situations where such behavior is less prevalent,
and understand fully when they are and are not applicable.
Outline. In what follows, we will describe the abstract problem
of labeling (multi)graphs and our two classes of solutions in Sec-
tion 2. In Section 3, we will describe the study case of blogs and
describe how our algorithms are applicable for inferring labels on
blogs. In Section 4, we present extensive experiments with large
scale blog data to infer age/location/gender of blogs. Related work
is discussed in Section 5 and concluding remarks are in Section 6.

2. GRAPH LABELING

2.1 Problem Formulation
We now define the problems of graph and multigraph labeling.

Given a graph, with a subset of nodes labeled, our goal is to infer
the labels on the remaining nodes. More formally,

DEFINITION 1. Let G be a partially labeled directed graph G =
(V, E, M), where V is the set of vertices or nodes and E is the set
of edges as usual. Let L = {`1, `2, ..., `c} be the set of labels,
where a label `k can take an integer or a nominal value, and |L|
is the number of possible labels. M : V → L ∪ {0} is a func-
tion which gives the label for a subset of nodes W ⊂ V ; for nodes
v 6∈ W , M(v) = 0, indicating that v is initially unlabeled. The
Graph Labeling Problem is, given the partially labeled graph G, to
complete the labeling: i.e., to assign labels to nodes in U = V \W .

This abstract problem captures our core question: how to use the
link structure of the graph and the partial labels in order to infer
the remaining labels. This can be seen as an instance of Relational
Learning [10], since a graph can be encoded as a number of (many-
to-many) relations. However, we find it more useful to phrase the
problem in terms of graph nodes and edges, since this is how our
input is presented. This is also fundamentally a semi-supervised
classification problem, since in our motivating applications it is rare
to find any representative completely labeled graph; instead, we are
given one large graph with a subset of its nodes labeled. Connec-
tions to related work are discussed further in Section 5.

In practice, the data that we collect is richer than this, and does
not fit into the simplistic graph model. We may see different kinds

of nodes, relating to different entities. For example, blogs have
links to webpages which are quite different from blog pages. When
we have multiple types of node, and different kinds of edge con-
necting them, we have a multigraph version of the problem. An
important detail is that for some node types, we may have more or
less information than others. This is a result of how much can be
sampled or observed in the world. For example, in the telecom-
munications world, service providers can observe both incoming
and outgoing calls for their customers, but do not see calls between
customers of other providers. As a result the graph a provider sees
may not contain all the outgoing/incoming edges of some of the
nodes. Likewise in blog or web analysis, one may know all out-
going edges for each page, but not all the incoming edges. This
gives an unavoidable bias that is due to problems of observability
(some links are not observable) and collectability (it is not feasible
to collect and store every last link).

Formally, we may have a multigraph, G+ = (V +, E+), where
V + is partitioned into p sets of nodes of different types, V + =
{V1, V2, ..., Vp}, and E+ is a (weighted) collection of sets of edges
E+ = {E1, E2, ..., Eq}. We may have additional features F on
each node, and a function w giving the weight of each edge or set
of edges. Other variations, such as features and labels on edges
are possible, but we omit them to keep focus on the underlying
problems. Some examples of multigraphs in different settings are:

• Telecommunications: The nodes of the multigraph may rep-
resent distinct phone numbers, and the edges represent telephone
calls made between two phone numbers (clearly directional). One
node type may represent 1-800 numbers that can only receive calls,
while the other nodes are consumer accounts. There can be multi-
ple edges between nodes and multiple kinds of edges (long distance
calls, local calls and toll free calls). A suitable label in this example
is to classify the numbers as business/non-business. Typically tele-
phone companies have a business directory to populate labels on a
subset of nodes, and in some cases, use human evaluation to label
some nodes too.
• IP networks: In the IP network setting, a node could represent
a distinct IP address, a segment of IP addresses or an ISP. An edge
between two nodes may signify any kind of IP traffic detected be-
tween the two nodes, traffic belonging to a certain application or
protocol, certain types of messages, etc. A suitable label in this
case is based on the network node’s function as a server or a client.
Typically Internet Service Providers have a list of known or sus-
pected servers which is the initial set of labels from which we need
to infer the classification of server/client for remaining nodes.
• Web: The World Wide Web can be represented by a multigraph,
where nodes are webpages that can be further categorized by own-
ership, functionality or topic [5], and an edge between two nodes
signifying an HTML link from one web page to another. Links
could also be categorized: e.g., an edge from a site to a commercial
company website could signify presence of the company’s adver-
tisement on the website. In this setting, suitable node labels could
be based on the site being public or commercial, or the site’s func-
tion (portal, news, encyclopedia, etc). The class of some nodes are
known, and these can be used to label the remaining nodes.

2.2 Algorithmic Overview
We principally study two classes of algorithms for predicting la-

bels on multigraphs, namely, Local Iterative and Global Nearest
Neighbor. These classes have their antecedents in prior work on
relational learning [12] and the well-known general purpose classi-
fiers such as Nearest Neighbors. They are designed to be relatively
simple to implement and scale to very large graph data. Both the lo-
cal and global approaches use the link structure and neighborhood



Algorithm 2.1: LOCALITERATIVE(E, M, s)

B0 ← 0
M0 ←M
for t← 1 to s

do

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

for i ∈ U

do

8>><>>:
for (i, j) ∈ E

do

8<:k ←Mt−1(j)
if k 6= 0

then Bt
ik ← Bt

ik + 1
for j ∈ V

do

8<:
if j ∈ U

then Mt(j)←M(j)
else Mt(j)← voting(Bt

(j)
)

Bt+1 ← Bt

information to infer labels. For each unlabeled node they examine a
set of labeled nodes and select one of these labels as the new label.
The approaches differ in the set of nodes considered for inferring
labels. We call these ‘classes of algorithms’ as there are many fea-
sible variations in each class which do not change the fundamental
character of the algorithms.

Preliminaries. Our algorithms take as input a description of the
(multi)graph and any features and labels. Since the graphs we con-
sider may become very large in size, typically the description will
be in the form of an adjacency list or similar set of edges. How-
ever, it is often convenient to give the description of the algorithms
in adjacency matrix notation. Let A be an n× n adjacency matrix
representing a graph G = (V, E), where aij = 1 if (i, j) ∈ E and
0 otherwise (more generally, aij can be a weight of an edge from i
to j if any); n = |V | is the number of nodes. Let A(i) denote the
ith row of matrix A and A(j) denote the jth column of A, where
i, j ∈ [1, n]. For a function f whose domain is dom(f) we use the
notation diag(f) as shorthand for the dom(f) × dom(f) matrix
such that diag(f)ii = f(i), and is zero elsewhere.

The neighborhood of each i node, defined by the immediately
adjacent nodes, is encoded as a feature vector, B(i), based on the
link structure of i (in general, the feature vector could also include
other features of the node, but here we focus on a core link-based
classification problem). Typically, this feature vector is initialized
to represent the frequency of the labels on the nodes in its neigh-
borhood. From these vectors, we create an n× c feature matrix
B. Given a function f mapping from n to c, let χ(f) denote the
characteristic matrix of f , i.e. χ(f)il = 1 iff f(i) = l. We can
write B = Aχ(M), where M is the initial labeling. In such graph
labeling problems we potentially change the feature vectors as we
make inferences and label nodes—when the neighbor of node i is
labeled, the feature vector of i changes to reflect this new label—to
enable the propagation of labels to all nodes.

We consider only directed graphs, since the natural extension of
these algorithms to the undirected case is equivalent to the directed
case where each directed edge is present in the reverse direction.
However, because of this directionality, nodes with no incoming
edges have no neighborhood information for us to predict from
(they have an empty feature vector); hence such nodes may remain
unlabeled, or can be labeled with most likely label from the prior
distribution. In some networks, link reciprocity (a bi-directional
link) is an important indicator of a stronger connection; this can be
captured giving an increased weight to reciprocal links.

2.3 Local Iterative Methods
With only a graph and some initial labels, there is limited infor-

mation available to help us propagate the labeling. We therefore

make some assumptions about how nodes attain their labels. Our
local methods assume the existence of homophily: that links are
formed between similar entities so that the label of a node is a func-
tion of the labels of nearby nodes [13]. The algorithms succeed if
the following hypothesis holds:

Nodes link to other nodes with similar labels.

Thus, we view each incoming edge in a directed graph as repre-
senting a “vote” by an adjacent node. Let `k be the label on node u.
An edge from node u to node v implies node u is a vote for the label
`k for node v. For each unlabeled node, the votes from its neighbors
are combined to derive its label by a function voting(B(i)). When
performed iteratively, recalculating feature vectors each step, this
leads to propagation of labels. There are many variations, based
on the voting function used to assign the label based on the feature
vector, the neighborhood used to generate the feature vector, and
so on. Intuitively, the simplest voting scheme is “plurality voting”
which chooses the most frequently voted label by the immediately
adjacent nodes of an unlabeled node (as in [12]). We can also con-
sider other functions, such as taking the median or average label
drawn from an ordered domain, and so on.

In each iteration, we visit each node i ∈ U , and determine a
label for it based on its current neighborhood, rather than fixing the
label for an unlabeled node once and for all. A node may receive
different labels in different steps, with different levels of confidence
in each based on the round in which the label is assigned.
Formal Definition. Let A be the adjacency matrix representation
of the graph. At each iteration, we compute a new labeling func-
tion M t such that for every (unlabeled) node i ∈ U , the label de-
termined based on voting by its neighbors is assigned to M(i). To
label the nodes, at iteration t, M t is defined by:

M t(i)← voting(Bt
(i))

where Bt is the feature matrix for the t-th iteration, defined by:

DEFINITION 2. Let M t : V → L ∪ {0} denote the labeling
function on the t-th iteration (we insist that M t(i) = M(i) for
i ∈ W ). Let conft : V → R be a function from nodes denoting
the relative confidence of the algorithm in its labeling at the t-th
iteration. We set M0 = M and conf0(i) = 1 for all i ∈ W , zero
otherwise. Lastly, let decay : N → R be a function which returns
a weighting for all labels assigned a iterations ago. We define the
iterative feature vector at iteration t, Bt as

Bt = A

t−1X
t′=0

decay(t− t′)χ(M t′) diag(conft′) (1)

We consider a simple setting of these functions: our instantiation
assigns equal confidence to every labeling (i.e. conft(i) = 1 for
all i, t), and equal weighting for all label values (i.e. decay(x) = 1
for all x), which favors labels assigned earlier in the process. This
makes Bt convenient to compute: (1) simplifies to Bt = Bt−1 +
AM t−1, and so can be computed in place without keeping a his-
tory of prior values of Bt′ . Note that the absolute values of entries
in Bt are unimportant, just the relative values, due to our applica-
tion of voting via arg max (thus one can normalize and view Bt

as a distribution on labels, and the voting take the maximum likeli-
hood label). We set a bound on the number of iterations performed
before terminating as s. Algorithm 2.1 shows pseudocode for the
local iterative method and we summarize its performance (proofs
omitted for brevity):

LEMMA 2.1. The local iterative algorithm can be implemented
so each iteration runs in time linear in the input size, O(|V |+ |E|).



(a) Local: Iteration 1 (b) Local: Iteration 2 (c) Global Nearest Neighbor

Figure 1: Graph Labeling Examples

Example. Figures 1(a) and 1(b) show the working of the local
iterative approach on a small example, with arg max as the voting
function. Nodes X , Y , Z and W are unlabeled. The feature of
vector of node X records a frequency of 2 for label ‘18’, and 1 for
label ‘19’. So in the first iteration, node X is labeled ‘18’ based
on the votes by its neighbors. In the following iterations, labels
are propagated to nodes Y and Z. Since node W does not have any
incoming edges, it remains unlabeled.
Iterations. The number of iterations should be chosen large enough
so that each node has the chance to get labeled. This is bounded by
the diameter of the (directed) graph and the graphs we consider are
typically “small world”, and so have a relatively small diameter—
often, O(log |V |). Additional iterations increase our confidence in
the labeling, and allow the labeling to stabilize. Although is possi-
ble to create adversarial examples where the iterative process never
stabilizes (because the label of a node cycles through several possi-
ble labelings), such extreme cases do not occur in our experiments.
Multigraph Case. We highlight some important issues when there
are multiple node and edge types:
• Pseudo-labels. In multigraphs, we may have multiple classes of
nodes, where the label only applies to certain of them. In our tele-
coms example, it is not meaningful to classify the calling patterns
of certain numbers (such as 1-800 numbers which are for incoming
calls only). Instead of omitting such nodes, we use the notion of
pseudo-labels: allocating labels to nodes by the iterative method
even if these labels are not wholly meaningful, as a means to the
end of ensuring the nodes of interest do receive meaningful labels.
This generalization turns out to be very important in propagating
labels to otherwise isolated nodes.
• Edge weights. With different types of edge, and different num-
bers of edges between nodes, it is natural to introduce edge weights,
and modify the feature vectors by using these weights to scale the
votes. These details are mostly straightforward.
• Additional Features. In some cases we have additional features
F attached to certain nodes or edges. It is not completely obvious
how to cleanly extend the iterative approach to incorporate these.
One direction is to use an appropriate distance function to measure
the similarity between the features of pairs of nodes connected by
an edge, and re-weight the voting based on the similarity: the votes
of more similar nodes count more than others. However, the spec-
ification of the distance and weighting schemes is non-trivial, and
is left for future work.

2.4 Global Nearest Neighbor
The global nearest neighbor family of methods uses a different

notion of proximity to the local algorithm to find labels. By analogy
with the traditional k-Nearest Neighbor classifier, we consider the

Algorithm 2.2: GLOBAL1NN(E, M )

Bn×c ← 0
Sn×N ← 0
for (i, j) ∈ E

do

8<:k ←M(j)
if k 6= 0

then Bik ← Bik + 1
for i ∈ U

do

8><>:
for j ∈W

do
˘
Sij ← sim(B(i), B(j))

k ← arg max(S(i))
M(i)←M(k)

set of labeled nodes and take the labels of the k-best matches. The
matching is based on the similarity of the feature vectors, i.e. the
labels of the neighboring nodes. The underlying hypothesis is one
of co-citation regularity [10], that is:

Nodes with similar neighborhoods have similar labels.

Example. Figure 1(c) gives an example of labeling by the global 1-
nearest neighbor approach. Of all labeled nodes, the neighborhood
of nodes X is most similar to that of the highlighted node with label
18. The algorithm assigns the label 18 to node X. A similar nearest
neighbor search is repeated for all unlabeled nodes.
Formal Description. As before, consider the adjacency matrix A
and an initial labeling function M , which define a feature matrix
B. Let Sn×n be a similarity matrix. For each unlabeled node i,
compute the similarity coefficient Sij between B(i) and B(j), for
each labeled node j. Node i is assigned the most frequent label of
the k nodes with the highest similarity coefficients i.e. the label of
node arg max(S(i)).
Choice of Similarity Function. Given two vectors x and y, there
are many possible choices, such as the Lp distances: Euclidean
distance, ‖x−y‖2, and Manhattan distance, ‖x−y‖1. We employ
Pearson’s correlation coefficient,

C(x, y) = nx·y−‖x‖1‖y‖1√
n‖x‖22−‖x‖21

√
n‖y‖22−‖y‖21

.

Intuitively, the correlation coefficient is preferred over Euclidean
distance when the shape of the vectors being compared is more
important than the magnitude.

In the multigraph case, we can naturally take into account dif-
ferent nodes and edges (V +, E+) and features F by keeping the
algorithm fixed and generalizing the similarity function. For set
valued features, we can compare sets X and Y using measures
such as Jaccard (J(X, Y ) = |X∩Y |

|X∪Y | ). The similarity function can
combine the similarities of each feature. For example, we later



utilize a weighted combination of Jaccard coefficient (for features
represented as sets) and correlation coefficient (for vector features).

Algorithm 2.2 shows the pseudocode for the global nearest neigh-
bor method, and we summarize:

LEMMA 2.2. The total running time for the global nearest neigh-
bor method is O(|U ||W ||L|+ |E|).

Approximate Nearest Neighbors. The above lemma assumes a
naive exhaustive comparison of every labeled node with every unla-
beled node. For appropriate similarity functions, this can be accel-
erated via dimensionality reduction and approximate nearest neigh-
bors algorithms to find nodes that are approximately the closest [9].
Multi-pass Generalization. As defined above, the global nearest
neighbor algorithm takes a single pass and attempts to assign a la-
bel to every unlabeled node based on the initially labeled neighbor-
hoods. This could result in poor inferences when a node has few,
if any labeled neighbors. As in the iterative case, it is possible to
define a multi-pass algorithm, which bases its conclusions on labels
(and confidences) defined in the previous iteration; here we focus
on the single-pass version for brevity.

3. LABELING BLOGS

3.1 Anatomy of a Blog
A blog is typically a web-based journal, with entries (posts) dis-

played in reverse chronological order. Postings are publicly view-
able, and readers may provide immediate feedback by adding a
comment. Websites offer blog hosting with a variety of user in-
terfaces and features. Blogs commonly include information about
the owner/author in the form of a profile, in addition to the blog
entries themselves.
User Profile. When users opens accounts at a blog hosting site,
they are asked to fill out a user profile form with age, gender, occu-
pation, location, interests (favorite music, books, movies, etc.). In
some cases, the user can also provide an email address, URL of a
personal website, Instant Messenger ID’s, etc. Most of this infor-
mation is optional. Some services only reveal some information to
a set of “friends” (accounts on the same service); this list of friends
may be visible to all.
Blog Entries. The blog owner posts blog entries which contain
text, images, links to other websites and multimedia etc. They are
typically accompanied by the date and time each entry was made.
Blog postings often reference other blogs and websites (as illus-
trated in Figure 2(a)). Bloggers can also utilize special blog sec-
tions to display links of particular interest to them, such as “friends”,
“links”, “subscriptions”, etc.

3.2 Modeling Blogs As Graphs
There are many ways to extract a (multi)graph from a collection

of blog data. We outline some of the choices in the modeling and
extraction of features.
Nodes. We can encode blogs as graph nodes at several granulari-
ties: we can treat each blog posting and comment as separate nodes,
or consider all postings within a single blog as constituting a sin-
gle node. There is also some subtlety here, since some blogs may
have multiple authors, and single authors may contribute to multi-
ple blogs. However, the common case is when a single author has
a single blog. We adopt the model where the entirety of a blog is
represented by a single node. Additional nodes represent webpages
connected to blogs.
Edges. We use the (web)links to define the edges in the blog graph:
a directed edge in the blog graph corresponds to a link from the blog

to another blog or website. We can automatically categorize these
links according to the destination and where they appear within the
blog pages: a link appearing in a blog entry, a link appearing in a
comment posted as a response to a blog entry, a link in the “friends”
category, etc. These define various sets of edges: EF , based on
explicit friend links, EB , containing all other links to blogs, and
EW , containing links from blogs to websites.

Labels. Having defined the nodes and edges, we consider a variety
of labels. In full generality, we can consider almost any label that
can be attached to a subset of the nodes and propagated by our
algorithms. In our study, we restrict ourselves to labels based on
components of the user profile. These cover a broad set of different
label types (binary, categorical, continuous), and ensure that we can
use collected data to define training and test data. We consider the
following labels:
• Age— Blog profiles typically invite the user to specify their date
of birth, and a derived age is shown to viewers. But the “age” we
attach to a blog can have multiple interpretations: the actual age
of the blog author, the “assumed” age of the author, the age of the
audience, and so on. We will evaluate our algorithms at matching
given age labels that are withheld from the algorithm.
• Gender— Gender is another natural profile entry to attempt to
propagate. Prior work has looked for text and presentation fea-
tures [18] in order to predict gender; here, we aim to use link infor-
mation only. Gender has multiple interpretations similar to age.
• Location— Lastly, we include the (stated) location of the au-
thor, at the granularity of continents (category with seven values)
or country (category with over two hundred possible values).

Many other labels are possible, but we focus on these three, since
they demonstrate common label types, and are available in many
blog profiles for evaluation. Figure 2 illustrates possible graphs on
the same set of nodes, showing different labels.

3.3 Algorithms Applied to the Blog Graph
We represent a collection of blogs and the links between them by

a graph over a set of nodes VB . Each node v ∈ VB corresponds to
a blog user (identified by a unique user id). We examined the three
label types: age, gender and location (by country or by continent).
Label values are extracted from the blog owner’s profile if present.
In applying our algorithms, different issues arise for each label:

Age. When working with age label, our hypotheses translate to
bloggers tend to link to other bloggers of their own age (local it-
erative) and bloggers of the same age link to bloggers of similar
age distributions (global nearest neighbor). Both of these seem
plausible, but distinct. The initial feature matrix, Bn×120, en-
codes the frequency of adjacent ages in years for each node. Be-
cause age is a continuous attribute, we smoothed each feature vec-
tor by convolution with the triangular kernel [0.2, 0.4, 0.6, 0.8, 1.0,
0.8, 0.6, 0.4, 0.2]. This improved the quality of the observed re-
sults, so all experiments shown use this kernel. Our default simi-
larity method is the correlation coefficient.

Location. The hypotheses for the location label are that bloggers
tend to link to other bloggers in their vicinity (local) and bloggers
in the same locale link to similar distributions of locations (global).
The former hypothesis seems more intuitively defensible. Feature
vectors encode 245 countries belonging to seven continents.

Gender. For gender, the iterative assumption is bloggers link to
bloggers of their own gender (local) or bloggers of the same gen-
der link to similar patterns of genders. Neither seems particularly
convincing, and indeed for gender we saw the worst experimental
results. This is partly due to using the desired label as the (only)
feature in the classification. As noted in Section 2.3, our meth-
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Blogger LiveJournal Xanga
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Age 47K 124K 493K
Labels Gender 113K 580K

Location 111K 242K 430K

(c) Summary of data used for blog graphs

Figure 3: Label and Data Collection Summary

ods allow other features to be included and we hypothesize that in-
cluding additional features (such as the age and location, if known)
could improve the learning. We defer such studies to future work.

Multigraph Edges. We tried several weighting schemes for edges
to reflect the relative importance attached different link types (blog,
friends, web), and studied the impact this can have on the quality of
the resultant labeling. Many weightings are possible; for brevity we
report only the following settings: Blog-blog links only (all edges
in EB have weight 1, all other edges have weight 0); Friends only
(EF edges weight 1, others 0); Blogs and friends (EB and EF have
weight 1); Blogs and web (EB and EW have weight 1).

Multigraph Nodes. In addition to nodes corresponding to blogs,
we include additional nodes VW corresponding to (non-blog) web-
sites. These turn out to be vital in propagating labels to otherwise
weakly linked subgraphs. To make use of the webpage nodes, we
replicate edges to webpages in the reverse direction. All webpage
nodes are initially unlabeled, and the local iterative method there-
fore assigns a pseudo-label to all of these nodes in the course of
its operation. Although some labels such as Location or Age have
unclear semantics when applied to webpages, it is possible to in-
terpret them as a function of the location and age of the bloggers
linking to the webpage. This can be viewed as applying co-citation
regularity in the iterative model, allowing labels to be transfered
from one blog to another via these intermediaries.

The Global Nearest Neighbor algorithm takes a different ap-
proach to using the nodes in VW . Since no such nodes are initially
labeled, they would play no part in the (single-pass) algorithm even
if we assign them pseudo labels. Instead, we effectively treat the
links to nodes in VW as defining a set of (sparse, high dimensional)
binary features. We therefore extend the similarity function be-
tween two nodes, as suggested in Section 2.4 as a weighted sum of
the (set) similarity between VW neighborhoods and (vector) simi-

larity between VB neighborhoods. For nodes i ∈ U and j ∈W the
similarity coefficient is:

Sij = α× C(B(i), B(j)) + (1− α)× J(VW (i), VW (j))
for some 0 ≤ α ≤ 1, where B(i) is the feature vector of the node
i, and VW (i) is the set of web nodes linked to the blog node i.

4. EXPERIMENTS

4.1 Experimental Setup
Data Collection. In our experiments we used data collected in
Summer 2006 by crawling three blog hosting sites: Blogger, Live-
Journal and Xanga. The data consists of two main categories: user
profiles containing various personal information provided by the
user; and blog pages for recent entries in each crawled blog. We
created an initial seed set of blogs and profiles by randomly iden-
tifying a subset of blogs hosted by each site. This initial seed set
was expanded by downloading blogs (and corresponding profiles)
referenced from the initial set. Our final data set therefore con-
sists of (a subset of) blogs from each of the three crawled sites,
corresponding profiles, and extracted links between blogs, and to
webpages. Each web node corresponds to a single domain name
(so links to http://www.cnn.com/WEATHER/ and http:
//www.cnn.com/US/ are counted as www.cnn.com). This
improves the connectivity of the induced graph. We did not extract
links from webpages back to blogs, since these were very rare. The
results for the number of user profiles collected and the number of
links extracted are shown in Table 3(c).

Demographics. We plotted the age, gender and location distribu-
tion of the users in our data set for each blog site. Ages claimed
by blog users range from 1 to 120, with a small fraction of extreme
values (on average, less than 0.6% with ages above 80). We did
not filter implausible values, and this did not seem to impact re-
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Figure 4: Experiments of Accuracy in Finding Age Labels

sults adversely. Not all users reveal their age, while some reveal
only birthday, but not birth year. It can be observed from the dis-
tribution of ages in Figure 3(a) that Xanga has the youngest user
population of the three networks, while Blogger has the most ma-
ture population among the three. Among the users that listed their
gender, 63% of Xanga users are females while Blogger has only
47% of female users. LiveJournal does not make gender informa-
tion available. Each of the three hosting sites we crawled offered
a different format for specifying location. Blogger allows free text
in location fields “City/Town” and “Region/State”, and LiveJournal
allows free text in “City”; as a result many users provide nonsensi-
cal values. Xanga organizes its users into “metros” according to ge-
ographical hierarchy (continent, country, city). Figure 3(b) shows
the distribution of locations by continent. Additional details on the
data collection process and analysis of the data can be found in [3].

Label Distribution. We analyzed the average and the median num-
ber of labeled neighbors in our multigraph for each of the nodes per
data source, taking into account only incoming edges. In Blogger,
the average number of labeled neighbors is 0.45 per node (most
have 0). In Livejournal and Xanga the average is 7.5 and 3.1 re-
spectively; the median is 2 in Livejournal and 1 in Xanga. Includ-
ing friend links did not make a significant difference.

Implementation Issues. We implemented our algorithms in C++
and performed a detailed set of experiments to compare the perfor-
mance of our methods on the blog data. In each task, the blog nodes
are labeled with one of the three types of label: continuous (age),
binary (gender), nominal (location). We also varied the multigraph
by setting different weights for the link types, discussed in Sec-
tion 3.3. For the Iterative local algorithm we set the number of
iterations, s, to five, and the voting function to arg max (plurality
voting). For Global nearest neighbor, we used correlation coef-
ficient as the similarity function, with weighting factor α = 0.5
when including web nodes as features. In each experimental set-
ting, we performed 10-fold cross validation, and report the average
scores over the 10 runs: the set of labeled nodes is further divided

into 10 subsets and evaluation is in turn performed on each subset
using the remaining 9 for training. Across all experiments, the re-
sults were highly consistent: the standard deviation was less than
2% in each case. Although we run our experiments on the entire
data set, we are able to evaluate only on the labeled subset (which
is different for each label type).

4.2 Accuracy Evaluation
Age label. Figure 4 summarizes the various experiments performed
while labeling the blog nodes with ages 1 to 120. We evaluate
against the stated age in the blog profile. The features used by the
two algorithm classes, Local Iterative and Global NN, are derived
from the labels on the training set. We observe that with this in-
formation alone it is possible to attain an accurate labeling in blog
data. Note that due to the graph structure, some nodes have empty
feature vectors due to lack of links and, no matter how we propa-
gate information, will never have any useful features with which to
label. We therefore exclude such nodes from our evaluation.

Figure 4(a) shows the performance of the Local Iterative method
for different accuracy levels from exact prediction to predicting
within five years. The predictions for LiveJournal and Blogger
show that with label data alone, it is possible to label with accu-
racy about 60% and 50% respectively within 3 years difference of
the reported age. For the Xanga dataset, which is the most densely
connected, we saw results that are appreciably much stronger: 88%
prediction accuracy within 2 years off the reported age. Figure 4(b)
shows a similar plot for Global NN algorithm. The prediction ac-
curacy is not significantly different than the Local Iterative method.
We observed that both methods tended to make accurate predictions
for the same set of nodes.

Multigraph Edges. The remainder of the plots in Figure 4 com-
pare the accuracy with the inclusion of additional edge types at
unit weight. For LiveJournal, both the local and global methods
benefit from using just the friend links (Figures 4(c) and 4(d)), sug-
gesting that these edges conform more strongly to the hypotheses.
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Predicted→ NA SA As Eu Af Oc
N America 92 1 2 3 0 1
S America 4 90 0 6 0 0
Asia 13 0 81 4 0 1
Europe 12 3 1 82 1 1
Africa 19 4 4 17 56 0
Oceania 25 2 10 7 1 55
Precision 0.56 0.90 0.82 0.69 0.97 0.95
Recall 0.93 0.90 0.81 0.82 0.56 0.55

(e) Confusion Matrix with Precision and Recall
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Figure 5: Gender and Location Labels, and propagation results

The number of explicit friend links in Xanga is quite small which
explains the decrease in the prediction accuracy when considering
only friends (Blogger does not define friend links explicitly, so is
not included here). We observe that including both the friend and
blog edges often reduces the accuracy in all cases, showing the im-
portance of different edge weights in the multigraph case.

Multigraph Nodes. We next analyzed the multigraph composed of
both blog and web nodes, linked by blog and web links. There was
no significant difference (less than 2%) in the prediction accuracy
for age of bloggers when web nodes were considered as shown in
Figures 4(e) and Figure 4(f). However, including web nodes in the
analysis greatly improves the connectivity of the graph: Figure 5(a)
shows that including web links significantly reduces the number of
connected components. Consequently a larger fraction of nodes are
given labels (Figure 5(b)), with little change in overall accuracy.

A side-effect of the iterative labeling is to assign age labels to
websites (“pseudo-ages”). For sites with highly targeted audiences,
the age reflects the age of the audience: in all data sets Facebook,
a social networking site frequented by college students, is assigned
an age of 21, while its high-school only counterpart is assigned
an age around 17. The assigned age also reflects the demographic
of the blog network: the USA Today website is consistently as-
signed lower ages than the Washington Post, but these age pairs are
higher in LiveJournal (28 vs. 25) than Xanga (23 vs. 17), which
has younger users. The website for the band Slipknot is given age
much lower (15) than that for Radiohead (28), reflecting the ages
of their respective fans.

Location label. Figures 5(c) and 5(d) show the accuracy of predict-
ing the country and continent of the blogger with local and global
methods respectively while considering blog links and friend links.
The local method predicts the country with about 80% accuracy for
each dataset, significantly higher than the accuracy of predicting
the correct age with no error. The reflects the fact that the hypoth-
esis that connected blogs have similar locations (homophily) holds

here. The global method performs less well, suggesting that the
global hypothesis does not hold well for location.

For inferring the continent of the blogger, the local algorithm’s
accuracy is 88% for LiveJournal and about 85% for Blogger and
Xanga (Figure 5(c)). This task should be easier than predicting
country, and indeed all methods improve by up to 10 percentage
points. Drilling down, the confusion matrix (in percentage) pre-
sented in Table 5(e) helps evaluate the performance of the classifier
on the Blogger dataset with the local method. Analysis of the pre-
cision and recall shows that the algorithm has a slight tendency to
over represent the most common labels: North America (very com-
mon) has high recall but lower precision, while Africa (very rare)
has high precision but lower recall.

Gender. As shown in Figure 5(f), our methods predict gender with
up to 65% accuracy, with link information alone. This is better than
random guessing, but not much, especially compared to methods
that have looked at richer features (text content, word use, color
schemes) [18]. Here, the local and global hypotheses do not hold
well, and so more information is needed to improve the labeling.

4.3 Algorithm Performance Analysis
We compare the two methods by plotting the ROC curve for pre-

dicting the class of twenty-year old bloggers on the Xanga data set
in Figure 6(a). The area under the curve (AUC) is 0.88 for Local It-
erative and 0.87 for the Global NN method. Our methods give con-
sistent accuracy as the fraction of labeled data for training is varied,
even to below 1% of the total number of nodes (Figure 6(b)).

To study the impact of number of iterations for labeling, we stud-
ied the number of nodes whose age label changes during each it-
eration of the local method. The results for Blogger are plotted
in Figure 6(c). There is a sharp decline in the first iteration, since
many unlabeled nodes gain labels from their neighbors. The label-
ing quickly stabilizes, and although labels continue to shift, they
do not impact the accuracy. We determined that just five iterations
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Figure 6: Accuracy and Comparison with other methods

sufficed for a good quality labeling, and the accuracy was not very
sensitive to this choice.

Recall that the running time of the global method depends on
length of the feature vector, number of edges, labeled and unla-
beled nodes from Theorem 2.2. Figure 6(d) shows the running time
of the global method for varying feature vectors lengths and num-
ber of nodes and edges. The iterative algorithms (not shown) were
significantly faster, typically taking around 10 seconds of CPU time
instead of tens of minutes for the global case. The feature vector
for countries is longer than that for continents, so continent label-
ing is faster than country labeling. Experiments on age (not shown)
took longer, since the numbers of labeled and unlabeled nodes were
approximately equal, the worst case for our algorithm. From the re-
sults of Figure 6(b), we could improve running time by using only
a subset of the labeled nodes: that is, only compare to a (random)
sample of the training data instead of every example.

4.4 Comparison with Previous Work
In prior work, Zhou et al. demonstrate a method for learning

binary labels on graph data [24]. We implemented the method in
Matlab using sparse matrix representation, with the same parameter
values used in [24]. For comparison, we considered binary age
labeling problems. The target label is whether the age is below a
threshold of 20, 30, or 40 years. Figure 6(e) shows the result of
ten-fold cross-validation on LiveJournal data: there is a benefit to
using our local and global algorithms. The results were similar for
the other datasets and labels.

We also compared with a large class of methods based on ap-
plying standard machine learning methods as a ‘black box’ over
the feature vectors described above. This approach is at the core
of prior work on relational learning and link classification [16, 10].
We tested methods drawn from the Weka [20] library, and show
only the best of these on location classification in Figure 6(f). Since
the data is skewed, the Naı̈ve Bayes classifier trivially assigns all
test samples to one or two popular classes. The performance of

Decision Trees approaches that of the local method. Analysis of
these resulting trees shows that they seem to encode rules similar
to the ones embodied by the local iterative algorithm: the learned
trees rule out locations with frequency count zero, then use a series
of thresholds to (approximately) identify the most common adja-
cent label. This strengthens our confidence in the local hypothesis
for this data. Note that Decision Trees do not scale well to a large
number of classes, and were significantly slower to learn and label
than the local iterative approach.

5. RELATED WORK
Our work is most closely related to problems of classification of

relational data [7, 19, 16, 6]. The area of Relational Learning is
concerned with classification of objects that can be represented as
relational databases. Our problem of graph labeling fits into this
framework, since a (multi)graph can be encoded as tables of nodes
and edges (one table for each node type, and one for each link type).
Getoor et al. [7] proposed Probabilistic Relational Models (PRMs)
which induce a Bayesian network over the given relational data to
encode dependencies between each entity type and its attributes.
This generative model is also limited by the constraint that the in-
duced Bayesian network must be acyclic, which is typically not the
case in blog/web networks: our graphs have cycles. To overcome
this constraint, Taskar et al. [19, 10] introduced Relational Markov
Networks (RMN), a discriminative model based on Markov net-
works. Generalized Belief Propagation [21] is used for propaga-
tion of labels in the network. RMNs are described in the context
of graphs with only one node type, instead of multigraphs, and rely
on undirected edges—a limitation in settings where directionality
provides information (as in web links). Neville et al. propose a de-
cision tree variant Relational Probability Trees (RPT) [16], which
incorporates aggregates over the neighborhood of a node (number
of neighbors, average or mode of an attribute value, etc.).

Prior work often operates in the traditional supervised classifi-
cation mode, with the assumption of a fully labeled graph to train



on. This is not practical in our setting, especially where we ob-
serve a large graph of which only a subset of nodes are labeled.
The induced fully labeled subgraph is typically so sparse that it is
not representive, and may have few remaining links. Instead, one
needs semi-supervised learning on graphs. Semi-supervised meth-
ods use the combination of labeled and unlabeled examples [25,
26], viewed as a graph. Zhou et al. use graph regularization to im-
pose a smoothness condition on the graph for labeling [24]. The
proposed method is defined for a binary classification problem,
and it not easily extensible to the general multi-class case. Ear-
lier work [23] addresses the multi-class labeling problem, however
does not consider the underlying link-structure in the data and as-
sumes a distance-based affinity matrix. More recently, Zhang et
al. [22] studied graph regularization for web-page categorization.

Our problem of graph labeling lies at the intersection of rela-
tional learning and semi-supervised learning. Here, prior approaches
involve preprocessing the data such that it can be used as input to a
known machine learning methods like random forests [2], or logis-
tic regression [10]. This achieved by transforming the graph fea-
tures into object attributes, and summarizing a multiset of neigh-
boring nodes and their attributes by aggregate functions such as
mean, mode, and count. Neville and Jensen [15] introduced the
notion of an ‘iterative classifier’ over simple graphs (graphs with
only one node type), which allows the result of one iteration of
classification to influence the features used by the next round, for a
fixed number of rounds. Similar to our local method, Macskassy et
al. [12] proposed a simple Relational Neighbor (RN) classifier. The
authors report comparable empirical performance of RN classifier
and more sophisticated methods like PRM and RPT. Our graph la-
beling problem hearkens back to work of Chakrabarti et al. [5].
They observe that topic classification of webpages based on text
can be improved by including information about the class of neigh-
bors. Our aim is to go further and perform the classification based
only on the neighborhood information from the link structure.

Analysis of blogs and other social media have been the focus
of much research in the recent years. For classification in particu-
lar, prior work has studied blogs with respect to political orienta-
tion [1], mood [14], and so on. Non-link aware techniques like Nat-
ural Language Processing have been used for this [17]. There has
also been some initial work on predicting the age and gender [18]
and [4] of blog authors using textual features. These papers showed
the quality of certain textual features for producing similar labels
to those we study here. Here, we show that links alone can be very
powerful. More recently, the study by MacKinnon et al. [11] deter-
mined the probability distribution of friends in LiveJournal to infer
location and age. The work of Hu et al. [8] uses a Bayesian frame-
work to model web-click data for predicting age and gender; a side
effect is to assign demographic attributes to the web pages them-
selves. Note that click data is used, not link data, which means it
applies to very different settings to those we consider.

6. CONCLUDING REMARKS
We have formalized the graph labeling problem for classifica-

tion on blogs, and studied two classes of algorithms. These algo-
rithms scale to large graphs, with hundreds of thousands of nodes
and edges in a matter or minutes or seconds. On a case study with
blog data, we see accuracy of up to 80-90% for correctly assigning
labels, based only on link information. These results hold with a
training set of 1% or even less compared to the size of the whole
graph, and training data extracted automatically from profiles. It
remains to validate these result on other domains, and to under-
stand better how incorporating additional features can improve the
results of these methods.
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