
Practical Verified Computation
with Streaming Interactive Proofs

Graham Cormode
AT&T Labs—Research

graham@research.att.com

Michael Mitzenmacher∗
Harvard University

michaelm@eecs.harvard.edu

Justin Thaler†
Harvard University

jthaler@seas.harvard.edu

ABSTRACT
When delegating computation to a service provider, as in the
cloud computing paradigm, we seek some reassurance that
the output is correct and complete. Yet recomputing the
output as a check is inefficient and expensive, and it may
not even be feasible to store all the data locally. We are
therefore interested in what can be validated by a streaming
(sublinear space) user, who cannot store the full input, or
perform the full computation herself. Our aim in this work is
to advance a recent line of work on “proof systems” in which
the service provider proves the correctness of its output to
a user. The goal is to minimize the time and space costs
of both parties in generating and checking the proof. Only
very recently have there been attempts to implement such
proof systems, and thus far these have been quite limited in
functionality.

Here, our approach is two-fold. First, we describe a care-
fully chosen instantiation of one of the most efficient general-
purpose constructions for arbitrary computations (stream-
ing or otherwise), due to Goldwasser, Kalai, and Rothblum
[19]. This requires several new insights and enhancements to
move the methodology from a theoretical result to a prac-
tical possibility. Our main contribution is in achieving a
prover that runs in time O(S(n) logS(n)), where S(n) is
the size of an arithmetic circuit computing the function of
interest; this compares favorably to the poly(S(n)) runtime
for the prover promised in [19]. Our experimental results
demonstrate that a practical general-purpose protocol for
verifiable computation may be significantly closer to reality
than previously realized.

Second, we describe a set of techniques that achieve gen-
uine scalability for protocols fine-tuned for specific impor-

∗This work was supported in part by NSF grants CCF-
0915922, CNS-0721491, and IIS-0964473, and in part by
grants from Yahoo! Research, Google, and Cisco, Inc.
†Supported by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate Fel-
lowship (NDSEG) Program, and in part by NSF grants
CCF-0915922 and CNS-0721491.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 978-1-4503-1115-1/12/01 ...$10.00.

tant problems in streaming and database processing. Focus-
ing in particular on non-interactive protocols for problems
ranging from matrix-vector multiplication to bipartite per-
fect matching, we build on prior work [8, 15] to achieve a
prover that runs in nearly linear-time, while obtaining opti-
mal tradeoffs between communication cost and the user’s
working memory. Existing techniques required (substan-
tially) superlinear time for the prover. Finally, we develop
improved interactive protocols for specific problems based
on a linearization technique originally due to Shen [33]. We
argue that even if general-purpose methods improve, fine-
tuned protocols will remain valuable in real-world settings
for key problems, and hence special attention to specific
problems is warranted.

1. INTRODUCTION
One obvious impediment to larger-scale adoption of cloud

computing solutions is the matter of trust. In this paper,
we are specifically concerned with trust regarding the in-
tegrity of outsourced computation. If we store a large data
set with a service provider, and ask them to perform a com-
putation on that data set, how can the provider convince us
the computation was performed correctly? Even assuming
a non-malicious service provider, errors due to faulty algo-
rithm implementation, disk failures, or memory read errors
are not uncommon, especially when operating on massive
data.

A natural approach, which has received significant atten-
tion particularly within the theory community, is to require
the service provider to provide a proof along with the answer
to the query. Adopting the terminology of proof systems [2],
we treat the user as a verifier V, who wants to solve a prob-
lem with the help of the service provider who acts as a prover
P. After P returns the answer, the two parties conduct a
conversation following an established protocol that satisfies
the following property: an honest prover will always con-
vince the verifier to accept its results, while any dishonest
or mistaken prover will almost certainly be rejected by the
verifier. This model has led to many interesting theoretical
techniques in the extensive literature on interactive proofs.
However, the bulk of the foundational work in this area as-
sumed that the verifier can afford to spend polynomial time
and resources in verifying a prover’s claim to have solved a
hard problem (e.g. an NP-complete problem). In our set-
ting, this is too much: rather, the prover should be efficient,
ideally with effort close to linear in the input size, and the
verifier should be lightweight, with effort that is sublinear in
the size of the data.

To this end, we additionally focus on results where the
verifier operates in a streaming model, taking a single pass
over the input and using a small amount of space. This
naturally fits the cloud setting, as the verifier can perform
this streaming pass while uploading the data to the cloud.
For example, consider a retailer who forwards each transac-
tion incrementally as it occurs. We model the data as too
large for the user to even store in memory, hence the need
to use the cloud to store the data as it is collected. Later,
the user may ask the cloud to perform some computation on
the data. The cloud then acts as a prover, sending both an
answer and a proof of integrity to the user, keeping in mind
the user’s space restrictions.

We believe that such mechanisms are vital to expand the
commercial viability of cloud computing services by allow-
ing a trust-but-verify relationship between the user and the
service provider. Indeed, even if every computation is not
explicitly checked, the mere ability to check the computa-
tion could stimulate users to adopt cloud computing solu-
tions. Hence, in this paper, we focus on the issue of the
practicality of streaming verification protocols.

There are many relevant costs for such protocols. In the
streaming setting, the main concern is the space used by the
verifier and the amount of communication between P and
V. Other important costs include the space and time cost to
the prover, the runtime of the verifier, and the total number
of messages exchanged between the two parties. If any one
of these costs is too high, the protocol may not be useful in
real-world outsourcing scenarios.

In this work, we take a two-pronged approach. Ideally, we
would like to have a general-purpose methodology that al-
lows us to construct an efficient protocol for an arbitrary
computation. We therefore examine the costs of one of
the most efficient general-purpose protocols known in the
literature on interactive proofs, due to Goldwasser, Kalai,
and Rothblum [19]. We describe an efficient instantiation
of this protocol, in which the prover is significantly faster
than in prior work, and present several modifications which
we needed to make our implementation scalable. We believe
our success in implementing this protocol demonstrates that
a fully practical method for reliable delegation of arbitrary
computation is much closer to reality than previously real-
ized.

Although encouraging, our general-purpose implementa-
tion is not yet practical for everyday use. Hence, our second
line of attack is to improve upon the general construction via
specialized protocols for a large subset of important prob-
lems. Here, we describe two techniques in particular that
yield significantly more scalable protocols than previously
known. First, we show how to use certain Fast Fourier
Transforms to obtain highly scalable non-interactive pro-
tocols that are suitable for practice today; these protocols
require just one message from P to V, and no communica-
tion in the reverse direction. Second, we describe how to
use a ‘linearization’ method applied to polynomials to ob-
tain improved interactive protocols for certain problems. All
of our work is backed by empirical evaluation based on our
implementations.

Depending on the technique and the problem in question,
we see empirical results that vary in speed by five orders of
magnitude in terms of the cost to the prover. Hence, we
argue that even if general-purpose methods improve, fine-
tuned protocols for key problems will remain valuable in

real-world settings, especially as these protocols can be used
as primitives in more general constructions. Therefore, spe-
cial attention to specific problems is warranted. The other
costs of providing proofs are acceptably low. For many prob-
lems our methods require at most a few megabytes of space
and communication even when the input consists of ter-
abytes of data, and some use much less; moreover, the time
costs of P and V scale linearly or almost linearly with the
size of the input. Most of our protocols require a polylog-
arithmic number of messages between P and V, but a few
are non-interactive, and send just one message.

To summarize, we view the contributions of this paper as:

• A carefully engineered general-purpose implementation of
the circuit checking construction of [19], along with some
extensions to this protocol. We believe our results show
that a practical delegation protocol for arbitrary compu-
tations is significantly closer to reality than previously re-
alized.

• The development of powerful and broadly applicable
methods for obtaining practical specialized protocols for
large classes of problems. We demonstrate empirically
that these techniques easily scale to streams with billions
of updates.

1.1 Previous Work
The concept of an interactive proof was introduced in a

burst of activity around twenty years ago [3, 20, 25, 32, 33].
This culminated in a celebrated result of Shamir [32], which
showed that the set of problems with efficient interactive
proofs is exactly the set of problems that can be computed
in polynomial space. However, these results were primar-
ily seen as theoretical statements about computational com-
plexity, and did not lead to implementations. More recently,
motivated by real-world applications involving the delega-
tion of computation, there has been considerable interest in
proving that the cloud is operating correctly. For example,
one line of work considers methods for proving that data is
being stored without errors by an external source such as
the cloud, e.g., [22].

In our setting, we model the verifier as capable of access-
ing the data only via a single, streaming pass. Under this
constraint, there has been work in the database community
on ensuring that simple functions based on grouping and
counting are performed correctly; see [36] and the references
therein. Other similar examples include work on verifying
queries on a data stream with sliding windows using Merkle
trees [24] and verifying continuous queries over streaming
data [29].

Most relevant to us is work which verifies more complex
and more general functions of the input. The notion of a
streaming verifier, who must read first the input and then
the proof under space constraints, was formalized in [8]
and extended in [15]. These works allowed the prover to
send only a single message to the verifier, with no com-
munication in the reverse direction. With similar motiva-
tions, Goldwasser et al. [19] give a powerful protocol that
achieves a polynomial time prover and highly-efficient veri-
fier for a large class of problems, although they do not ex-
plicitly present their protocols in a streaming setting. Sub-
sequently, it has been noted that the information required
by the verifier can be collected with a single initial stream-
ing pass, and so for a large class of uniform computations,

the verifier operates with only polylogarithmic space and
time. Finally, Cormode et al. [17] introduce the notion of
streaming interactive proofs, extending the model of [8] by
allowing multiple rounds of interaction between prover and
verifier. They present exponentially cheaper protocols than
those possible in the single-message model of [8, 15], for a
variety of problems of central importance in database and
stream processing.

A different line of work has used fully homomorphic en-
cryption to ensure integrity, privacy, and reusability in del-
egated computation [18, 12, 11]. The work of Chung, Kalai,
Liu, and Raz [11] is particularly related, as they focus on del-
egation of streaming computation. Their results are stronger
than ours, in that they achieve reusable general-purpose pro-
tocols (even if P learns whether V accepts or rejects each
proof), but their soundness guarantees rely on computa-
tional assumptions, and the substantial overhead due to the
use of fully homomorphic encryption means that these pro-
tocols remain far from practical at this time.

Only very recently have there been sustained efforts to use
techniques derived from the complexity and cryptography
worlds to actually verify computations. Bhattacharyya im-
plements certain PCP constructions and indicates they may
be close to practical [4]. In parallel to this work, Setty et
al. [31] survey results on probabilistically checkable proofs
(PCPs), identify a construction due to Ishai et al. [21] as a
good candidate, and evaluate their implementation on ma-
trix multiplication for matrices of size up to 200× 200 (40K
entries). This approach has several limitations. The verifier
has a very high ‘set-up’ cost, and to make the implementa-
tion scalable, as the authors themselves make clear, various
heuristics are used which are not proven secure. Even then,
the time cost of the verifier only falls lower than the time to
perform the computation locally for inputs an order of mag-
nitude larger than those tested on. In contrast, our protocols
are unconditionally secure, and verification is always many
times faster or more space efficient than performing the com-
putation in full. Another practically-motivated approach is
due to Canetti et al. [7]. Their implementation delegates the
computation to two independent provers, and “plays them
off” against each other: if they disagree on the output, the
protocol identifies where their executions diverge, and favors
the one which follows the program correctly at the next step.
This approach requires at least one of the provers to be hon-
est for any security guarantee to hold.

1.2 Preliminaries

Definitions. We first formally define a valid protocol. Here
we closely follow previous work, such as [17] and [8].

Definition 1.1. Consider a prover P and verifier V who
both observe a stream A and wish to compute a function
f(A). After the stream is observed, P and V exchange a
sequence of messages. Denote the output of V on input A,
given prover P and V’s random bits R, by out(V,A,R,P).
V can output ⊥ if V is not convinced that P’s claim is valid.
P is a valid prover with respect to V if for all streams A,

Pr
R

[out(V,A,R,P) = f(A)] = 1.

We call V a valid verifier for f if there is at least one valid
prover P with respect to V, and for all provers P ′ and all

streams A,

Pr
R

[out(V,A,R,P ′) 6∈ {f(A),⊥}] ≤ 1/3.

Essentially, this definition states that a prover who follows
the protocol correctly will always convince V, while if P
makes any mistakes or false claims, then this will be detected
with at least constant probability. In fact, for our protocols,
this ‘false positive’ probability can easily be made arbitrarily
small.

As our first concern in a streaming setting is the space
requirements of the verifier as well as the communication
cost for the protocol, we make the following definition.

Definition 1.2. We say f possesses an r-message (h, v)
protocol, if there exists a valid verifier V for f such that:

1. V has access to only O(v) words of working memory.
2. There is a valid prover P for V such that P and V

exchange at most r messages in total, and the sum of the
lengths of all messages is O(h) words.

We refer to one-message protocols as non-interactive. We
say an r-message protocol has dr/2e rounds.

A key step in many proof systems is the evaluation of the
low-degree extension of some data at multiple points. That
is, the data is interpreted as implicitly defining a polynomial
function which agrees with the data over the range 1 . . . n,
and which can also be evaluated at points outside this range
as a check. The existence of streaming verifiers relies on the
fact that such low-degree extensions can be evaluated at any
given location incrementally as the data is presented [17].

Input Representation. All protocols presented in this
paper can handle inputs specified in a very general data
stream form. Each element of the stream is a tuple (i, δ),
where i ∈ [n] and δ is an integer (which may be negative,
thereby modeling deletions). The data stream implicitly de-
fines a frequency vector a, where ai is the sum of all δ values
associated with i in the stream, and the goal is to compute
a function of a. Notice the function of a to be computed
may interpret a as an object other than a vector, such as
a matrix or a string. For example, in the MVMult prob-
lem described below, a defines a matrix and a vector to be
multiplied, and in some of the graph problems considered as
extensions in Section 2, a defines the adjacency matrix of a
graph.

In Sections 2 and 3, the manner in which we describe pro-
tocols may appear to assume that the data stream has been
pre-aggregated into the frequency vector a (for example, in
Section 3, we apply the protocol of Goldwasser et al. [19] to
arithmetic circuits whose i’th input wire has value ai). It
is therefore important to emphasize that in fact all of the
protocols in this paper can be executed in the input model
of the previous paragraph, where V only sees the raw (unag-
gregated) stream and not the aggregated frequency vector a,
and there is no explicit conversion between the raw stream
and the aggregated vector a. This follows from observations
in [8, 17], which we describe here for completeness.

The critical observation is that in all of our protocols, the
only information V must extract from the data stream is
the evaluation of a low-degree extension of a at a random
point r, which we denote by LDEa(r), and this value can be
computed incrementally by V using O(1) words of memory
as the raw stream is presented to V. Crucially this is possible
because, for fixed r, the function a 7→ LDEa(r) is linear, and

thus it is straightforward for V to compute the contribution
of each update (i, δ) to LDEa(r).

More precisely, we can write LDEa(r) =
P
i∈[n] aiχi(r),

where χi is a (Lagrange) polynomial that depends only on i.
Thus, V can compute LDEa(r) incrementally from the raw
stream by initializing LDEa(r) ← 0, and processing each
update (i, δ) via:

LDEa(r)← LDEa(r) + δχi(r).

V only needs to store LDEa(r) and r, which requires O(1)
words of memory. Moreover, for any i, χi(r) can be com-
puted in O(logn) field operations, and thus V can compute
LDEa(r) with one pass over the raw stream, using O(1)
words of space and logn field operations per update.

Problems. To focus our discussion and experimental study,
we describe four key problems that capture different aspects
of computation: data grouping and aggregation, linear al-
gebra, and pattern matching. We will study how to build
valid protocols for each of these problems. Throughout, let
[n] = {0, . . . , n − 1} denote the universe from which data
elements are drawn.

F2: Given a stream of m elements from [n], computeP
i∈[n] a

2
i where ai is the number of occurrences of i in the

stream. This is also known as the second frequency moment,
a special case of the kth frequency moment Fk =

P
i∈[n] a

k
i .

F0: Given a stream of m elements from [n], compute the
number of distinct elements, i.e. the number of i with ai >
0, where again ai is the number of occurrences of i in the
stream.

MVMult: Given a stream defining an n×n integer matrix
A, and vectors x,b ∈ Zn, determine whether Ax = b. More
generally, we are interested in the case where P provides a
vector b which is claimed to be Ax. This is easily handled
by our protocols, since V can treat the provided b as part
of the input, even though it may arrive after the rest of the
input.

PMwW: Given a stream representing text T =
(t0, . . . , tn−1) ∈ [n]n and pattern P = (p0, . . . , pq−1) ∈ [n]q,
the pattern P is said to occur at location i in t if, for every
position j in P , either pj = ti+j or at least one of pj and
ti+j is the wildcard symbol ∗. The pattern-matching with
wildcards problem is to determine the number of locations
at which P occurs in T .

For simplicity, we will assume the stream length n and
the universe size m are on the same order of magnitude i.e.
m = Θ(n).

All four problems require linear space in the streaming
model to solve exactly (although there are space-efficient
approximation algorithms for the first three [28]).

Non-interactive versus Multi-round Protocols. Pro-
tocols for reliable delegation fall into two classes: non-
interactive, in which a single message is sent from prover
to verifier and no communication occurs in the reverse di-
rection; and multi-round, where the two parties have a sus-
tained conversation, possibly spanning hundreds of rounds
or more. There are merits and drawbacks to each.

— Non-interactive Advantages: The non-interactive model
has the desirable property that the prover can compute the
proof and send it to the verifier (in an email, or posted on

a website) for V to retrieve and validate at her leisure. In
contrast, the multi-round case requires P and V to interact
online. Due to round-trip delays, the time cost of multi-
round protocols can become high; moreover, P may have to
do substantial computation after each message. This can
involve maintaining state between messages, and perform-
ing many passes over the data. A less obvious advantage is
that non-interactive protocols can be repeated for different
instances (e.g. searching for different patterns in PMwW)
without requiring V to use fresh randomness. This allows the
verifier to amortize much of its time cost over many queries,
potentially achieving sublinear time cost per query. The rea-
son this is possible is that in the course of a non-interactive
protocol, P learns nothing about V’s private randomness
(assuming P does not learn whether V accepts or rejects the
proof) and so we can use a union bound to bound the prob-
ability of error over multiple instances. In contrast, in the
multi-round case, V must divulge most of its private random
bits to P over the course of the protocol.

— Multi-round Advantages: The overall cost in a multi-
round protocol can be lower, as most non-interactive pro-
tocols require V to use substantial space and read a large
proof. Indeed, prior work [8, 15] has shown that space or
communication must be Ω(

√
n) for most non-interactive pro-

tocols [8]. Nonetheless, even for terabyte streams of data,
these costs typically translate to only a few megabytes of
space and communication, which is tolerable in many appli-
cations. Of more concern is that the time cost to the prover
in known non-interactive protocols is typically much higher
than in the interactive case, though this gap is not known
to be inherent. We make substantial progress in closing this
gap in prover runtime in Section 2, but this still leaves an
order of magnitude difference in practice (Section 5).

1.3 Outline and Contributions
We consider non-interactive protocols first, and interac-

tive protocols second. To begin, we describe in Section 2 how
to use Fast Fourier Transform methods to engineer P’s run-
time in the F2 protocol of [8] down from O(n3/2) to nearly-
linear time. The F2 protocol is a key target, because (as we
describe) several protocols build directly upon it. We show
in Section 5 that this results in a speedup of hundreds of
thousands of updates per second, bringing this protocol, as
well as those that build upon it, from theory to practice.

Turning to interactive protocols, in Section 2.1 we describe
an efficient instantiation of the general-purpose construction
of [19]. Here, we also describe efficient protocols for specific
problems of high interest including F0 and PMwW based
on an application of our implementation to carefully cho-
sen circuits. The latter protocol enables verifiable searching
(even with wildcards) in the cloud, and complements work
on searching in encrypted data within the cloud (e.g. [5]).
Our final contribution in this section is to demonstrate that
the use of more general arithmetic gates to enhance the ba-
sic protocol of [19] allows us to significantly decrease prover
time, communication cost, and message cost of these two
protocols in practice.

In Section 4 we provide alternative interactive protocols
for important specific problems based on a technique known
as linearization; we demonstrate in Section 5 that lineariza-
tion yields a protocol for F0 in which P runs nearly two
orders of magnitude faster than in all other known pro-
tocols for this problem. Finally, we describe our observa-

tions on implementing these different methods, including our
carefully engineered implementation of the powerful general-
purpose construction of [19].

2. FAST NON-INTERACTIVE PROOFS
VIA FAST FOURIER TRANSFORMS

In this section, we describe how to drastically speed up P’s
computation for a large class of specialized, non-interactive
protocols. In non-interactive proofs, P often needs to eval-
uate a low-degree extension at a large number of locations,
which can be the bottleneck. Here, we show how to reduce
the cost of this step to near linear, via Fast Fourier Trans-
form (FFT) methods.

For concreteness, we describe the approach in the context
of a non-interactive protocol for F2 given in [8]. Initial ex-
periments on this protocol identified the prover’s runtime as
the principal bottleneck in the protocol [17]. In this imple-

mentation, P required Θ(n3/2) time, and consequently the
implementation fails to scale for n > 107. Here, we show
that FFT techniques can dramatically speed up the prover,
leading to a protocol that easily scales to streams consisting
of billions of items.

We point out that F2 is a problem of significant inter-
est, beyond being a canonical streaming problem. Many
existing protocols in the non-interactive model are built on
top of F2 protocols, including finding the inner product and
Hamming distance between two vectors [8], the MVMult
problem, solving a large class of linear programs, and graph
problems such as testing connectivity and identifying bipar-
tite perfect matchings [9, 15]. These protocols are partic-
ularly important because they all achieve provably optimal
tradeoffs between space and communication costs [8]. Thus,
by developing a scalable, practical protocol for F2, we also
achieve big improvements in protocols for a host of impor-
tant (and seemingly unrelated) problems.

Non-interactive F2 and MVMult Protocols. We first
outline the protocol from [8, Theorem 4] for F2 on an n
dimensional vector. This construction yields an (nα, n1−α)
protocol for any 0 ≤ α ≤ 1, i.e. it allows a tradeoff be-
tween the amount of communication and space used by V;
for brevity we describe the protocol when α = 1/2.

Assume for simplicity that n is a perfect square. We treat
the n dimensional vector as a

√
n×
√
n array a. This implies

a two-variate polynomial f over a suitably large finite field
Fp, such that

∀(x, y) ∈ [
√
n]× [

√
n] : f(x, y) = ax,y.

To compute F2, we wish to computeX
x∈[
√
n],y∈[

√
n]

a2
x,y =

X
x∈[
√
n],y∈[

√
n]

f2(x, y).

The low-degree extension f can also be evaluated at lo-
cations outside [

√
n] × [

√
n]. In the protocol, the verifier V

picks a random position r ∈ Fp, and evaluates f(r, y) for ev-
ery y ∈ [

√
n] ([8] shows how V can compute any f(r, y) incre-

mentally in constant space). The proof given by P is in the
form of a degree 2(

√
n−1) polynomial s(X) which is claimed

to be
P
y∈[
√
n] f(X, y)2. V uses the values of f(r, y) to check

that s(r) =
P
y∈[
√
n] f(r, y)2, and if so accepts

P
x∈[
√
n] s(x)

as the correct answer. Clearly V’s check will pass if s is as

claimed. The proof of validity follows from the Schwartz-
Zippel lemma: if s(X) 6=

P
y∈[
√
n] f(X, y)2 as claimed by P,

then

Pr
ˆ
s(r) =

X
y∈[
√
n]

f(r, y)2˜ ≤ degree(s)

|Fp|
=

2(
√
n− 1)

p

where p is the size of the finite field Fp. Thus, if P deviates
at all from the prescribed protocol, the verifier’s check will
fail with high probability.

A non-interactive protocol for MVMult uses similar
ideas. Each entry in the output is the result of an inner
product between two vectors: a row of matrix A and vector
x. Each of the n entries in the output can be checked in-
dependently with a variation of the above protocol, where
the squared values are replaced by products of vector en-
tries; this naive approach yields an (n3/2, n3/2) protocol for
MVMult. [15] observes that, because x is held constant
throughout all n inner product computations, V’s space re-
quirements can be reduced by having V keep track of hashed
information, rather than full vectors. The messages from P
do not change, however, and computing low-degree exten-
sions of the input data is the chief scalability bottleneck.
This construction yields a 1-message (n1+α, n1−α) protocol
(as in Definition 1.2) for any 0 ≤ α ≤ 1, and this can be
shown to be optimal.

2.1 Breaking the bottleneck
Since s(X) has degree at most 2

√
n − 1 it is uniquely

specified by its values at any 2
√
n locations. We show how

P can quickly evaluate all values in the set

S := {(x, s(x)) : x ∈ [2
√
n]}.

Since s(X) =
P
y∈[
√
n] f(X, y)2, given all values in set

T := {(x, y, f(x, y)) : x ∈ [2
√
n], y ∈ [

√
n]},

all values in S can be computed in time linear in n. The
implementation of [17] calculated each value in T indepen-

dently, requiring Θ(n3/2) time overall. We show how FFT
techniques allow us to calculate T much faster.

The task of computing T boils down to multi-point eval-
uation of the polynomial f . It is known how to perform
fast multi-point evaluation of univariate degree t polyno-
mials in time O(t log t), and bivariate polynomials in sub-
quadratic time, if the polynomial is specified by its coeffi-
cients [27]. However, there is substantial overhead in con-
verting f to a coefficient representation. It is more efficient
for us to directly work with and exchange polynomials in
an implicit representation, by specifying their values at suf-
ficiently many points.

Representing as a convolution. We are given the values
of f at all points located on the [

√
n] × [

√
n] “grid”. We

leverage this fact to compute T efficiently in nearly linear
time by a direct application of the Fast Fourier Transform.
For (x, y) ∈ [

√
n] × [

√
n], f(x, y) is just ax,y, which P can

store explicitly while processing the stream. It remains to
calculate (x, y, f(x, y)) for

√
n ≤ x < 2

√
n. For fixed y ∈

[
√
n], we may write f(X, y) explicitly as

f(X, y) =
X
i∈[
√
n]

ai,yχi(X),

where χi is the Lagrange polynomial1

χi(j) =
Y

x∈[
√
n]\{i}

(j − i)(x− i)−1

If j 6∈ [
√
n], then we may write

f(j, y) =
X
i∈[
√
n]

h(j)by(i)g(j − i) (1)

where by(i) = ai,y
Y

x∈[
√
n]\{i}

(x− i)−1,

h(j) =

jY
k=(j+1−

√
n)

k,

and g(j − i) = (j − i)−1.

As a result f(j, y) can be computed as a circular convo-
lution of by and g, scaled by h(j). That is, for a fixed y,
all values in the set Ty := {(x, y, f(x, y)) : x ∈ [2

√
n]} can

be found by computing the convolution in Equation 1, then
scaling each entry by the appropriate value of h(j).

Computing the Convolution. We represent by and g by
vectors of length 2

√
n over a suitable field, and take the

Discrete Fourier Transform (DFT) of each. The convolu-
tion is the inverse transform of the inner product of the
two transforms [23, Chapter 5]. There is some freedom to
choose the field over which to perform the transform. We
can compute the DFT of fy and g over the complex field C
using O(

√
n logn) arithmetic operations via standard tech-

niques such as the Cooley-Tukey algorithm [14], and simply
reduce the final result modulo p, rounded to the nearest inte-
ger. Logarithmically many bits of precision past the decimal
point suffice to obtain a sufficiently accurate result. Since we
compute O(

√
n) such convolutions, we obtain the following

result:

Theorem 2.1. The honest prover in the F2 protocol of
[8, Theorem 4] requires O(n logn) arithmetic operations on
numbers of bit-complexity O(logn+ log p).

In practice, however, working over C can be slow, and
requires us to deal with precision issues. Since the original
data resides in some finite field Fp, and can be represented
as fixed-precision integers, it is preferable to also compute
the DFT over the same field. Here, we exploit the fact that
in designing our protocol, we can choose to work over any
sufficiently large finite field Fp.

There are two issues to address: we need that there exists
a DFT for sequences of length 2

√
n (or thereabouts) in Fp,

and further that this DFT has a corresponding (fast) Fourier
Transform algorithm. We can resolve both issues with the
Prime Factor Algorithm (PFA) for the DFT in Fp [6]. The
“textbook” Cooley-Turkey FFT algorithm operates on se-
quences whose length is a power of two. Instead, the PFA
works on sequences of length N = N1 × N2 × . . . × Nk,
where the Ni’s are pairwise coprime. The time cost of the
transform is O((

P
iNi)N). The algorithm is typically ap-

plied over the complex numbers, but also applies over Fp:
it works by breaking the large DFT up into a sequence of
smaller DFTs, each of size Ni for some i. These base DFTs

1That is, the unique polynomial of degree
√
n such that

χi(i) = 1, while for j 6= i ∈ [
√
n], χi(j) = 0. Here, the

inverse is the multiplicative inverse within the field.

for sequences of length Ni exist for Fpwhenever there exists
a primitive Ni’th root of unity in Fp. This is the case when-
ever Ni is a divisor of p−1. So we are in good shape so long
as p− 1 has many distinct prime factors.

Here, we use our freedom to fix p, and choose p = 261−1.2

Notice that

261−2 = 2×32×52×7×13×31×41×61×151×331×1321,

and so there are many such divisors Ni to choose from when
working over Fp. If 2

√
n is not equal to a factor of p− 1, we

can simply pad the vectors fy and g such that their lengths
are factors of 261 − 2. Since 261 − 2 has many small factors,
we never have to use too much padding: we calculated that
we never need to pad any sequence of length 100 ≤ N ≤ 109

(good for n up to 1018) by more than 16% of its length. This
is better than the Cooley-Tukey method, where padding can
double the length of the sequence.

As an example, we can work with the length N = 2 ×
5 × 7 × 9 × 11 × 13 = 90090, sufficient for inputs of size
n = (N/2)2, which is over 109. The cost scales as (2 + 5 +
7 + 9 + 11 + 13)N = 47N . Therefore, the PFA approach
offers a substantial improvement over naive convolution in
Fp, which takes time Θ(N2).

Parallelization. This protocol is highly amenable to par-
allelization. Observe that P performs O(

√
n) independent

convolutions of each of length O(
√
n) (one for each column y

of the matrix ax,y), followed by computing
P
y a

2
x,y for each

row x of the result. The convolutions can be done in paral-
lel, and once complete, the sum of squares of each row can
also be parallelized. This protocol also possesses a simple
two-round MapReduce protocol. In the first round, we as-
sign each column y of the matrix ax,y a unique key, and have
each reducer perform the convolution for the corresponding
column. In the second round, we assign each row x a unique
key, and have each reducer compute

P
y a

2
x,y for its row x.

2.2 Implications
As we experimentally demonstrate in Section 5, the results

of this section make practical the fundamental building block
for the majority of known non-interactive protocols. Indeed,
by combining Theorem 2.1 with protocols from [8, 15], we
obtain the following immediate corollaries. For all graph
problems considered, n is the number of nodes in the graph,
and m is the number of edges.

Corollary 2.2. 1. (Extending [8, Theorem 4.3]) For
any h · v ≥ n, there is an (h, v) protocol for comput-
ing the inner product and Hamming distance of two n-
dimensional vectors, where V runs in time O(n) and
P runs in time O(n logn). The previous best runtime
known for P was O(h2v).

2. (Extending [15, Theorem 4]) For any h · v ≥ n,
there is an (mh, v) protocol for m× n integer matrix-
vector multiplication (MVMult), where V runs in
time O(mn) and P runs in time O(mn logn). The
best runtime known for P previously was O(mh2v).

3. (Extending [15, Corollary 3]) For any h · v ≥ n, there
is an O(nh, v) protocol for solving a linear program

2Arithmetic in this field can also be done quickly, see Sec-
tion 5.1.

over n variables with n (integer) constraints and sub-
determinants of polynomial magnitude, where V runs
in time O(n2) and P runs in time O(t(n) + n2 logn),
where t(n) is the time required to solve the linear pro-
gram and its dual. The best runtime known for P pre-
viously was O(t(n) + nh2v).

4. (Extending [8, Theorem 5.4]) For any h · v ≥ n3, there
is an (h, v) protocol for counting the number of trian-
gles in a graph, where V runs in time O(mn) and P
runs in time O(n3 logn). The best runtime known for
P previously was O(h2v).

5. (Extending [9, Theorem 6.6]) For any h·v ≥ n2, h ≥ n,
there is an (h, v) protocol for graph connectivity, where
P runs in time O(n2 logn) and V runs in time O(m).
The best runtime known for P previously was O(nh2v).

6. (Extending [9, Theorem 6.5]) For any h · v ≥ n2,
h ≥ n, there is an (h, v) protocol for bipartite perfect
matching, where V runs in time O(m) and P runs in
time O(t(n)+n2 logn), where t(n) is the time required
to find a perfect matching if one exists, or to find a
counter-example (via Hall’s Theorem) otherwise. The
best runtime known for P previously was O(t(n)+h2v).

In the common case where we choose h = v, this repre-
sents a polynomial-speed up in P’s runtime. For example,
for the MVMult problem, the prover’s cost is reduced from
O(mn3/2) in prior work to O(mn logn).

In most cases of Corollary 2.2, V runs in linear time, and P
runs in nearly linear time for dense inputs, plus the time t(n)
required to solve the problem in the first place, which may
be superlinear. Thus, P pays at most a logarithmic factor
overhead in solving the problem “verifiably”, compared to
solving the problem in a non-verifiable manner.

3. A GENERAL APPROACH: MULTI-ROUND
PROTOCOLS VIA CIRCUIT CHECKING

In this section, we study interactive protocols, and de-
scribe how to efficiently instantiate the powerful framework
due to Goldwasser, Kalai, and Rothblum for verifying arbi-
trary computations3.

A standard approach to verified computation developed
in the theoretical literature is to verify properties of circuits
that compute the desired function [18, 19, 31]. One of the
most promising of these is due to Goldwasser et al., which
proves the following result:

Theorem 3.1. [19] Let f be a function over an arbitrary
field F that can be computed by a family of O(logS(n))-
space uniform arithmetic circuits (over F) of fan-in 2,
size S(n), and depth d(n). Then, assuming unit cost
for transmitting or storing a value in F, f possesses a
(logS(n), d(n) logS(n))-protocol requiring O(d(n) logS(n))
rounds. V runs in time (n+ d(n)) polylog (S(n)) and P runs
in time poly(S(n)).

Here, an arithmetic circuit over a field F is analogous to
a boolean circuit, except that the inputs are elements of F
3We are indebted to these authors for sharing their working
draft of the full version of [19], which provides much greater
detail than is possible in the conference presentation.

rather than boolean values, and the gates of the circuit com-
pute addition and multiplication over F. We address how
to realize the protocol of Theorem 3.1 efficiently. Specifi-
cally, we show three technical results. The first two results,
Theorems 3.2 and 3.3, state that for any log-space uniform
circuit, the honest prover in the protocol of Theorem 3.1 can
be made to run in time nearly linear in the size of the circuit,
with a streaming verifier who uses only O(logS(n)) words
of memory. Thus, these results guarantee a highly efficient
prover and a space-efficient verifier. In streaming contexts,
where V is more space-constrained than time-constrained,
this may be acceptable. Moreover, Theorem 3.3 states that
V can perform the time-consuming part of its computation
in a data-independent non-interactive preprocessing phase,
which can occur offline before the stream is observed.

Our third result, Theorem 3.4 makes a slightly stronger
assumption but yields a stronger result: it states that under
very mild conditions on the circuit, we can achieve a prover
who runs in time nearly linear in the size of the circuit, and
a verifier who is both space- and time-efficient.

Before stating our theorems, we sketch the main tech-
niques needed to achieve the efficient implementation, with
full details in Appendix A. We also direct the interested
reader to the source code of our implementations [16]. The
remainder of this section is intended to be reasonably acces-
sible to readers who are familiar with the sum-check protocol
[32, 25], but not necessarily with the protocol of [19].

3.1 Engineering an Efficient Prover
In the protocol of [19], V and P first agree on a depth d

circuit C of gates with fan-in 2 that computes the function of
interest; C is assumed to be in layered form (this assumption
blows up the size of the circuit by at most a factor of d, and
we argue that it is unrestrictive in practice, as the natural
circuits for all four of our motivating problems are layered, as
well as for a variety of other problems described in Appendix
A). P begins by claiming a value for the output gate of
the circuit. The protocol then proceeds iteratively from the
output layer of C to the input layer, with one iteration for
each layer. For presentation purposes, assume that all layers
of the circuit have n gates, and let v = logn.

At a high level, in iteration 1, V reduces verifying the
claimed value of the output gate to computing the value
of a certain 3v-variate polynomial f1 at a random point
r(1) ∈ F3v. The iterations then proceed inductively over
each layer of gates: in iteration i > 1, V reduces comput-
ing fi−1(r(i−1)) for a certain 3v-variate polynomial fi−1 to

computing fi(r
(i)) for a random point r(i) ∈ F3v

p . Finally, in

iteration d, V must compute fd(r
(d)). This happens to be a

function of the input alone (specifically, it is an evaluation
of a low-degree extension of the input), and V can compute
this value in a streaming fashion, without assistance, even
if only given access to the raw (unaggregated) data stream,
as described in Section 1.2. If the values agree, then V is
convinced of the correctness of the output.

We abstract the notion of a “wiring predicate”, which en-
codes which pairs of wires from layer i − 1 are connected
to a given gate at layer i. Each iteration i consists of an
application of the standard sum-check protocol [25, 32] to
a 3v-variate polynomial fi based on the wiring predicate.
There is some flexibility in choosing the specific polynomial
fi to use. This is because the definition of fi involves a low-
degree extension of the circuit’s wiring predicate, and there

are many such low-degree extensions to choose from.
A polynomial is said to be multilinear if it has degree

at most one in each variable. The results in this section
rely critically on the observation that the honest prover’s
computation in the protocol of [19] can be greatly simplified
if we use the multilinear extension of the circuit’s wiring
predicate.4 Details of this observation follow.

As already mentioned, at iteration i of the protocol of [19],
the sum-check protocol is applied to the 3v-variate polyno-
mial fi. In the j’th round of this sum-check protocol, P is
required to send the univariate polynomial

gj(Xj)=
X

(xj+1,...,x3v)∈{0,1}3v−j

fi(r
(i)
1 , . . . , r

(i)
j−1, Xj , xj+1, . . . , x3v).

The sum defining gj involves as many as n3 terms, and thus
a naive implementation of P would require Ω(n3) time per
iteration of the protocol. However, we observe that if the
multilinear extension of the circuit’s wiring predicate is used
in the definition of fi, then each gate at layer i−1 contributes
to exactly one term in the sum defining gj , as does each gate
at layer i. Thus, the polynomial gj can be computed with
a single pass over the gates at layer i− 1, and a single pass
over the gates at layer i. As the sum-check protocol requires
O(v) = O(logS(n)) messages for each layer of the circuit, P
requires logarithmically many passes over each layer of the
circuit in total.

A complication in applying the above observation is that
V must process the circuit in order to pull out information
about its structure necessary to check the validity of P’s
messages. Specifically, each application of the sum-check
protocol requires V to evaluate the multilinear extension of
the wiring predicate of the circuit at a random point. The-
orem 3.2 follows from the fact that for any log-space uni-
form circuit, V can evaluate the multilinear extension of the
wiring predicate at any point using space O(logS(n)). We
present detailed proofs and discussions of the following the-
orems in Appendix A.

Theorem 3.2. For any log-space uniform circuit of size
S(n), P requires O(S(n) logS(n)) time to implement the
protocol of Theorem 3.1 over the entire execution, and V
requires space O(logS(n)).

Moreover, because the circuit’s wiring predicate is inde-
pendent of the input, we can separate V’s computation into
an offline non-interactive preprocessing phase, which occurs
before the data stream is seen, and an online interactive
phase which occurs after both P and V have seen the in-
put. This is similar to [19, Theorem 4], and ensures that V
is space-efficient (but may require time poly(S(n))) during
the offline phase, and that V is both time- and space-efficient
in the online interactive phase. In order to determine which
circuit to use, V does need to know (an upper bound on) the
length of the input during the preprocessing phase.

Theorem 3.3. For any log-space uniform circuit of size
S(n), P requires O(S(n) logS(n)) time to implement the
protocol of Theorem 3.1 over the entire execution. V re-
quires space O(d(n) logS(n)) and time O(poly(S(n))) in a
non-interactive, data-independent preprocessing phase, and

4There are other reasons why using the multilinear extension
is desirable. For example, the communication cost of the
protocol is proportional to the degree of the extension used.

only requires space O(d(n) logS(n)) and time O(n logn +
d(n) logS(n)) in an online interactive phase, where the
O(n logn) term is due to the time required to evaluate the
low-degree extension of the input at a point.

Finally, Theorem 3.4 follows by assuming V can evaluate
the multilinear extension of the wiring predicate quickly. A
formal statement of Theorem 3.4 is in Appendix A. We be-
lieve that the hypothesis of Theorem 3.4 is extremely mild,
and we discuss this point at length in Appendix A, identify-
ing a diverse array of circuits to which Theorem 3.4 applies.
Moreover, the solutions we adopt in our circuit-checking ex-
periments for F2, F0, and PMwW correspond to Theorem
3.4, and are both space- and time-efficient for the verifier.

Theorem 3.4. (informal) Let C be any log-space uniform
circuit of size S(n) and depth d(n), and assume there ex-
ists a O(logS(n))-space, poly(logS(n))-time algorithm for
evaluating the multilinear extension of C’s wiring predicate
at a point. Then in order to to implement the protocol
of Theorem 3.1 applied to C, P requires O(S(n) logS(n))
time, and V requires space O(logS(n)) and time O(n logn+
d(n)poly(logS(n))), where the O(n logn) term is due to the
time required to evaluate the low-degree extension of the in-
put at a point.

3.2 Circuit Design Issues
The protocol of [19] is described for arithmetic circuits

with addition (+) and multiplication gates (×). This is suf-
ficient to prove the power of this system, since any efficiently
computable boolean function on boolean inputs can be com-
puted by an (asymptotically) small arithmetic circuit. Typ-
ically such arithmetic circuits are obtained by constructing
a boolean circuit (with AND, OR, and NOT gates) for the
function, and then “arithmetizing” the circuit [2, Chapter
8]. However, we strive not just for asymptotic efficiency,
but genuine practicality, and the factors involved can grow
quite quickly: every layer of (arithmetic) gates in the circuit
adds 3v rounds of interaction to the protocol. Hence, we
further explore optimizations and implementation issues.

Extended Gates. The circuit checking protocol of [19]
can be extended with any gates that compute low-degree
polynomial functions of their inputs. If g is a polynomial of
degree j, we can use gates computing g(x); this increases the
communication complexity in each round of the protocol by
at most j− 2 words, as P must send a degree-j polynomial,
rather than a degree-2 polynomial.

The low-depth circuits we use to compute functions of
interest (specifically, F0 and PMwW) make use of the func-
tion f(x) = xp−1. Using only + and × gates, they re-
quire depth about log2 p. If we also use gates computing
g(x, y) = xjyj for a small j, we can reduce the depth of
the circuits to about log2j p; as the number of rounds in
the protocol of [19] depends linearly on the depth of the
circuit, this reduces the number of rounds by a factor of
about log2 p/ log2j p = 1/ log2j 2. At the same time this
increases the communication cost of each round by a fac-
tor of (at most) j − 2. We can optimize the choice of j.
In our experiments, we use j = 4 (so g(x, x) is x8) and
j = 8 (g(x, x) = x16) to simultaneously reduce the number
of messages by a factor of 3, and the communication cost
and prover runtime by significant factors as well.

Another optimization is possible. All four specific prob-
lems we consider, F2, F0, PMwW, and MVMult, eventu-
ally compute the sum of a large number of values. Let f be
the low-degree extension of the values being summed. For
functions of this form, V can use a single sum-check pro-
tocol [2, Chapter 8] to reduce the computation of the sum
to computing f(r) for a random point r. V can then use
the protocol of [19] to delegate computation of f(r) to P.
Conceptually, this optimization corresponds to replacing a
binary tree of addition gates in an arithmetic circuit C with
a single ⊕ gate with large fan-in, which sums all its inputs.
This optimization can reduce the communication cost and
the number of messages required by the protocol.

General Circuit Design. The circuit checking approach
can be combined with existing compilers, such as that in
the Fairplay system [26], that take as input a program in a
high-level programming language and output a correspond-
ing boolean circuit. This boolean circuit can then be arith-
metized and “verified” by our implementation; this yields a
full-fledged system implementing statistically-secure verifi-
able computation. However, this system is likely to remain
impractical even though the prover P can be made to run in
time linear in the size of the arithmetic circuit. For example,
in most hardware, one can compute the sum of two 32-bit
integers x and y with a single instruction. However, when
encoding this operation into a boolean circuit, it is unclear
how to do this with depth less than 32. At 3 logn rounds
per circuit layer, for reasonable parameters, single additions
can turn into thousands of rounds.

The protocols in Section 3.3 avoid this by avoiding boolean
circuits, and instead view the input directly as elements over
Fp. For example, if the input is an array of 32-bit integers,
then we view each element of the array as a value of Fp, and
calculating the sum of two integers requires a single depth-1
addition gate, rather than a depth-32 boolean circuit. How-
ever, this approach seems to severely limit the functionality
that can be implemented. For instance, we know of no com-
pact arithmetic circuit to test whether x > y when viewing
x and y as elements of Fp. Indeed, if such a circuit for this
function existed, we would obtain substantially improved
protocols for F0 and PMwW.

This polylogarithmic blowup in circuit depth compared to
input size appears inherent in any construction that encodes
computations as arithmetic circuits. Therefore, the develop-
ment of general purpose protocols that avoid this represen-
tation remains an important direction for future work.

3.3 Efficient Protocols For Specific Problems
We obtain interactive protocols for our problems of inter-

est by applying Theorem 3.1 to carefully chosen arithmetic
circuits. These are circuits where each gate executes a simple
arithmetic operation on its inputs, such as addition, subtrac-
tion, or multiplication. For the first three problems, there
exist specialized protocols; our purpose in describing these
protocols here is to explore how the general construction
performs when applied to specific functions of high interest.
However, for PMwW, the protocol we describe here is the
first of its kind.

For each problem, we describe a circuit which exploits the
arithmetic structure of the finite field over which they are
defined. For the latter three problems, this involves an inter-
esting use of Fermat’s Little Theorem. These circuits lend
themselves to extensions of the basic protocol of [19] that

achieve quantitative improvements in all costs; we demon-
strate the extent of these improvements in Section 5.

Protocol for F2: The arithmetic circuit for F2 is quite
straightforward: the first level computes the square of in-
put values, then subsequent levels sum these up pairwise to
obtain the sum of all squared values. The total depth d is
O(logn). This implies a O(log2 n) message (log2 n, log2 n)
protocol (as per Definition 1.2).

Protocol for F0: We describe a succinct arithmetic cir-
cuit over Fp that computes F0. When p is a prime larger
than n, Fermat’s Little Theorem (FLT) implies that for
x ∈ Fp, xp−1 = 1 if and only if x 6= 0. Consider the cir-
cuit that, for each coordinate i of the input vector a, com-
putes each ap−1

i via O(log p) multiplications, and then sums
the results. This circuit has total size O(n log p) and depth
O(log p). Applying the protocol of [19] to this circuit, we
obtain a (logn log p, logn) protocol where P runs in time
O(n logn log p).

Protocol for MVMult: The first level of the circuit com-
putes Aijxi for all i, j, and subsequent levels sum these
to obtain

P
j Aijxi. Then we use FLT to ensure thatP

j Aijxi = bi for all i, via

X
i

 X
j

Aijxi

!
− bi

!p−1

.

The input is as claimed if this final output of the circuit is 0
(i.e. it counts the number of entries of b that are incorrect).
This circuit has depth O(log p) and and size O(n2 log p),
and we therefore obtain an (n + log p logn, logn) proto-
col requiring O(log p logn)-rounds, where P runs in time
O(n2 log p logn).

Protocol for PMwW: To handle wildcards in both T (of
length n) and P (of length q), we replace each occurrence
of the wildcard symbol with 0; [13] notes that the pattern
occurs at location i of T if and only if

Ii :=

q−1X
j=0

ti+jpj(ti+j − pj)2 6= 0.

Thus, by FLT, it suffices to compute
Pn
i=0 I

p−1
i , which

can be done naively by an arithmetic circuit of size
O(nq + n log p) and depth O(log p + log q). We ob-
tain a (logn log p, logn) protocol where P runs in time
O(n logn(q + log p)).

For large q, a further optimization is possible: the vec-
tor I can be written as the sum of a constant number of
circular convolutions. Such convolutions can be computed
efficiently using Fourier techniques in time O(n log q) and,
importantly, appropriate FFT and inverse FFT operations
can be implemented via arithmetic circuits. Thus, for q
larger than log p, we can reduce the circuit size (and hence
P’s runtime) in this way, rather than by naively computing
each entry of I independently.

4. MULTI-ROUND PROTOCOLS
VIA LINEARIZATION

In this section, we show how the technique of linearization
can improve upon the general approach of Section 2.1 for
some important functions. Specifically, this technique can

be applied to multi-round protocols which would otherwise
require polynomials of very high degree to be communicated.
We show this in the context of new multi-round protocols
for F0 and PMwW and we later empirically observe that
our new protocol achieves a speed up of two orders of mag-
nitude over existing protocols for F0, as well as an order of
magnitude improvement in communication cost.

Existing approaches for F0 in the multi-round setting are
based on generalizations of the multi-round protocol for
F2 [17]. As described in [17], directly applying this approach
is problematic: the central function in F0 maps non-zero
frequencies to 1 while keeping zero frequencies as zero. Ex-
pressed as a polynomial, this function has degree m (an up-
per bound on the frequency of any item), which translates
into a factor of m in the communication required and the
time cost of P. However, this cost can be reduced to F∞,
where F∞ denotes the maximum number of times any item
appears in the stream. Further, if both P and V keep a
buffer of b input items, they can eliminate duplicate items
within the buffer, and so ensure that F∞ ≤ m/b. This leads
to an O(logn) message, (logn, F∞ logn) multi-round proto-
col with P’s runtime being O(F 2

∞n logn) [17]. This protocol
trades off increased communication for a quadratic improve-
ment in the number of rounds of communication required
compared to the protocol outlined in Section 3.3 above.

4.1 Linearization Set-up
In this section we describe a new multi-round protocol for

F0, and later explain how it can be modified for PMwW.
This protocol has similar asymptotic costs as that obtained
in Section 3.3, but in practice achieves close to two orders of
magnitude improvement in P’s runtime. The core idea is to
represent the data as a large binary vector indicating when
each item occurs in the stream. The protocol simulates pro-
gressively merging time ranges together to indicate which
items occurred within the ranges. Directly verifying this
computation would hit the same roadblock indicated above:
using polynomials to check this would result in polynomi-
als of high degree, dominating the cost. So we use a “lin-
earization” technique, which ensures that the degree of the
polynomials required stays low, at the cost of more rounds
of interaction. This uses ideas of Shen [33] as presented in
[2, Chapter 8].

As usual, we work over a finite field with p elements, Fp.
The input implicitly defines an n ×m matrix A such that
Ai,j = 1 if the j’th item of the stream equals i, and Ai,j = 0
otherwise.

Working over the Boolean Hypercube. A key first step
is to define an indexing structure based on the d-dimensional
Boolean hypercube, so every input point is indexed by a d bit
binary string, which is the (binary) concatenation of a logn
bit string i and a logm bit string j. We view A as a function
from {0, 1}d to {0, 1} via (x1, . . . , xd) 7→ A(x1,...,xd). Let
f be the unique multilinear polynomial in d variables such
that f(x1, . . . , xd) = A(x1,...,xd) for all (x1, . . . , xd) ∈ {0, 1}d,
i.e. f is the multilinear extension of the function on {0, 1}d
implied by A.

The only information that the verifier V needs to keep
track of is the value of f at a random point. That is, V
chooses a random vector r = (r1, . . . , rd) ∈ Fdp. It is efficient
for V to compute f(r) as V observes the stream which de-
fines A (and hence f): when the j’th update is item i, this
translates to the vector v = (i, j) ∈ {0, 1}d. The necessary

update is of the form f(r)← f(r) + χv(r), where χv is the
unique polynomial that is 1 at v and 0 everywhere else in
{0, 1}d. For this, V only needs to store r and the current
value of f(r).

Linearization and Arithmetized Boolean Operators.
We use three operators q, Π and L on polynomials g, defined
as follows:

qkg(X1, . . . , Xk) =g(X1, . . . , Xk−1, 0) + g(X1, . . . , Xk−1, 1)

−g(X1, . . . , Xk−1, 0) · g(X1, . . . , Xk−1, 1).

Πkg(X1, . . . , Xk) = g(X1, . . . , Xk−1, 0) · g(X1, . . . , Xk−1, 1).

Lig(X1, . . . , Xk) =Xi · g(X1, . . . , Xi−1, 1, Xi+1, · · · , Xk)

+(1−Xi) · g(X1, . . . , Xi−1, 0, Xi, . . . , Xk).

q and Π generalize the familiar “OR” and “AND” op-
erators, respectively. Thus, if g is a k-variate polynomial
of degree at most j in each variable, qk(g) and Πk(g) are
k − 1-variate polynomials of degree at most 2j in each vari-
able. They generalize Boolean operators in the sense that
if g(X1, . . . , Xk−1, 0) = x and g(X1, . . . , Xk−1, 1) = y, and
x, y are both 0 or 1, then

(qkg)(X1, . . . Xk) = 1 iff x = 1 or y = 1,

and (Πkg)(X1, . . . Xk) = 1 iff x = 1 and y = 1.

L is a linearization operator. If g is a k-variate polynomial,
Li(g) is a k-variate polynomial that is linear in variable Xi.
Li operations are used to control the degree of the polyno-
mials that arise throughout the execution of our protocol.
Since xj = x for all j ≥ 1, x ∈ {0, 1}, Li(g) agrees with g(·)
on all values in {0, 1}k.

Throughout, when applying a sequence of operations to
a polynomial to obtain a new one, the operations are ap-
plied “right-to-left”. For example, we write the k− 1 variate
polynomial

(L1(L2 . . . (Lk−1(qkg)))) as L1L2 . . . Lk−1 qk g.

Rewriting F0 and PMwW. For F2 and MVMult there
is little need for linearization: the polynomials generated
remain of low-degree, so the multi-round protocols described
in [17, 15] already suffice. But linearization can help with
F0 and PMwW.

Thinking of the input as a matrix A as defined above, we
can compute F0 by repeatedly taking the columnwise-OR of
adjacent column pairs to end up with a vector which indi-
cates whether item i appeared in the stream, then repeat-
edly summing adjacent entries to get the number of distinct
elements. When representing these operations as polyno-
mials, we make additional use of linearization operations to
control the degree of the polynomials that arise. Using the
properties of the operations q and Li described above and
rewriting in terms of the hypercube, it can be seen that

F0(a) =

1X
x1=0

· · ·
1X

x
k

=0

Lk1Lk1−1 . . . L1qk1+1

Lk1+1Lk1 . . . L1 qk1+2 . . . Ld−1Ld−2 . . . L1 qd f
(2)

because this expression only involves variables and values in

{0, 1}. The size of this expression is 3d2+3d
2

= O(log2 n).

The case for PMwW is similar. Assume for now that the
pattern length q is a power of two (if not, it can be padded
with trailing wildcards). We now consider the input to de-
fine a matrix A of size 2n× qn, such that A2i,qj+k(q−1) = 1
if the j’th item of the stream equals i, for all 0 ≤ k ≤ q− 1,
and A2i−1,qj+2k = 1 if the k’th character of the pattern
equals i, for all 0 ≤ j ≤ n− 1. Wildcards in the pattern or
the text are treated as occurrences of all characters in the
alphabet at that location. The problem is solved over this
matrix A by first taking the column-wise “AND” of adjacent
columns: this leaves 1 where a text character matches a pat-
tern for a certain offset. We then take column-wise “OR”s
of adjacent columns logn times: this collapses the alphabet.
Taking row-wise “AND”s of adjacent rows log q times leaves
an indicator vector whose ith entry is 1 iff the pattern oc-
curs at location i in the text. Summing the entries in this
vector provides the required answer. Using linearization to
bound the degree of q and Π operators, we again obtain an
expression of size O(log2 n).

4.2 Protocols Using Linearization
Given an expression in the form of (2), we now give an

inductive description of the protocol. Conceptually, each
round we ask the prover to“strip off”the left-most remaining
operation in the expression. In the process, we reduce a
claim by P about the old expression to a claim about the
new, shorter expression. Eventually, V is left with a claim
about the value of f at a random point (specifically, at r),
which V can check against her independent evaluation of
f(r).

More specifically, suppose for some polynomial
g(X1, . . . , Xj), the prover can convince the verifier
that g(a1, a2, . . . , aj) = C with probability 1 for any
(a1, a2, . . . , aj , C) where this is true, and probability less
than ε when it is false. Let U(X1, X2, . . . , Xl) be any
polynomial on l variables obtained as

U(X1, X2, . . . , Xl) = Og(X1, . . . , Xj),

where O is one of
P1
xi=0, Π1

xi=0, q1
xi=0 or Li for some vari-

able i. (Thus l is j − 1 in the first three cases and j in
the last). Let m be an upper bound (known to the veri-
fier) on the degree of U with respect to Xi. In our case,
m ≤ 2 because of the inclusion of Li operations in between
every q and Π operation. We show how P can convince
V that U(a1, a2, . . . , al) = C′ with probability 1 for any
(a1, a2, . . . , aj , C

′) for which it is true and with probability
at most ε + d/p when it is false. By renaming variables if
necessary, assume i = 1. The verifier’s check is as follows.

Case 1: O =
P1
x1=0. P provides a degree-1 polynomial

s(X1) that is supposed to be g(X1, a2, . . . , aj). V checks if
s(0) + s(1) = C′. If not, V rejects. If so, V picks a random
value a ∈ Fp and asks P to prove s(a) = g(a, a2, . . . , aj).
If it is one of the final d rounds, V chooses a to be the
corresponding entry of r.

Case 2: O = q1
x1=0X or O = Π1

x1=1X. We do the same as
in Case 1, but replace s(0) + s(1) with s(0) + s(1)− s(0)s(1)
in the case of q, or s(0)s(1) in the case of Π.

Case 3: O = L1. P wishes to prove that U(a1, a2, . . . , ak) =
C′. P provides a degree-2 polynomial s(X1) that is supposed
to be g(X1, a2, . . . , ak). We refer to this as “unbinding the
variable”because previouslyX1 was“bound”to value a1, but

now X1 is free. V checks that a1s(0) + (1 − a1)s(1) = C′.
If not, V rejects. If so, V picks random a ∈ Fp and asks P
to prove s(a) = g(a, a2, . . . , ak) (or if it is the final round, V
simply checks that s(a) = f(r)).

The proof of correctness follows by using the observation
that if s(X1) is not the right polynomial, then with proba-
bility 1−m/p, P must prove an incorrect statement at the
next round (this is an instance of Schwartz-Zippel polyno-
mial equality testing procedure [30]). The total probability
of error is given by a union bound on the probabilities in
each round, O(log2 n/p).

Analysis of protocol costs. Recall that both F0 and
PMwW can be written as an expression of size O(log2 n)
operators, where linearization bounds the degree in any vari-
able. Under the above procedure, the verifier need only store
r, f(r), the current values of any “bound” variables, and
the most recent value of s(a). In total, this requires space
O(logn). There are O(log2 n) rounds, and in each round
a polynomial of degree at most two is sent from P to V.
Such a polynomial can be represented with at most 3 words,
so the total communication is O(log2 n). Hence we obtain
(log2 n, logn)-protocols for F0 and PMwW.

As the stream is being processed the verifier has to up-
date f(r). The updates are very simple, and processing each
update requiresO(d) = O(logn) time. There is a slight over-
head in PMwW, where each update in the stream requires
the verifier to propagate q updates to f (assuming an upper
bound on q is fixed in advance), taking O(q) time. How-
ever, it seems plausible that these costs could be optimized
further.

The prover has to store a description of the stream, which
can be done in space O(n). The prover can be implemented
to require O(n log2 n) time: essentially, each round of the
proof requires at most one pass over the stream data to
compute the required functions. For brevity, we omit a de-
tailed description of the implementation, the source code of
which is available at [16].

Theorem 4.1. For any function which can be written
as a concatenation of logn (binary) operators drawn fromP
,Π and q over inputs of size n, there is a log2 n round

(log2 n, logn) protocol, where P takes time O(n log2 n), and
V takes time O(log2 n) to run the protocol, having computing
the LDE of the input.

Thus we can invoke this theorem for both F0 and PMwW,
obtaining log2 n round (log2 n, logn) protocols for both.

5. EXPERIMENTAL EVALUATION
We performed a thorough experimental study to evaluate

the potential practical effectiveness of existing protocols and
our new ones. We summarize our findings as follows.

• The costs of our implementation of the general-purpose
circuit-checking protocol described in Section 3 are ex-
tremely attractive, with the exception of P’s runtime.
The prover takes minutes to operate on input of size
around 105: ideally, this would take seconds. The ex-
tensions we propose to the basic protocol of [19] (such
as extra types of gates) result in significant quanti-
tative improvements for our benchmark problems. We
are optimistic about the prospects for further enhance-
ments and parallelization to make practical general-
purpose verification a reality.

Problem Gates Size P time Rounds Communication V time
(gates) (s) (KBs) (s)

F2 +,× 0.4M 8.5 986 11.5 .01
F2 +,×,⊕ 0.2M 6.5 118 2.5 .01
F0 +,× 16M 552.6 3730 87.4 .01
F0 +,×, ˆ8 8.4M 462.2 1684 60.0 .01
F0 +,×, ˆ16 6.4M 457.4 1399 65.8 .01
F0 +,×,⊕ 15.8M 546.4 3355 78.4 .01
F0 +,×, ˆ8,⊕ 8.2M 432.6 1310 51.0 .01
F0 +,×, ˆ16,⊕ 6.2M 441.2 1024 56.8 .01

PMwW +,×, ˆ8,⊕ 9.6M 482.2 1513 56.1 .01

Table 1: Circuit checking results with n = 217.

• Fine-tuned protocols for specific problems can improve
over the general approach by several orders of mag-
nitude. Specifically, we found that extremely practi-
cal non-interactive protocols processing hundreds of
thousands of updates per second are achievable for a
very large class of problems, but only by using the
methods described in Section 2. We also found that
the linearization technique results in significantly im-
proved interactive protocols for F0 when compared to
the more general circuit-checking approach.

• Finally, we demonstrate that the non-interactive pro-
tocols are extremely amenable to parallelization, and
we believe that this makes them an attractive option
for practical use.

In all of our experiments, the verifier requires significantly
less space than that required to solve the problem without
a prover, and requires about the same time as that required
to solve the problem without a prover if given enough fast
memory to store the whole input. Indeed, we found that in
all of our protocols memory accesses are the speed bottleneck
in both V’s computation and in the computation required
to solve the problem without a prover.

Moreover, our circuit-checking results demonstrate that if
we were to run our implementation on problems requiring
superlinear time to solve, then V would save significant time
as well as space (compared to solving the problem without
a prover). Indeed, except for circuits with very high (i.e.,
linear) depth, V’s runtime in our circuit-checking implemen-
tation is grossly dominated by the time required to perform
an LDE computation via a single streaming pass over the in-
put. The verification time, excluding this cost, is essentially
negligible.

5.1 Implementation Details
All implementations were done in C++: we simulated

the computations of both parties, and measured the time
and resources consumed by the protocols. Our programs
were compiled with g++ using the -O3 optimization flag.
For the data, we generated synthetic streams in which each
item was picked uniformly at random from the universe, or
in which frequencies of each item were chosen uniformly at
random in the range [0, 1000]. The choice of data does not
affect the runtimes, which depend only on the amount of
data and not its content. Similarly the security guarantees
do not depend on the data, but on the random choices of
the verifier. All computations are over the field of size p =
261− 1, implying a very low probability of the verifier being

fooled by a dishonest prover.
We evaluated the protocols on a multi-core machine with

64-bit AMD Opteron processors and 32 GB of memory avail-
able. Our scalability results primarily use a single core, but
we also show results for parallel operation. The large amount
of memory allowed us to experiment with universes of size
several billion, with the prover able to store the full data in
memory. We measured the time for V to compute the check
information from the stream, for P to generate the proof,
and for V to verify the proof. We also measured the space
required by V, and the size of the proof provided by P.

Choice of Field Size. While all the protocols we imple-
mented work over arbitrary finite fields, our choice of Fp
with p = 261 − 1 proves ideal for engineering practical pro-
tocols. First, the field size is large enough to provide a mi-
nuscule probability of error (which is proportional to 1/p),
but small enough that any field element can be represented
with a single 64-bit data type. By using native types, we
achieve a speedup of several factors. Second, reducing mod-
ulo p can be done with a bit shift, a bit-wise AND operation,
and an addition [34]. We experienced a speedup of nearly an
order of magnitude by switching to this specialized “mod”
operation rather than using “% p” operation in C++. Fi-
nally, the use of this particular field allows us to apply FFT
techniques, as described in in Section 2 (recall 261 − 2 has
many small prime factors).

Correctness of protocols. In the protocols we study, the
verifier’s checks of the prover’s claims are always very simple
to implement: in many cases, each check takes a single line of
code to ensure that the previous message is consistent with
the new message5. Consequently, it is not difficult to imple-
ment the verifier in a bug-free manner, and once this is the
case, the verifier’s implementation serves as an independent
check on the prover’s implementation. This is because the
verifier detects (with high probability) any deviations from
the prescribed protocol, and in particular V detects devi-
ations due to an incorrect prover. Thus, we are confident
in the correctness of our implementations. More generally,
this property can help in the testing and debugging of future
implementations.

5.2 Circuit Checking Protocols
In our implementation of the circuit checking method de-

scribed in Section 2.1, we put significant effort into optimiz-
ing the runtime of the prover, achieving an implementation

5Things are a little more complex in the case of circuit check-
ing, as discussed in Section 3.2, but not dramatically so.

100 105 101010−2

100

102

104

Universe Size n

Ti
m

e/
s

Prover’s Time

NI
MRS
CC
NI−FFT

(a) P’s time for F2 protocols

105 101010−2

100

102

104

Universe Size n

Ti
m

e/
s

Verifier’s Time

NI, NI−FFT
MRS
CC

(b) Verifier’s time for F2 protocols

100 105 1010102

103

104

105

106

Universe Size n

By
te

s

Size of Communication and Working Space

NI, NI−FFT: Space
MRS, CC: Space
CC: Comm
NI, NI−FFT: Comm
MRS: Comm

(c) Space and communication costs for F2

Figure 1: Experimental Results for both multi-round and non-interactive F2 protocols.

for which P takes time nearly linear in the size of the cir-
cuit. Nonetheless, this cost remains the chief limitation of
the implementation.

We experimented with our implementation on circuits for
three of our functions of interest: F2, F0 and PMwW. We
leave circuits for MVMult to future work. Results are sum-
marized in Table 1. Throughout, when we refer to P’s run-
time in an interactive protocol, we are referring to the total
time over all rounds of the protocol. The speed per gate can
be very high: P processed circuits with tens of millions of
gates in a matter of minutes. For example, our basic imple-
mentation processed a circuit for F0 with close to 16 million
gates in under 9 minutes, or close to 30,000 gates per second.
However, since the circuit’s size was more than 100 times
larger than the universe over which the input is drawn, this
translated to only about 300 items per second. The other
costs incurred are very low. The verifier’s space usage and
the communication cost are never more than a few dozen
kilobytess, and the verifier processes close to thirty million
updates per second across all stream lengths. The time for
V to run the protocol is negligible compared to the (already
low) time to compute the required low-degree extension of
the input.

In Section 3.2, we discuss how adding additional gate
types can reduce the cost of circuit checking. We demon-
strate experimentally that adding gates which compute the
8th power (ˆ8) or the 16th power (ˆ16) of their inputs
achieves substantial reductions in the size of the circuits
needed. For F0, this reduced the number of rounds by nearly
a factor of three, the prover time by close to 20%, and the
overall communication cost by close to 30%. We also discuss
in Section 3.2 how to (conceptually) replace a binary tree of
addition gates with a single ⊕ gate of very large fan-in which
sums all its inputs. For F0, this optimization further reduced
both communication and number of rounds by 10-20%. The
effect of ⊕ gates was much more pronounced for F2, where
we saw an order of magnitude reduction in the number of
rounds, and 5-fold reduction in communication cost. The
change was larger here because the addition gates represent
a much larger fraction of the gates in F2 circuits than in F0

circuits.

5.3 Specialized Protocols
We now describe our experiments with specialized proto-

cols on a problem-by-problem basis. We find that special-

ized interactive protocols improve over the general-purpose
construction by several orders of magnitude. Moreover, we
demonstrate that the FFT techniques of Section 2 yield non-
interactive protocols that easily scale to streams with bil-
lions of updates, improving over previous implementations
by three orders of magnitude. The protocols are of various
types: the basic multi-round protocols based on sum-check
from [17] (MRS); multi-round protocols which use lineariza-
tion from Section 4 (LIN); multi-round protocols based on
circuit checking described in Section 3 (CC); the basic non-
interactive protocols from [8] (NI); and the faster implemen-
tation of these protocols via FFT in Section 2 (NI-FFT).

F2: There are four known protocols for F2: one obtained
via the general-purpose circuit-checking approach (CC), a
specialized interactive protocol due to [17] (MRS), a naive
implementation of the non-interactive protocol due to [8]
(NI), and a non-interactive implementation based on our
FFT techniques developed in Section 2 (NI-FFT). The re-
sults for CC are for our optimized implementation using ⊕
gates. Figures 1(b) and 1(c) illustrate the verifier’s time
and space costs for all four protocols, while Figure 1(a) il-
lustrates the prover’s runtime for these protocols. We used
implementations of NI and MRS protocols for F2 due to [17].
Note that in the case of NI and NI-FFT, the verifier behaves
identically: the prover computes the same messages in both
cases, but more quickly using FFT.

The main observation from Figures 1(b) and 1(c) is that
the verifier’s costs are extremely low for all four protocols.
V processed over 20 million items/s across all stream lengths
for all protocols. The space usage and communication cost
for both interactive protocols (CC and MRS) is less than
1 kilobyte across all stream lengths tested, while the space
usage for the non-interactive case is much larger but still
reasonable (comfortably under a megabyte even for stream
lengths in excess of 1 billion).

Figure 1(a) shows a clear separation between the four
methods in P’s effort in generating the proof. For large
streams, it is clear that NI is not scalable, with P’s run-
time growing like n3/2; this implementation failed to process
streams larger than about 40 million updates. In contrast,
the FFT-based implementation of the non-interactive proto-
col processed between 350, 000 and 750, 000 items per second
for all tested values of n, even for values of n well into the
billions. Thus, the FFT techniques of Section 2 speed up
P’s computation by several orders of magnitude compared

106 108 101010−1

100

101

102

Number of matrix entries n2

Ti
m

e/
s

Verifier’s Time

! = 0
!=0.15
!=0.2
!=0.25

(a) Verifier’s time

106 108 101010−1

100

101

102

103

Number of matrix entries n2

Ti
m

e/
s

Prover’s Time

! = 0
!=0.15
!=0.2
!=0.25

(b) Prover’s time

106 108 1010103

104

105

106

Number of matrix entries n2

By
te

s

Size of Working Space

! = 0
!=0.15
!=0.2
!=0.25

(c) Space cost

106 108 1010104

105

106

107

Number of matrix entries n2

By
te

s

Size of Communication

! = 0
!=0.15
!=0.2
!=0.25

(d) Communication cost

Figure 2: Experiments on non-interactive MVMult protocols.

to the naive implementation, and allowed the protocol to
easily scale to streams with billions of items. As mentioned
in Section 2, a wide variety of more complicated protocols
use this protocols as a subroutine, and therefore these non-
interactive techniques are as powerful as they are general.

For the multi-round protocols, circuit checking (CC) even-
tually outpaces NI, and scales linearly: the CC prover pro-
cessed about 20,000 items per second across all stream
lengths. Finally, the multi-round prover processed 20-21
million items per second. We conclude that special-purpose
protocols should have substantial value, as our specialized
non-interactive protocol was faster than Circuit Checking
by more than an order of magnitude, and the specialized
interactive protocol was faster by two orders of magnitude.

MVMult: Figure 2 shows the behavior of our FFT-based
implementation of the (n1+α, n1−α) non-interactive proto-
col for MVMult described in Section 2. Recall that the
parameter α allows us to tradeoff between communication
and space used by the verifier. A convenient (and previously
unremarked on) feature of this protocol is that when α = 0,
the honest prover’s message consists simply of the vector
b. Consequently, we obtain an (n, n) protocol for which
the prover can handle enormous throughputs: 30-50 million
items/second as evidenced in Figure 2(b). In outsourcing
settings where one can tolerate space usage O(n) for the
verifier, this protocol is truly ideal, as the prover need do
nothing more than solve the problem, and the verifier’s com-
putation consists only of maintaining n fingerprints. That
is, this (n, n) protocol allows the user to obtain a strong
security guarantee on the integrity of the query, almost for

free. Note that for this problem, the size of the input is
O(n2) for an n × n matrix, so O(n) space at the verifier is
still much smaller than the full input size.

The behavior becomes more interesting when we set α >
0—in this case, in addition to providing the correct answer,
the prover has to do non-trivial computation to prove cor-
rectness. Because lower values of α mean less space but
more communication (see Figure 2(c)), setting α > 0 may
be needed when the verifier is severely space-limited. It
may also be necessary when the matrix is very wide: in full
generality the protocol has communication and space cost
(mnα, n1−α) for an m × n matrix. We show how different
costs vary as a function of α: V’s time to process the input
(Figure 2(a)), P’s time (Figure 2(b)), the communication
cost (Figure 2(d)), and the space used by V (Figure 2(c)).
Across all values of α, P can process in excess of 1 million
items per second using our FFT techniques. The verifier
runs over the stream slightly faster for higher values of α,
because V maintains fewer fingerprints for larger α’s. When
α = 0, V processed about 20 million items per second, and
when α = .25, V processed in excess of 30 million items per
second. For concreteness, Table 2 displays the costs of the
protocol when run on matrices of size 10,000 × 10,000.

F0: We implemented the (log u,
√
n log u) interactive proto-

col of [17] described at the start of Section 4, which we refer
to as the bounded protocol (B), since it uses a bound on F∞,
the maximum frequency of any item. We compare this to the
new Linearization based protocol (LIN) from Section 4.1, as
well as to the circuit checking approach (CC) of Section 2.1.
The circuit-checking results shown are from our optimized

100 105 101010−2

100

102

104

106

Universe Size n

Ti
m

e/
s

Prover’s Time

B, F
!
 =30

B, F
!
 =100

B, F
!
=200

CC
LIN

(a) Prover’s time

104 106 108 101010−2

100

102

Universe Size n

Ti
m

e/
s

Verifier’s Time

B, F
!
 =30

B, F
!
 =100

B, F
!
=200

CC
LIN

(b) Verifier’s time

10
5

10
10

10
2

10
4

10
6

Universe Size n

B
y
te

s

Size of Communication

B, F
!
 =30

B, F
!
 =100

B, F
!
=200

CC

LIN

(c) Communication cost

Figure 3: Experimental results for F0.

α Space Comm P time (s) V time (s)
0 78.1 KB 78.1 KB 1.6 4.3

.15 19.9 KB 468.8 KB 33.9 3.0

.20 12.8 KB 937.5 KB 58.9 2.8

.25 7.8 KB 1.52 MB 61.5 2.6

Table 2: Non-interactive MVMult results on matri-
ces of size 10,000 × 10,000 (763 MBs of data).

implementation using ˆ8 gates.
Our focus is primarily on P’s runtime, since we find that

the bounded protocol is impractical for general streams: P’s
runtime is Θ(n2). However, recall from Section 4 that P’s
run time in the bounded protocol can be made O(F 2

∞n)
when there is an a priori upper bound on F∞, or equiv-
alently when V’s memory is at least m/F∞ for streams of
length m. Figure 3(a) shows P’s runtime for the bounded
protocol as a function of the universe size n, for different
bounds on F∞.

Figure 3(a) shows that for fixed F∞, the prover’s run-
time in the bounded protocol grows linearly in n as ex-
pected. When F∞ is very low, the protocol achieves rea-
sonable throughputs, but as F∞ grows the runtime rapidly
becomes prohibitive. For example, F∞ = 30 gives about
80,000 items per second, while F∞ = 200 results in just
1,600 items/second. It is clear that this protocol will be
unacceptably slow for realistic streams where F∞ is in the
thousands or larger.

In contrast, P’s runtime in the linearization and circuit
checking protocols is independent of F∞. For lineariza-
tion, P’s runtime grows slightly super-linearly in n (it is
Θ(n log2 n) as shown in Section 4), and as a result the pro-
cessing speed decreases slowly as the stream length increases
(see Figure 3(b)). For short streams (e.g. n = 216), P han-
dles about 17,000 items/second. For n = 224, P handles
about 8,000 items per second. Extrapolating the behav-
ior to streams of length about 1 billion, P should handle
about 4,500 items/second. These results are broadly con-
sistent with its theoretical Θ(n log2 n) running-time bound,
and represents a substantial improvement over the bounded
protocol and the circuit checking protocol. In the circuit
checking protocol P processes only 200-300 items per sec-
ond across all stream lengths.

Note, however, that the overhead for the verifier in all

three protocols is very light, making the costs compelling
from V’s perspective. In all protocols V’s space was always
well under 1KB; this cost was so low for all three protocols
that we have omitted the corresponding plot. For the cir-
cuit checking and bounded protocols, V processed about 20
million updates per second, while for the linearization pro-
tocol, V processed 3-5 million items/second. The verifier in
the bounded and circuit-checking protocols is faster than in
the linearization protocol because, in the first two, V only
requires evaluating a logn-variate polynomial at a random
point, while the linearization protocol requires evaluating
a logn + logm-variate polynomial at a random point. The
communication requirement grows larger for circuit checking
and the bounded protocol, with the former approaching 100
KBs for universes of size 10 million, and the latter approach-
ing similar amounts of communication when F∞ = 200. In
contrast, the communication under linearization was an or-
der of magnitude lower, never more than a few KBs on all
streams tested.

In summary, the bounded protocol may be preferable
when F∞ is at most a very small constant (less than about
30); otherwise, the linearization protocol dominates, with
the only downside being decreased throughput of the veri-
fier.

PMwW: Our experiments on pattern matching showed
broadly the same relative trends as for F0 and are omitted
for brevity.

5.4 Parallel Implementations
The prover’s computations in all of the non-interactive

protocols studied here are highly parallelizable, as noted pre-
viously. Indeed, using just three OpenMP6 statements, we
were able to achieve more than a 7-fold speedup over the
sequential implementation of the FFT protocol, by using all
8 cores of the multi-core machine our experiments were run
on. Consequently, with 8 processors, the ratio between the
speed of the MR and NI-FFT protocols for F2 drops from
20-60 to 3-8. In theory, the interactive F2 protocol is just as
easy to parallelize as the non-interactive protocol; however,
we did not find this to be the case in practice. The prover’s
computations in the multi-round protocol are so light-weight
(as evidenced by its very high throughput) that memory ac-
cess forms the principle bottleneck. In our test machine,

6http://www.openmp.org

all cores share a single pipe to memory, and the bottleneck
remains. In other scenarios, such as each core having a sep-
arate pipeline to memory, multiple cores might yield more
substantial speedups.

6. CONCLUSION AND FUTURE DIRECTIONS
The ideas and techniques from interactive proof systems

have transformed the landscape of computational complex-
ity over the last two decades [3, 20]. Yet they have had rela-
tively little practical impact thus far in the area of delegated
computation. In this paper, we demonstrated that, when
combined with significant engineering, interactive proof sys-
tems have sufficiently evolved to yield protocols suitable for
everyday use.

A particularly encouraging feature of our experimental re-
sults is that V’s runtime is dominated by the time required
to evaluate the LDE of the input at a point r. For the low-
complexity (linear or near linear time) computations we ex-
perimented on, this cost is actually comparable to the time
required to solve the problem without a prover, assuming V
had enough memory to store the input. But if we were to
run our implementation on problems requiring superlinear
time to solve, then V would save significant time as well as
space (compared to solving the problem without a prover).

Moreover, if the cost of the LDE computation can be
amortized over many queries, then V will save time as well
as space even for very low-complexity functions. This is in-
deed possible for our non-interactive protocols, as there is
no leakage of information from V to P as long as P does not
learn whether V accepts or rejects after each query; sound-
ness is therefore maintained even if V uses the same r in all
instances of the protocol.

Such amortization for interactive protocols may also be
possible in cases where P is not considered malicious, such
as a user simply trying to detect a buggy algorithm. In
this setting it is reasonable to use the same location r in
all instances of the protocol even though soundness is not
maintained theoretically. Thus, in these realistic situations,
the amortized time cost to the verifier can be considerably
sublinear in the input length, and our protocols will save the
verifier both time and space.

The next step is to further advance the boundary of practi-
cality. The chief obstacle for more general systems is the re-
quirement of a circuit representation for computations, and
the superlinear dependence of the prover’s time on the size
of the circuit. Various approaches offer themselves: either
to design protocols which circumvent this circuit represen-
tation, or to improve the throughput by taking greater ad-
vantage of the inherent parallelism in the prover’s work, e.g.
via GPU implementation.

Acknowledgments
We thank Owen Arden, Varun Kanade, Guy Rothblum,
Thomas Steinke, and Salil Vadhan for helpful discussions.
We also thank Shafi Goldwasser, Yael Tauman Kalai, and
Guy Rothblum for sharing the full version of [19].

APPENDIX
A. DETAILS FOR THEOREMS 3.2-3.4

In this Appendix, we spell out the details of our efficient
instantiation of the construction of [19]. Our results ensure
that the prover can be implemented efficiently, and that the
verifier can be implemented very efficiently for a large class
of circuits.

A.1 Notation and Background
We adhere closely to the notation of [19]. We are given

an arithmetic circuit C of gates with fan-in 2 over the field
F. C is in layered form and has size S(n) and depth d(n),
where n is the number of input wires. For presentation pur-
poses, assume that all layers of the circuit have at most n
gates, and write v = logn. For each 1 ≤ i ≤ d, we as-
sociate the j’th gate at layer i of C with the v-bit binary
representation of j, and for i > 1, we define two functions,
addi,multi : {0, 1}3v → {0, 1} which together constitute the
wiring predicate of layer i of C. Specifically, these functions
take as input three gate labels (j1, j2, j3), and return 1 if gate
j1 at layer i−1 is the addition (respectively, multiplication)
of gates j2 and j3 at layer i, and return 0 otherwise. We let
˜addi, ˜multi : F3v → F denote the multilinear extensions of
addi and multi respectively. That is, ˜addi and ˜multi are the
unique multilinear polynomials over F that agree with addi
and multi at all values in {0, 1}3v.

We also define a function Vi : {0, 1}v → F to represent the
values of the gates at layer i. That is, Vi(j) equals the value

of gate j at layer i. Let Ṽi : Fv → F denote the multilinear
extension of Vi.

Recall from Section 2.1 that at iteration i of the protocol of
[19], the sum-check protocol is applied to a certain 3v-variate
polynomial fi. We are ready to give the definition of fi as
promised. Given a vector x ∈ F3v, write p = (x1, . . . , xv),
ω1 = (xv+1, . . . , x2v) and ω2 = (x2v+1, . . . , x3v). Then we
define

fi(p, ω1, ω2) :=β(p)
`

˜addi(p, ω1, ω2)(Ṽi(ω1) + Ṽi(ω2)) (2)

+ ˜multi(p, ω1, ω2)Ṽi(ω1)Ṽi(ω2)
´
.

Here, ˜addi, ˜multi, and Ṽi are as above, and β(p) is a cer-
tain polynomial that depends only on p.

A.2 Making P Run in Time O(S(n) logS(n))

In this subsection we show how to engineer an efficient
prover. First we give an informal outline, then go on to
make this more precise.

A.2.1 High-level Outline
In the j’th round of the sum-check protocol applied to fi,
P is required to send the univariate polynomial

gj(Xj) = X
(xj+1,...,x3v)∈{0,1}3v−j

fi(r
(i)
1 , . . . , r

(i)
j−1, Xj , xj+1, . . . , x3v).

Theorems 3.2, 3.3, and 3.4 rely on the observation that,
when ˜addi and ˜multi are multilinear extensions, rather than
arbitrary low-degree extensions, then each gate at layers i
and i− 1 contributes to exactly one term in the sum.

More specifically, the key observation is that the mul-
tilinear extension of the wiring predicate acts as a sum

of variable-wise indicator functions on boolean-valued vari-
ables, with one indicator function for each gate at the layer
of interest. At any round j of the sum-check protocol, the
“unbound” variables (i.e., those appearing in the sum defin-
ing gj) still only range over values in {0, 1}, and thus each
gate y at the current layer of the circuit still contributes to
only one term in the sum in intermediate rounds. Namely, y
contributes to the unique term of the sum that agrees with
the trailing bits in the binary representation of y, despite
the fact that “bound” variables may take values outside of
{0, 1}.

A.2.2 Decomposing ˜addi and ˜multi as Sums of
Variable-wise Indicator Functions

Since ˜addi and ˜multi are the multilinear extensions of the
wiring predicate, we can write them explicitly as follows.

For y ∈ {0, 1}3v let χy(x1, . . . , x3v) =
Q3v
k=1 χyk (xk),

where χ0(xk) = 1 − xk and χ1(xk) = xk. χy is the unique
multilinear polynomial that takes y ∈ {0, 1}3v to 1 and all
other values in {0, 1}3v to 0, i.e., it is the multilinear exten-
sion of the indicator function for boolean vector y.

Notice that if (xj+1, . . . , x3v) ∈ {0, 1}3v−j , then for any
(r1, . . . rj) ∈ Fj ,

χy(r1, . . . , rj , xj+1, . . . , x3v) = (3)(Qj
l=1 χyl(rl), if xk = yk for all k ≥ j + 1.

0, otherwise.

Informally, Equation (3) implies that one may think of
χy acting as a variable-wise indicator function on boolean-
valued variables.

Since ˜addi and ˜multi are multilinear extensions, they can
be written as a sum of these χy functions, where each gate
y at layer i− 1 contributes a term χy to the sum. That is,

˜addi(x1, . . . , x3v) =
X

add gates y at layer i−1

χy(x1, . . . , x3v) (4)

and

˜multi(x1,. . . ,x3v) =
X

mult gatesy at layer i−1

χy(x1, . . . , x3v). (5)

It is straightforward to observe the expressions on the
right hand sides of Equations (4) and (5) are multilinear
polynomials that agree with addi and multi on boolean-
valued inputs, and hence the right hand sides are equal to
the multilinear extensions of addi and multi respectively.

For any vector x = (xj+1, . . . x3v) ∈ {0, 1}3v−j , and for
any (r1, . . . rj) ∈ Fj , let x∗ denote the vector

x∗ := (r1, . . . , rj , xj+1, . . . , x3v) ∈ F3v,

and let Sx denote the set of gates at layer i − 1 given by
{y ∈ {0, 1}3v : yk = xk for all k ≥ j + 1}. Equations 4 and
5 imply that

˜addi(x
∗) =

X
add gates y∈Sx

jY
l=1

χyl(rl)

!
, (6)

and similarly

˜multi(x
∗) =

X
mult gates y∈Sx

jY
l=1

χyl(rl)

!
(7)

A.2.3 Completing the Calculation
At round j of this sum-check protocol, the prover must

compute the message

gj(Xj) =
X

xj+1...x3v∈{0,1}3v−j

fi(r
(i)
1 , . . . , r

(i)
j−1, Xj , xj+1 . . . x3v).

Since gj has degree three if we are using multilinear ex-
tensions, it suffices for the prover to send gj(rj) for rj ∈
{0, 1, 2}, as these evaluations uniquely define gj .

Using Equations (6) and (7), we can now easily observe
that each gate at layer i− 1 contributes to exactly one term
in the sum. Specifically, for any term x = (xj+1 . . . x3v) ∈
{0, 1}3v−j in the sum, let x∗ denote the vector

x∗ := (r
(i)
1 , . . . , r

(i)
j , xj+1, . . . , x3v) ∈ F3v

as before, and let p∗ ∈ Fv be the first v entries of this vector,
ω∗1 ∈ Fv the middle v entries, and ω∗2 ∈ Fv the final v entries.
Then combining Equations (6) and (7) with (2), we see

fi(x
∗) = β(p∗)· X

add gates y∈Sx

jY
l=1

χyl(rl)

!!“
Ṽi(ω

∗
1) + Ṽi(ω

∗
2)
”

+

 X
mult gates y∈Sx

jY
l=1

χyl(rl)

!!
· Ṽi(ω∗1) · Ṽi(ω∗2)

!
. (8)

Each gate y at layer i − 1 is in Sx for exactly one x ∈
{0, 1}3v−j . Namely, x is the boolean vector equal to the last
3v − j bits of the binary representation of y. Denote this
vector by x(y), and similarly let x∗(y), p∗(y), ω∗1(y) and
ω∗2(y) denote the corresponding vectors implied by x(y).

Equation (8) implies that y contributes only to the term
x(y) of the sum defining gj(rj) for rj ∈ {0, 1, 2}. That is,
we may write

gj(rj) =X
add gates y at layer i−1

β(p∗(y))

jY
l=1

χyl(rl)

!
(Ṽi(ω

∗
1(y))+Ṽi(ω

∗
2(y)))

+
X

mult gates y at layer i−1

β(p∗(y))

jY
l=1

χyl(rl)

!
·Ṽi(ω∗1(y))·Ṽi(ω∗2(y)).

Thus, the prover can compute gj(0), gj(1), and gj(2) with
a single pass over the gates at layer i− 1. By a similar cal-
culation, all necessary Ṽi(ω1) and Ṽi(ω2) for each message
of the prover can be computed with a single pass over the
gates at layer i. In conclusion, as long as we use the multi-
linear extension of the circuit’s wiring predicate, the prover
can compute each message at layer i with a single pass over
the gates at layer i − 1 and a single pass over the gates at
layer i, performing a constant number of field operations for
each gate. Thus, the prover runs in time O(S(n) logS(n))
in total, where S(n) is the size of the circuit.

A.3 Finishing the Proofs of
Theorems 3.2 and 3.3

We have demonstrated that if the protocol of [19] is in-
stantiated with the multilinear extensions of the circuits
wiring predicate and gate value function, then P can be
made to run in time O(S(n) logS(n)). All that remains
in proving Theorem 3.2 is to show that for any log-space
uniform circuit, the verifier can evaluate ˜addi(p, ω1, ω2) and

˜multi(p, ω1, ω2) in space O(logS(n)). This holds because
V can make an “implicit” pass over each layer of the cir-
cuit and compute the contribution of each gate to ˜addi and

˜multi. That is, V considers each gate y in turn, and com-
putes y’s contribution to ˜addi and ˜multi using Equations
(4) and (5). This requires O(S(n)) time in total, but only
O(logS(n)) space, since V never needs to store an explicit
representation of the circuit. Theorem 3.2 follows.

Theorem 3.3 follows from the additional observation that
˜addi and ˜multi do not depend on the input, nor do the

random coins of the verifier, and these coins uniquely deter-
mine the points at which V must evaluate ˜addi and ˜multi.
Thus, V can toss all her coins in the pre-processing phase
and compute the necessary evaluations of ˜addi and ˜multi.
V stores the answers and the random coins for use in the
online phase. In the online phase, V only needs to spend
O(1) time per round of the protocol to check P’s messages
for consistency, and thus V takes time O(d(n) logS(n)) in
the online phase.

In streaming contexts, where V is more space-constrained
than time-constrained, this may be acceptable. However,
the solutions we adopt in our experimental implementation
correspond to the stronger Theorem 3.4, which further re-
duces the space and time costs for the verifier.

A.4 Discussion and Formal Statement of
Theorem 3.4

Now that we have defined the polynomial fi to which the
sum-check protocol is applied in the i’th iteration of the con-
struction of [19], we are ready to state Theorem 3.4 formally.

Theorem A.1 (Formal statement of Theorem 3.4.).
Let C be a log-space uniform circuit of size S(n) and depth
d(n), and assume there exists an O(log(S(n)))-space,

poly log(S(n))-time algorithm for evaluating ˜addi and
˜multi at a point, for all layers i of the circuit. Then P

requires O(S(n) logS(n)) time to implement the protocol
of Theorem 3.1 over the entire execution. V requires space
O(logS(n)) and time O(n logn+d(n)poly(logS(n))), where
the O(n logn) term is due to the time required to evaluate
the low-degree extension of the input at a point.

The remainder of this section is devoted to discussing the
applicability of Theorem A.1. We believe the assumption
that the multilinear polynomials ˜addi and ˜multi can be eval-
uated quickly by a small-space algorithm is mild, in both
theory and practice. We demonstrate this in three ways.
First, we show that all four motivating problems in this
work possess succinct circuits to which Theorem A.1 ap-
plies. Second, we identify a host of other important circuits
from the algorithmic literature to which Theorem A.1 also
applies. Third, we apply Theorem A.1 to a complicated cir-
cuit appearing in the proof of [19, Corollary 1], to obtain
improved protocols for any language decidable by a (non-
deterministic) Turing Machine in small space.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

Figure 4: A circuit for F2 on 4 inputs.

In essence, Theorem A.1 applies to any circuit with a
“highly regular” wiring pattern; this explains why it applies
to such a wide array of circuits. The details in the remain-
der of the section grow lengthy at times, but the thesis is
clear: Theorem A.1 applies to most circuits that arise in
both practical applications and theoretical constructions.

A.4.1 Wiring Predicates for F2, F0, PMwW, and MV-
Mult

We demonstrate that Theorem A.1 applies to all four cir-
cuits described in Section 3.

1. F2: Recall that the circuit for F2 had a layer of multi-
plication gates used for computing the square of each
input, and then subsequent levels formed a binary tree
of addition gates used to sum up the results. A visual
depiction of this circuit on n = 4 inputs is provided in
Figure 4.

First, consider layer d − 1 immediately above the in-
put gates, which consists of multiplication gates used
to square each input; both the in-neighbors of gate i
at layer d− 1 are equal to the i’th input gate. There-
fore, if p = (p1, . . . , pv) ∈ {0, 1}v denotes the boolean
representation of a gate at layer d − 1, and ω1 =
(ω1,1,. . . ,ω1,v) ∈ {0, 1}v and ω2 = (ω2,1,. . . ,ω2,v) ∈
{0, 1}v denote the boolean representation of two gates
at the input layer, then multd evaluates to true if and
only if p = ω1 = ω2, while addd is identically zero. It
is easily seen that the multilinear extension of multd
is the polynomial

˜multd(p,ω1,ω2)=
Qv
j=1

`
pjω1,jω2,j+(1−pj)(1−ω1j)(1−ω2,j)

´
,

while the multilinear extension of addd is the zero poly-
nomial. Clearly, ˜multd can be evaluated at any point
in F3v

p in time and space O(v) = O(logn).

The rest of the circuit for F2 consists of a binary tree
of addition gates, which is used to sum up the squared
item frequencies. Thus, ˜multi is the zero polynomial
for all i < d. Meanwhile, for i < d the predicate
addi(p1, ω1, ω2) evaluates to 1 if ω1 = 2p and ω2 =
2p+ 1, where here we are interpreting p, ω1, and ω2 as
integers. Thus, it can be seen that

a1  a2  a3  1 

x  x  x  x 

x  x  x  x  x  x 

x  x  x  x  x  x 

x  x  x  x  x  x 

Figure 5: The first several layers of a circuit for F0

on three inputs (in place of a fourth input is a “con-
stant” gate with value one) over the field Fp with
p = 261 − 1. The first layer from the bottom com-
putes a2

i for all i. The second layer from the bottom
computes a4

i and a2
i for all i. The third layer com-

putes a8
i and a6

i = a4
i × a2

i for all i, while the fourth
layer computes a16

i and a14
i = a8

i ×a6
i for all i. The re-

maining layers (not shown) have structure identical
to the third and fourth layers until the value ap−1

i is
computed for all i, and the circuit culminates in a
binary tree of addition gates.

˜addi(p, ω1, ω2) = (1− ω1,1)ω2,1·
vY
j=2

(pj−1ω1,jω2,j + (1− pj−1)(1− ω1,j)(1− ω2,j)) .

Conceptually, the leading factor (1−ω1,1)ω2,1 ensures
that ω1 is even (i.e. its first bit is 0) and ω2 is odd (i.e.
its first bit is 1), while the expression

nY
j=2

(pj−1ω1,jω2,j + (1− pj−1)(1− ω1,j)(1− ω2,j))

ensures that the high-order n−1 bits of ω1 and ω2 agree
with the bits of p. ˜addi is therefore the unique mul-
tilinear polynomial evaluating to 1 on boolean inputs
(p, ω1, ω2) if ω1 = 2p and ω2 = 2p+ 1, and evaluating

to 0 otherwise. Clearly ˜addi can be evaluated at any
point in time and space O(v) = O(logn). This com-

pletes the description of ˜addi and ˜multi for all layers
of the circuit for F2.

2. F0: Recall that for each of the n inputs ai, the cir-
cuit for F0 from Section 3 computes ap−1

i via O(log p)
multiplications, and then sums the results via a binary
tree of addition gates. We have already seen the wiring
predicate for binary trees, so here we only sketch the
wiring predicate for the ap−1

i computation, omitting
some details for brevity. We do so for the special case
of p = 261−1, which is the value of p used in our exper-
iments, as this happens to have a particularly“regular”
circuit for computing ap−1; the calculation would be
similar but less symmetric for other values of p.

We may write p−1 = 261−2, whose binary representa-

tion is 60 1s followed by a 0. Thus, ap−1 =
Q60
j=1 a

2j

.

The circuit computing ap−1 repeatedly squares a, and
multiplies together the results “as it goes”. In more
detail, for i > 1 there are two multiplication gates at
each layer d− i of the circuit for computing ap−1; the

first computes a2i

by squaring the corresponding gate

at layer i−1, and the second computes
Qi−1
j=1 a

2i−1
. See

Figure 5 for a visual depiction of the first few layers of
the F0 circuit.

At a high level then, the wiring predicate
multi(p, ω1, ω2) tests equality of ω1 and ω2 with
two strings that depend on the parity of p, as even

values of p correspond to gates computing a2i

while

odd values correspond to gates computing
Qi−1
j=1 a

2i−1
.

Thus, we may write

˜multi(p, ω1, ω2)=(1−p1)χeven(p, ω1, ω2)+p1χodd(p, ω1, ω2),

where χodd and χeven are multilinear extensions of the
appropriate equality predicates, which do not depend
on p1 (we omit a precise definition of χodd and χeven

for brevity). This can clearly be evaluated in O(v)
time and space.

3. PMwW: The circuit for PMwW is similar to that for
F0 so we omit the details for this circuit.

4. MVMult: The circuit described in Section 3 for MV-
Mult computes (Ax− b)i for all 1 ≤ i ≤ n, and then
applies the circuit for F0 to the result. We have al-
ready sketched the wiring predicate for F0, so we need
only describe the wiring predicate of the circuit C com-
puting (Ax − b)i for all 1 ≤ i ≤ n. For presentation
purposes, we only describe the wiring predicate for a
circuit C′ which computes (Ax)i for all i. The wiring
predicate for C′ is simpler than that of C, since C re-
quires some extra gates to “propagate” the entries of
b up to the final layer of the circuit, where they are
finally used to compute (Ax − b)i for all 1 ≤ i ≤ n.
We emphasize that Theorem A.1 applies to the circuit
C as well.

Assume n is a power of 2. To simplify the wiring predi-
cate of C′, we will treat C′ as having 2n2 inputs, where
the first n2 inputs of C′ are the entries of A in row-
major order; and the last n inputs are the entries of
the vector x, with all the remaining inputs (between n2

and 2n2−n) set to 0 and ignored in subsequent layers.
We emphasize that this convention does not increase
the costs to either P or V in the protocol applied to
C′.

Each of the 2n2 inputs can be specified with 1+2 logn
bits. Conceptually, the first bit indicates whether the
input specifies an entry of A (a zero indicates yes).
The next logn bits specify the row of A, and are zero
for any entry of x. The last n bits specify the column
of A or the entry of x. We therefore write an input to
a gate as h ◦ i ◦ j, where h ∈ {0, 1}, i, j ∈ {0, 1}n, and
◦ denote concatenation.

Layer d− 1 of C′ computes Aijxj for all 1 ≤ i, j ≤ n;
there are therefore n2 gates at this layer, so each gate

can be specified with 2 logn bits. This layer consists
only of multiplication gates, where the first input to
gate p = i ◦ j has bit representation 0 ◦ i ◦ j, while the
second input has bit representation 1 ◦0 ◦ j. Thus, for
p ∈ {0, 1}2 logn, ω1, ω2 ∈ {0, 1}2 logn+1,

˜addd(p, ω1, ω2) = 0,

while

˜multd(p, ω1, ω2) = (1− ω11)ω21·
lognY
k=1

(pkω1,k+1+(1−pk) (1−ω1,k+1)) (1−ω2,k+1)

!
·0@ 2 lognY

j=logn+1

(pkω1,k+1ω2,k+1+(1−pk) (1−ω1,k+1) (1−ω2,k+1))

1A
Conceptually, the term (1− ω1,1)ω2,1 ensures that the
first bit of ω1 is 0, and the first bit of ω2 is 1. For
p = i ◦ j, the term

lognY
k=1

(pkω1,k+1 + (1− pk) (1− ω1,k+1)) (1− ω2,k+1)

ensures that the next log n bits of ω1 equal i, while the
corresponding bits of ω2 are all 0. Finally, the term

2 lognY
j=logn+1

(pkω1,k+1ω2,k+1+(1− pk) (1−ω1,k+1) (1− ω2,k+1))

ensures that the last logn bits of both ω1 and ω2 equal
j.

Subsequent layers of C′ compute
Pn
j=1 Aijxj for each

1 ≤ i ≤ n, which is performed via a binary tree of
addition gates for each i. We have already described
the predicate for this wiring pattern in the paragraph
on F2.

A.4.2 Other Circuits
Theorem A.1 applies to many other circuits that arise in

the algorithms literature. Here we provide an incomplete
list, sketching the necessary observations for each.

1. Matrix Multiplication. Theorem A.1 applies to the
naive circuit of size O(n3) and depth O(logn) for mul-
tiplying two n × n matrices, which is similar to the
circuit C′ described in Section A.4.1 for MVMult.
More generally, other multiplication algorithms, such
as Strassen’s algorithm, are also amenable to encoding
as circuits, reducing the size to O(n2.807) in this case.
We omit the details of these circuits for brevity.

2. Rational permutations. Rational permutations have
arisen in the study of memory hierarchies [1, 10],
and capture commonly-used operations such as matrix
transposition and bit-reversal. Formally, a permuta-
tion Π on [2n] is rational if it can be expressed as a
permutation π on bit positions i.e. Π((x1, . . . , xn)) =
(xπ(1), . . . , xπ(n)) [10]. There is a two-layer circuit C
of size n for performing any rational permutation (i.e.
producing output wires that are the permutation of

the input wires). Let the 0’th input gate of C be a
“constant gate” hard-coded to value zero. Each gate p
at the non-input layer of C is an addition gate, whose
first input is the constant gate, and whose second input
is Π(p). Then ˜mult1 is the zero polynomial, while

˜add1(p, ω1, ω2)

=

lognY
j=1

(1− ω1j)
`
pjω2,π(j) + (1− pj)(1− ω2,π(j))

´
.

Conceptually, the (1− ω1i) term ensures that ω1 = 0
while the term (pjω2,π(j) + (1 − pj)(1 − ω2,π(j))) en-

sures that ω2 = Π(p). Clearly, ˜add1 can be evaluated
at a point in polylog(n) time as long as π(i) can be
evaluated in polylog(n) time for i ∈ {0, 1}log logn.

If a rational permutation is used as an intermediate
step in a computation represented by a circuit C′, then
we need not explicitly materialize the above “rational
permutation” circuit C as an intermediate layer i of
the larger circuit C′. Rather, we can simply modify the
wiring predicate of layer i of C′ to directly apply the ra-
tional permutation to its variables. That is, we replace
˜addi(p, ω1, ω2) and ˜multi(p, ω1, ω2) with the polynomi-

als ˜addi(p,Π(ω1),Π(ω2)) and ˜multi(p,Π(ω1),Π(ω2)).

It is easy to see that ˜addi(p,Π(ω1),Π(ω2)) and
˜multi(p,Π(ω1),Π(ω2)) are multilinear polynomials as

long as Π is a rational permutation, and these poly-
nomials can be evaluated in polylog(n) time as long
as π(i) can be evaluated in polylog(n) time for i ∈
{0, 1}log logn.

3. Fourier Transform. Theorem A.1 applies to an arith-
metic circuit over the complex field C computing the
standard radix-two decimation-in-time FFT (the most
common form of the Cooley-Tukey algorithm [14]). Let
x ∈ Cn be the input vector, where n is a power of 2,
and let X ∈ Cn denote the output vector. The radix-
two decimation-in-time FFT relies on the following re-
cursion: Denoting the even-indexed inputs x2k by Ek
and the odd-indexed inputs x2k+1 by Ok, it holds that

Xk =

(
Ek + e−2πki/nOk if k ≤ n/2
Ek−n/2 + e−2πki/nOk−n/2 ifk > n/2

The algorithm is sufficiently well-known that good in-
troductions are readily available, along with illustra-
tions of a circuit implementing the above recursion
[35]. Essentially, the circuit performs a bit-reversal
on its inputs (which can be implemented as a rational
permutation described above), and then executes logn
“stages”, where the k’th output of stage i equals

Vi(k1, . . . , kn) = Vi−1(k1, ki−1, 0, ki, . . . , kn)

+ e−2πki/nVi−1(k1, . . . , ki−1, 1, ki+1, . . . kn). (9)

Here Vi−1(k) denotes the value of the k’th output of
the previous stage.

The i’th stage can thus be implemented with two layers
of gates; the first consists only of multiplication gates,
and serves to multiply the outputs of the previous stage
by the appropriate twiddle factors (the terms of the

form e−2πki/n). The second layer consists only of ad-
dition gates, and combines outputs as in Equation (9).
The wiring predicate of both layers essentially tests
whether the k’th bit of gate p is 0 or 1, and performs
an appropriate equality test depending on the result.
We have seen how to write equality tests of this form
as succinct multilinear polynomials in the paragraph
describing the circuit for F0 in Section A.4.1.

A.4.3 More Efficient Protocols for Space-Bounded
Computation

Our final result of this section is to obtain more efficient
protocols for any language decided by a non-deterministic
Turing Machine in small space. In the full version of [19],
Goldwasser, Kalai, and Rothblum obtain the following re-
sult.

Lemma A.2. ([19], full version) Let L be any language
solvable by a non-deterministic Turing Machine T in space
s(n) = Ω(logn) and time t(n). Then there is an arith-
metic circuit C over an extension field of F2 computing L,
where C has size S(n) = poly(2s(n)), and depth d(n) =
O(s(n) log t(n)). Moreover, for 1 ≤ i ≤ d(n), there exist

polynomial extensions ˜addi and ˜multi of the functions addi
and multi, where ˜addi and ˜multi have degree poly(s(n)) and
can be evaluated at a point using space O(logS(n)) and time
poly(s(n)).

We show that in fact the circuit C satisfies the following
stronger property:

Corollary A.3. Let C, addi and multi be as in Lemma
A.2. For 1 ≤ i < d(n), the multilinear extensions ˜addi
and ˜multi of the functions addi and multi, can be eval-
uated at a point using O(logS(n)) words of memory and

time poly(s(n)), while ˜addd(n) and ˜multd(n) can be evalu-
ated at a point using O(logS(n)) words of memory and time
O(n · s(n) logn).

Thus, Theorem A.1 implies that in applying the proto-
col of [19] to C, the prover can be made to run in time
O(S(n) logS(n)), rather than poly(S(n)), with a verifier
who usesO(logS(n)) space and runs in timeO(n·s(n) logn+
d(n) polylog(S(n))), where S(n) is the size of C. Notice in
particular that for any language in NL, the verifier runs in
time O(n log2 n).

In essence, there are two sources of overhead in the proto-
col implied by Lemma A.2, where by overhead we mean the
extra computation P must do to solve the problem verifiably,
rather than just solving the problem in an an unverifiable
manner. First, there is overhead in representing a uniform
computation as a (potentially large) circuit C rather than
as a non-deterministic Turing Machine T . Second, there is
additional overhead caused by the fact that in Lemma A.2,
the prover takes time superlinear in the size of C. Our re-
sults in this section remove the latter source of overhead, or
at least reduce it to a logarithmic factor rather than poly-
nomial factor, while maintaining a super-efficient verifier.

Description of C. In order to present our result, we must
first summarize the circuit C as defined in [19], which can be
described as follows. The non-deterministic Turing Machine
T is assumed without loss of generality to have a unique ac-
cepting configuration. The circuit C consists of two stages:

the first stage computes the adjacency matrix of the config-
uration graph of T on input x, which requires just a single
layer of gates, while the second stage determines whether
there is a path from the starting configuration of T on input
x to the accepting configuration. The second stage deter-
mines whether such a path exists by a process resembling
repeated squaring of the adjacency matrix of T .

More specifically, closely following the notation in the full
version of [19], a configuration of T can be specified as a

tuple u = (q, i, j, t) ∈ {0, 1}g(n), where g(n) = O(1)+logn+
log s(n)+s(n) = O(s(n)). In this tuple, q is a boolean vector
describing the machine’s state (O(1) bits), i is the boolean
representation of the location of the input-tape head (logn
bits), j is the location of the work-tape head (log s(n) bits),
and t represents the contents of the work tape (s(n) bits).
The configuration graph G of T is a directed acyclic graph
with 2g(n) nodes, one for each configuration of T , and an
edge from u to v if T can move in one step from configuration
u to configuration v. We include self-loops in this graph.

As in the full version of [19], let Bx denote the adjacency
matrix of T . The circuit C first computes the entries of Bx,
and then computes log t(n) matrices Blog t(n), . . . , B0, where
the (u, v)’th entry of Bp is 1 if there is a path of length

at most 2log t(n)−p from u to v in G. The matrix Bp is ob-
tained from Bp+1 by a process resembling repeated squaring
of Bx using naive matrix multiplication.7 The wiring struc-
ture of this stage of the circuit is similar to that for naive
matrix-vector multiplication, and it is straightforward to ob-
serve that the multilinear extensions of addi and multi for
these layers can be evaluated in O(logS(n)) time and us-
ing O(logS(n)) words of space. We omit these details for
brevity.

Multilinear Extension of the Remaining Layer. Thus,
we need only show that the multilinear extensions of the
wiring predicate of the layer of C computing the entries of
Bx can be evaluated using O(logS(n)) words of memory
and O(n · s(n) logn) time. Assume that C has a designated
input gate whose value is set to 0, and another whose value
is set to 1; we call these the constant-0 and constant-1 input
gates, respectively. In determining the value of Bx[u, v], the
full version of [19] demonstrates that there are 4 cases to
consider. Notice configuration u only reads one input bit,
bit xi.

1. Configuration u can always go to v, regardless of xi.
Then Bx[u, v] = 1.

2. Configuration u can never to go v, regardless of xi.
Then Bx[u, v] = 0.

3. Configuration u can go to v only if xi = 1. Then
Bx[u, v] = xi.

4. Configuration u can go to v only if xi = 0. Then
Bx[u, v] = 1 + xi, with arithmetic done over an exten-
sion field of F2.

7More specifically,

Bp[u, v] = 1 +
Y

w∈{0,1}g(n)

(1 +Bp[u,w]Bp[w, v]) ,

where all arithmetic is done over an extension field of F2.

Thus, all gates are layer d(n)− 1 of C are addition gates.
In Case 1 above, the first input to gate (u, v) is the constant-
0 input gate, while the second is the constant-1 input gate.
In Case 2, both inputs to gate (u, v) at layer d(n)− 1 equal
the constant-0 input gate. In Case 3, the first input to gate
(u, v) is the constant-0 input gate, and the second input to
gate (u, v) is the i’th input gate. In Case 4, the first input
to gate (u, v) is the constant-1 input gate, and the second
input to gate (u, v) is the i’th input gate.

Write u = (q1, i1, j1, t1) and v = (q2, i2, j2, t2). The

fact that the multilinear extension ˜addd(n)(p, ω1, ω2) can
be evaluated using O(logS(n)) words of memory and time
O(n · s(n) logn) relies on the fact that computation is local.
More specifically, determining which of the four cases (u, v)
is in depends only on the states q1 and q2 (of which there are
only O(1) possibilities), the value of the j1th bit in both t1
and t2 (of which there are only 4 possibilities), determining
whether the work-tape head can move j2 − j1 locations to
the right (this requires j2 − j1 ∈ {−1, 0, 1}, and hence there
are only O(s(n)) valid possibilities for j2 and j1), determin-
ing whether the input-tape head can move i2 − i1 locations
to the right (this requires i2 − i1 ∈ {−1, 0, 1}, and hence
there are only O(n) valid possibilities for i2 and i1), and de-
termining whether all other entries of t1 and t2 are identical
(the multilinear extension of this predicate is succinct).

For example, p is in Case 1 iff

1. All bits of t1 and t2 other than bit j1 are equal, and

2. Given state q1 and the value read by the work-tape
head t1,j1 , it holds that no matter the value of xi, the
non-deterministic machine can move to state q2, move
its output-tape head j2 − j1 positions to the right, set

bit j1 of its work tape equal to t2,j1 , and move its input
head move i2 − i1 positions to the right.

Let S be the set of all values (q1, q2, i1, i2, j1, j2, t1,j1 , t2,j1) ∈
{0, 1}O(s(n)) values satisfying Property Two above. Notice
all elements of S can be enumerated in time O(n · s(n)).

For p = (q1, i1, j1, t1, q2, i2, j2, t2) ∈ {0, 1}2g(n), ω1, ω2 ∈
{0, 1}logn, consider the multilinear polynomial

χCase 1(p, ω1, ω2) =

 X
x∈S

χx(pS)

!
χS̄(pS̄)χ0(ω1)χ1(ω2),

where pS denotes the vector p restricted the entries corre-
sponding to elements in S, χx is the multilinear polynomial
testing for equality with x, χS̄ is the multilinear polynomial
for testing that all bits of t1 and t2 other than i1 are equal,
χ0 is the multilinear polynomial for testing that ω1 is equal
to the index of the constant-0 gate, and χ1 is the multilinear
polynomial for testing that ω2 is equal to the index of the
constant-1 gate. This polynomial can clearly be evaluated in
in time O(n ·s(n) logn) using O(logS(n)) words of memory,
and it evaluates to 1 on boolean input (p, ω1, ω2) to 1 if p
is in Case 1 and ω1 and ω2 are as required by Case 1, and
evaluates to zero otherwise.

Similar polynomials χCase 2, χCase 3, χCase 4 can be con-
structed for Cases 2-4. Thus, we can write

˜addi(p, ω1, ω2) =

4X
j=1

χCase j(p, ω1, ω2),

which can clearly be evaluated in time O(n · s(n) logn)
and space O(logS(n)).

B. REFERENCES
[1] A. Aggarwal, A. K. Chandra, and M. Snir.

Hierarchical memory with block transfer. In Proc.
FOCS, pp. 204–216, 1987.

[2] S. Arora and B. Barak. Computational Complexity: A
Modern Approach. Cambridge University Press, 2009.

[3] L. Babai. Trading group theory for randomness. In
Proc. STOC, pp. 421-429, 1985.

[4] A. Bhattacharyya. Implementing Probabilistically
Checkable Proofs of Proximity. Technical Report
MIT-CSAIL-TR-2005-051, 2005. Available at
http://dspace.mit.edu/handle/1721.1/30562.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In Proc. Eurocrypt, pp. 506-522, 2004.

[6] C. S. Burrus and P. W. Eschenbacher. An in-place,
in-order prime factor FFT algorithm. IEEE Trans.
Acoustics, Speech, and Signal Processing, 29:806–817,
1981.

[7] R. Canetti, B. Riva, and G. Rothblum. Practical
delegation of computation using multiple servers. In
Proc. of Conf. on Computer and Communications
Security, pp. 445-454, 2011.

[8] A. Chakrabarti, G. Cormode, and A. Mcgregor.
Annotations in data streams. In Proc. of ICALP, pp.
222-234, 2009.

[9] A. Chakrabarti, G. Cormode, A. Mcgregor, and
J. Thaler. Annotations in data streams. Submitted,
2011.

[10] A. Chin. Permutations on the block PRAM. Inf.
Process. Lett., 45:69–73, February 1993.

[11] K. Chung, Y. Kalai, F. Liu, and R. Raz. Memory
Delegation. In Proc. of CRYPTO, pp. 151-168, 2011.

[12] K. Chung, Y. Kalai, and S. Vadhan. Improved
delegation of computation using fully homomorphic
encryption. In Proc. of CRYPTO, pp. 483-501, 2010.

[13] P. Clifford and R. Clifford. Simple deterministic
wildcard matching. Inf. Process. Lett., 101:53–54,
January 2007.

[14] J. Cooley and J. Tukey. An algorithm for the machine
calculation of complex Fourier series. Mathematics of
Computation, 19:297–301, April 1965.

[15] G. Cormode, M. Mitzenmacher, and J. Thaler.
Streaming graph computations with a helpful advisor.
In Proc. of ESA, pp. 231-242, 2010.

[16] seas.harvard.edu/~jthaler/code/code.htm

[17] G. Cormode, J. Thaler, and K. Yi. Verifying
computations with streaming interactive proofs.
Electronic Colloquium on Computational Complexity
(ECCC), 17:159, 2010. Full version to appear in
International Conference on Very Large Databases
(VLDB), 2012.

[18] R. Gennaro, C. Gentry, and B. Parno. Non-interactive

verifiable computing: Outsourcing computation to
untrusted workers. In Proc. of CRYPTO, pp. 465-482,
2010.

[19] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum.
Delegating computation: Interactive proofs for
muggles. In Proc. STOC, pp. 113-122, 2008.

[20] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof systems.
SIAM J. Comput., 18:186–208, 1989.

[21] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient
arguments without short PCPs. In Proc. Conf.
Computational Complexity, pp. 278-291, 2007.

[22] A. Juels and B. Kaliski. PORs: Proofs of retrievability
for large files. In Proc. of Conf. on Computer and
Communications Security, pp. 584-597, 2007.

[23] J. Kleinberg and E. Tardos. Algorithm Design,
Addison-Wesley, 2005.

[24] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios.
Proof-infused streams: Enabling authentication of
sliding window queries on streams. In Proc. of VLDB,
pp. 147-158, 2007.

[25] C. Lund, L. Fortnow, H. Karloff, and N. Nisan.
Algebraic methods for interactive proof systems. J.
ACM, 39:859–868, 1992.

[26] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay—a secure two-party computation system. In
Proc. USENIX Security Symposium, 2004.

[27] M. Nüsken and M. Ziegler. Fast multipoint evaluation
of bivariate polynomials. In Proc. of ESA, pp.
544-555, 2004.

[28] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers, 2005.

[29] S. Papadopoulos, Y. Yang, and D. Papadias.
Continuous authentication on relational streams.
VLDB Journal, 19:161–180, April 2010.

[30] J. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

[31] S. Setty, A. J. Blumberg, and M. Walfish. Toward
practical and unconditional verification of remote
computations. In Proc. of HotOS Workshop, 2011.

[32] A. Shamir. IP = PSPACE. J. ACM, 39:869–877,
October 1992.

[33] A. Shen. IP = PSPACE: Simplified proof. J. ACM,
39:878–880, October 1992.

[34] M. Thorup. Even strongly universal hashing is pretty
fast. In Proc of ACM-SIAM SODA, 2000.

[35] http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_

algorithm

[36] Y. Yang, S. Papadopoulos, D. Papadias, and
G. Kollios. Authenticated indexing for outsourced
spatial databases. VLDB Journal, 18(3):631–648,
2009.

