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Abstract

Motivated by the surging popularity of commercial cloud computing services, a number of recent
works have studied annotated data streams and variants thereof. In this setting, a computationally weak
verifier (cloud user), lacking the resources to store and manipulate his massive input locally, accesses a
powerful but untrusted prover (cloud service). The verifier must work within the restrictive data stream-
ing paradigm. The prover, who can annotate the data stream as it is read, must not just supply the final
answer but also convince the verifier of its correctness. Ideally, both the amount of annotation from the
prover and the space used by the verifier should be sublinear in the relevant input size parameters.

A rich theory of such algorithms—which we call schemes—has started to emerge. Prior work has
shown how to leverage the prover’s power to efficiently solve problems that have no non-trivial stan-
dard data stream algorithms. However, even though optimal schemes are now known for several basic
problems, such optimality holds only for streams whose length is commensurate with the size of the
data universe. In contrast, many real-world data sets are relatively sparse, including graphs that contain
only o(n2) edges, and IP traffic streams that contain much fewer than the total number of possible IP
addresses, 2128 in IPv6.

Here we design the first annotation schemes that allow both the annotation and the space usage to
be sublinear in the total number of stream updates rather than the size of the data universe. We solve
significant problems, including variations of INDEX, SET-DISJOINTNESS, and FREQUENCY-MOMENTS,
plus several natural problems on graphs. On the other hand, we give a new lower bound that, for the
first time, rules out smooth tradeoffs between annotation and space usage for a specific problem. Our
technique brings out new nuances in Merlin–Arthur communication complexity models, and provides a
separation between online versions of the MA and AMA models.

1 Introduction

The surging popularity of commercial cloud computing services has rendered the following scenario in-
creasingly plausible. A business—call it AliceSystems—processes billions or trillions of transactions a day.
The volume is sufficiently high that AliceSystems cannot or will not store and process the transactions on
its own. Instead, it offloads the processing to a commercial cloud computing service.

The offloading of any computation raises issues of trust. AliceSystems may be concerned about rela-
tively benign errors: perhaps the cloud dropped some of the transactions, executed a buggy algorithm, or
experienced an uncorrected hardware fault. Alternatively, AliceSystems may be more cautious and fear that
the cloud operator is deliberately deceptive or has been externally compromised. Either way, each time
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AliceSystems poses a query to the cloud, it may demand that the cloud provide not only the answer but also
some proof that the returned answer is correct.

Motivated by this scenario, a number of recent works have studied annotated data streams and their
variants [7, 9, 10, 11, 21, 24]. In this setting, a computationally weak verifier (modeling AliceSystems in
the above scenario), who lacks the resources to store the entire input locally, is given access to a powerful
but untrusted prover (modeling the cloud computing service). The verifier must execute within the confines
of the restrictive data streaming paradigm, i.e., it must process the input sequentially in whatever order it
arrives, using space that is substantially sublinear in the total size of the input. The prover is allowed to
annotate the data stream as it is read, with the goal of convincing the verifier of the correct answer. The
streaming restriction for the verifier fits the cloud computing setting well, as the verifier’s streaming pass
over the input can occur while uploading data to the cloud.

Prior work [2, 7, 9, 10, 22, 24] has provided considerable understanding of the power of annotated
data streams, revealing a surprisingly rich theory. A number of fundamental problems that possess no non-
trivial algorithms in the standard streaming model do have efficient schemes when the data stream may
be annotated by a prover: the term “scheme” refers to an algorithm involving verifier-prover interaction
as above. By exploiting powerful algebraic techniques originally developed in the literature on interactive
proofs [18, 26], these works have achieved essentially optimal tradeoffs between annotation size and the
space usage of the verifier for problems ranging from frequency moments to bipartite perfect matching.

However, these schemes are only optimal for streams for which the total number of updates is large
relative to the size of the data universe. In contrast, many real-world data sets are sparse: for example, many
real-world graphs, though large, contain much fewer than the maximum possible number

(n
2

)
of edges, and

IP traffic streams contain much fewer than the total number of possible IP addresses, 2128 in IPv6.
In this paper, we give the first schemes in the annotations model that allow both the annotation size

and space usage to be sublinear in the number of items with non-zero frequency in the data stream, rather
than the size of the data universe n. On the negative side, we also give a new lower bound that for the first
time rules out smooth tradeoffs between annotation size and space usage for a specific problem. The latter
result is derived from a new lower bound in the Merlin–Arthur (MA) communication model that may be of
independent interest.

1.1 Related Work

Aaronson and Wigderson [2] gave a beautiful MA communication protocol for the SET-DISJOINTNESS prob-
lem (henceforth, DISJ) using algebraic techniques analogous to those in the famous “sum-check protocol”
from the world of interactive proofs and probabilistically checkable proofs [18]. Their protocol is nearly op-
timal, essentially matching a lower bound of Klauck [22]. The Aaronson–Wigderson protocol has served as
the starting point for many schemes for annotated data streams. We will refer to such schemes as sum-check
schemes; a typical example is Proposition 4.1 in this work.

Aaronson [1] studied the hardness of the INDEX problem in a restricted version of the MA communi-
cation model, as well as in a quantum variant of this model. His classical model is similar to the online
MA communication model that we consider. Annotated data streams were introduced by Chakrabarti et
al. [7], and studied further by Cormode et al. [9]. These two papers gave essentially optimal annotation
schemes for problems ranging from exact computation of Heavy Hitters and Frequency Moments to graph
problems like Bipartite Perfect Matching and Shortest s-t Path. Cormode, Thaler and Yi [11] later extended
the annotations model to allow the prover and verifier to have a conversation, and dubbed this interactive
model streaming interactive proofs. They demonstrated that streaming interactive proofs can have expo-
nentially smaller space and communication costs than annotated data streams, and showed that a number of
powerful protocols from the literature on interactive proofs can be made to work with streaming verifiers;
in particular, this applies to a powerful general-purpose interactive proof protocol due to Goldwasser, Kalai,
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and Rothblum [20]. Cormode, Mitzenmacher, and Thaler [10] implemented a number of protocols in both
the annotated data streams and streaming interactive proof settings, demonstrating genuine scalability in
many cases. In particular, they developed an implementation of the Goldwasser et al. protocol [20] that
approaches practicality. Most relevant to our work on annotated data streams, Cormode, Mitzenmacher, and
Thaler also used sophisticated FFT algorithms to drastically reduce the prover’s runtime in the sum-check
schemes, which we make frequent use of.

Two recent works have considered variants of the annotated data stream model. Klauck and Prakash [24]
study a restricted version of the annotations model in which the annotation must essentially end by the final
stream update. Gur and Raz [21] give protocols for a class of problems in a model that is similar to annotated
data streams, but more powerful in that the verifier has access to both public and private randomness. This
corresponds to the AMA communication model. We consider protocols in this model in Section 7.2.

Early work on interactive proof systems studied the power of space-bounded verifiers (the survey by
Condon [8] provides a comprehensive overview), but many of the protocols developed in this line of work
require the verifier to store the input, and therefore do not work in the annotations model, where the verifier
must be streaming. An exception is work by Lipton [17], who relied on using fingerprinting techniques
to allow a log-space streaming verifier to ensure that the prover correctly plays back the transcript of an
algorithm in an appropriate computational model. This approach does not lead to protocols with sublinear
annotation length. More recently, Das Sarma et al. studied the “best order streaming model,” which can be
thought of as the annotations model where the annotation is restricted to be a permutation of the input [13].

1.2 Overview of Results and Techniques

We give an informal overview of our results and the techniques we use to obtain them. Throughout, n will
denote the size of the data universe and m the number of items with non-zero frequency at the end of a data
stream (we refer to m as the “sparsity” of the stream). A scheme in which the streaming verifier uses at
most cv bits of storage and requires at most ca bits of annotation from the prover is called a (ca,cv)-scheme.
Section 2 defines our models of computation carefully and sets up terminology.

Section 3 contains our first set of results. We begin by precisely characterizing the complexity of
the sparse POINTQUERY problem—a natural variant of the well-known INDEX problem from communi-
cation complexity—giving an (x logn,y logn)-scheme whenever xy≥ m. We give similar upper bounds for
the related problems SELECTION and HEAVYHITTERS. We also prove a lower bound showing that any
(ca,cv)-scheme for these problems requires cacv = Ω(m log(n/m)), improving by a log(n/m) factor over
lower bounds that follow from prior work on “dense” streams. By a dense stream we mean one where n
is not much larger than m. This log(n/m) factor may seem minor, but a striking consequence is that the
(very) sparse INDEX problem—where Alice’s n-bit string has Hamming weight O(logn)—has one-way ran-
domized communication complexity that is within a logarithmic factor of its online MA communication
complexity. This implies that no non-trivial tradeoffs between Merlin’s and Alice’s message sizes are pos-
sible for this problem. That is, it is not possible for Alice’s message to be more than a logarithmic factor
smaller than in the best Merlin-less protocol, unless Merlin’s message is very long (at least as long, up to a
logarithmic factor, as the cost of the best Merlin-less protocol). To our knowledge this is the first problem
that provably exhibits this phenomenon.

Our scheme for sparse POINTQUERY relies on universe reduction: the prover succinctly describes a
mapping h : [n]→ [r] that maps the input stream, which is defined over the huge data universe [n], down to a
derived stream defined over a smaller universe [r]. By design, if the prover is honest and the mapping h does
not cause “too many collisions,” then the answer on the original stream can be determined from the answer
on the derived stream. We then efficiently apply known schemes for dense streams to the derived stream.

For our lower bound in Section 3, we give a novel reduction from the standard (dense) INDEX problem
to sparse INDEX that is tailored to the MA communication model. We then apply known lower bounds for

3



dense INDEX. Our technique also gives what is to our knowledge the first polynomial separation between
the online MA and AMA communication complexities of a specific (and natural) problem.

For clarity, the remainder of this overview omits factors logarithmic in n and m when stating the costs of
schemes. Though these factors are important for Section 3 (the consequences of our lower bound being most
significant when n = mω(1)), we anticipate that in practice n and m will usually be polynomially related.

Sections 4 and 5 contain our most interesting and technically involved results, namely, efficient schemes
for SIZE-m-SET-DISJOINTNESS (henceforth, m-DISJ) and kth Frequency Moments (henceforth, Fk). The
schemes here are substantially more complex than those in Section 3 and represent the main technical
contributions of this paper.

Section 4 gives (m2/3,m2/3)-schemes for both problems, but the schemes rely on “prescient” annotation,
i.e., annotation provided at the start of the stream that depends on the stream itself. The even more com-
plex schemes of Section 5 eliminate the need for prescient annotation and also achieve much more general
tradeoffs between annotation length and space usage. Specifically, Section 5 gives (mc−1/2

v ,cv)-schemes for
m-DISJ and Fk for any cv < m. Notice that one recovers the costs achieved in Section 4 by setting cv = m2/3,
and thus the results of Section 5 almost subsume those of Section 4.1However, Section 4 allows us to present
a self-contained and easier proof of a weaker set of results that paves the way for the results of Section 5.

These schemes are the first for these problems that allow both the annotation length and space usage to
be sublinear in m. At a very high level, there are three interlocking ideas that allow us to achieve this.

1. The first idea is a careful application of universe reduction. We were able to use a simple version of
this idea to derive the upper bound for the POINTQUERY problem in Section 3, but in the case of DISJ

and Fk the universe-reduction mapping h : [n]→ [r] specified by the prover is more complicated, and
requires refinement in the form of the additional ideas described below.

2. The second idea is addressed to ensuring that the prover performed the universe-reduction step in an
honest manner, in the sense that the answer on the original stream can indeed be determined from the
answer on the derived stream. The difficulty of ensuring P is honest varies depending on the structure
of the problem at hand. For Fk, the verifier has to make sure that the universe-reduction mapping h is
injective on the items appearing in the data stream. This requires developing an efficient way for V
to detect collisions under h, even though V does not have the space to store all of the values h(xi) for
stream updates xi. For m-DISJ, a notion weaker than injectiveness is sufficient.

3. The third idea pertains to allowing P to specify the universe-reduction mapping h online. That is,
for many problems it would be much simpler if P could determine the mapping h in advance i.e. if
P could be prescient, and send h to V at the start of the stream so that V can determine the derived
“mapped-down” stream on her own (this is the approach taken in Section 4). When P must specify h
in an online fashion, additional insight is required. At a high level, our approach is to have P specify
a “guess” as to the right hash function at the beginning of the steam, and retroactively modify the
hash function after the stream has been observed. The challenging aspect of this approach is to ensure
that P’s retroactive modification of the hash function is consistent with the observed data stream, even
though V cannot refer back to the stream to enforce this.

We exploit similar ideas to allow V to avoid storing the universe-reduction mapping h herself; this
is the key to achieving general tradeoffs between annotation length and space usage in Section 5. In
some schemes, storing this mapping h would be the bottleneck in V ’s space usage. We show how V
can store only a partial description of h, and ask P to fill in the remainder of the description when
necessary.

1Two advantages of the schemes of Section 4 are that the schemes of Section 4 satisfy perfect completeness, while those of
Section 5 do not, and that the schemes of Section 4 are more efficient by polylogarithmic factors.
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Section 6 exploits all of these results, applying them to several graph problems, including counting
triangles and demonstrating a perfect matching. Our schemes have costs that depend on the number of
edges in the graph, rather than the total number of possible edges, and demonstrate that the ideas underlying
our m-DISJ and Fk schemes are broadly applicable. We state clearly how our schemes improve over prior
work throughout.

Section 7 considers a more general stream update model, which allows items to have negative frequen-
cies. These negative frequencies potentially break the “collision detection” sub-protocol used in the previous
sections, so we show how to exploit a source of public randomness to allow these protocols to be carried out.
Essentially, the public randomness specifies a remapping of the input, so that the prover is highly unlikely
to be able to use negative frequencies to “hide” collisions. Because the protocols of Section 7 require public
randomness, they work in the AMA communication and streaming models, as opposed to the MA models
in which all of our other protocols operate.

2 Models, Notation, and Terminology

Many of the algorithms (schemes) in this paper use randomization in subtle ways, making it important to
properly formalize several models of computation. We begin with Merlin–Arthur communication models, a
topic first studied by Babai, Frankl and Simon [3], which we eventually use to derive lower bounds. We then
turn to annotated data stream models. At the end of the section we set up some notation and terminology for
the rest of the paper. Some of our discussion in this section borrows from prior work [7].

2.1 Communication Models

Let F : X ×Y → {0,1} be a function, where X and Y are both finite sets. This naturally gives a 2-player
number-in-hand communication problem, where the first player, Alice, holds an input x ∈ X , and the second
player, Bob, holds an input y∈Y . The players wish to compute F(x,y) by executing a (possibly randomized)
communication protocol that correctly outputs F(x,y) with “high” probability. In Merlin–Arthur communi-
cation, there is additionally a “super-player,” called Merlin, who knows the entire input (x,y), and can help
Alice and Bob by interacting with them. The precise pattern of interaction matters greatly and gives rise to
distinct models. Merlin’s goal is to get Alice and Bob to output “1” regardless of the actual value of F(x,y),
and so Merlin is not to be blindly trusted.

One important departure we make from prior work is that we allow Merlin to use private random coins
during the protocol. Most prior work on MA (and AM) communication [3, 22, 23] defined Merlin to be
deterministic, which does not make a difference in the basic setting. But in this work we are concerned
with “online MA” models, where the distinction does matter, and these online MA models are in close
correspondence with the annotated data stream models that are our eventual topic of study.

MA Communication. In a Merlin–Arthur protocol (henceforth, “MA protocol”) for F , Merlin begins by
sending a help message h(x,y,rM), using a private random string rM, that is seen by both Alice and Bob.
Then Alice and Bob (the pair that constitutes the entity “Arthur”) run a randomized communication protocol
P , using a public random string rA, eventually outputting a bit outP(x,y,rA,h). Importantly, rA is not known
to Merlin at the time he sends h. The protocol P is δs-sound and δc-complete if there exists a function
h : X×Y ×{0,1}∗→{0,1}∗ such that the following conditions hold.

1. If F(x,y) = 1 then PrrM ,rA [outP(x,y,rA,h(x,y,rM)) = 0]≤ δc.

2. If F(x,y) = 0 then ∀h′ ∈ {0,1}∗ : PrrA [outP(x,y,rA,h
′) = 1]≤ δs.
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We define err(P) to be the minimum value of max{δs,δc} such that the above conditions hold. Fol-
lowing [7], we define the help cost hcost(P) to be 1+maxx,y,rM |h(x,y,rM)| (forcing hcost ≥ 1, even for
traditional Merlin-free protocols), and the verification cost vcost(P) to be the maximum number of bits
communicated by Alice and Bob over all x,y and rA. We define MAδ (F) = min{vcost(P)+ hcost(P) : P
is an MA protocol for F with err(P)≤ δ}, and MA(F) = MA1/3(F).

Online MA Communication. An online MA protocol is defined to be an MA protocol, as above, but with
the communication pattern required to obey the following sequence. (1) Input x is revealed to Alice and
Merlin; (2) Merlin sends Alice a help message h1(x,rM) using a private random string rM; (3) Input y is
revealed to Bob; (4) Merlin sends Bob a help message h2(x,y,rM); (5) Alice sends a public-coin randomized
message to Bob, who then gives a 1-bit output. We see this model as the natural MA variant of one-way
communication, and the analogy with the gradual revelation of a streamed input should be obvious.

For such a protocol P , we define hcost(P) to be 1+maxx,y,rM(|h1(x,rM)|+ |h2(x,y,rM)|) We define
soundness, completeness, err(P), and vcost(P) as for MA. Define MA→

δ
(F) = min{hcost(P)+vcost(P) :

P is an online MA protocol for F with err(P)≤ δ} and write MA→(F) = MA→1/3(F).

Online AMA Communication. An online AMA protocol is a souped-up version of an online MA proto-
col, where public random coins can be tossed at the start, before any input is revealed. The number of such
coin tosses is added to the vcost of the protocol. This models the cost of an initial round of communication
between Arthur (i.e., Alice + Bob) and Merlin. Note that the second public random string, used when Alice
talks to Bob, does not count towards the vcost.

On Merlin’s Use of Randomness. In an MA protocol, Merlin can deterministically choose a help message
that maximizes Arthur’s acceptance probability. However, Merlin cannot do so in the online MA model,
because he does not know the entire input when he talks to Alice. This is why we allow Merlin to use
randomness in these definitions.

Two recent papers [7, 24] use “online MA” to mean a more restrictive model where a deterministic
Merlin talks only to Bob and not to Alice. With Merlin required to be deterministic, this communication
restriction is irrelevant, as Merlin cannot tell Alice anything she does not already know. However, we permit
Merlin to be probabilistic, and in this case we do not know that Merlin can avoid talking to Alice. That is,
we do not know how to show that for every protocol in which a randomized Merlin talks to Alice, there is
a protocol of similar cost in which Merlin does not talk to Alice. Our online MA communication model,
which permits Merlin to both be randomized and talk to Alice, may therefore be strictly more powerful than
the variant considered in [7, 24] in which Merlin cannot talk to Alice at all.

As noted earlier, our goal in defining the communication models this way is to closely correspond to
annotated data stream models. In many of our online schemes (see, e.g., Section 5), the helper provides ini-
tial annotation that specifies a random “hash” function, h, and the completeness guarantee of the subsequent
protocol depends crucially on h having “low collision” properties. Since h must be chosen without seeing all
of the input, such low collision properties cannot be guaranteed by picking a fixed h in advance. However, if
the helper chooses h at random, then we do have such guarantees for each fixed input, with high probability.

2.2 Data Stream Models

We now define our annotated data stream models. Recall that a (traditional) data stream algorithm computes
a function F of an input sequence x ∈ UN , where N is the number of stream updates, and U is some data
universe, such as {0,1}b or [n] = {0, . . . ,n− 1}: the algorithm uses a limited amount of working memory
and has access to a random string. The function F may or may not be Boolean.

An annotated data stream algorithm, or a scheme, is a pair A = (h,V ), consisting of a help function
h : UN ×{0,1}∗→ {0,1}∗ used by a prover (henceforth, P) and a data stream algorithm run by a verifier,
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V . Prover P provides h(x,rP) as annotation to be read by V . We think of h as being decomposed into
(h1, . . . ,hN), where the function hi : UN → {0,1}∗ specifies the annotation supplied to V after the arrival of
the ith token xi. That is, h acts on x (using rP) to create an annotated stream xh,rP defined as follows:

xh,rP := (x1, h1(x,rP), x2, h2(x,rP), . . . , xN , hN(x,rP)) .

Note that this is a stream over U ∪{0,1}, of length N +∑i |hi(x,rP)|. The streaming verifier V , who uses w
bits of working memory and has oracle access to a (private) random string rV , then processes this annotated
stream, eventually giving an output outV (xh,rP ,rV ).

Prescient Schemes. The scheme A = (h,V ) is said to be δs-sound and δc-complete for the function F if
the following conditions hold:

1. For all x ∈ UN , we have PrrP,rV [outV (xh,rP ,rV ) 6= F(x)]≤ δc.

2. For all x ∈ UN , h′ = (h′1,h
′
2, . . . ,h

′
N) ∈ ({0,1}∗)N , we have PrrV [outV (xh′ ,rV ) 6∈ {F(x)}∪{⊥}]≤ δs.

If δc = 0, the scheme satisfies perfect completeness; otherwise it has imperfect completeness. An output of
“⊥” indicates that V rejects P’s claims in trying to convince V to output a particular value for F(x).

We note two important things. First, the definition of a scheme allows the annotation hi(x,rP) to depend
on the entire stream x, thus modeling prescience: the advice from the prover can depend on data which the
verifier has not seen yet. Second, P must convince V of the value of F(x) for all x. This is stricter than the
traditional definitions of interactive proofs and MA communication complexity (including our own, above)
for decision problems, which place different requirements on the cases F(x) = 0 and F(x) = 1. In Section
6, we briefly consider a relaxed definition of schemes that is in the spirit of the traditional definition.

We define err(A) to be the minimum value of max{δs,δc} such that the above conditions are satisfied.
We define the annotation length hcost(A) = maxx,rP ∑i |hi(x,rP)|, the total size of P’s communications, and
the verification space cost vcost(A) = w, the space used by the verifier V . We say that A is a prescient
(ca,cv)-scheme if hcost(A) = O(ca), vcost(A) = O(cv) and err(A)≤ 1

3 .

Online Schemes. We call A= (h,V ) a δ -error online scheme for F if, in addition to the conditions in the
previous definition, each function hi depends only on (x1, . . . ,xi). We define error, hcost, and vcost as above
and say that A is an online (ca,cv)-scheme if hcost(A) = O(ca), vcost(A) = O(cv), and err(A)≤ 1

3 .
Unlike prior work [7], we do not always assume that the universe size n and stream length N are poly-

nomially related; it is possible that logN = o(logn). Therefore we must be much more careful about loga-
rithmic factors than in prior work. We do assume that N < n always, because our focus is on sparse streams.

Notice that the help function can be made deterministic in a prescient scheme, but not necessarily so in
an online scheme. This is directly analogous to the situation for MA and online MA communication models,
as discussed at the end of Section 2.1.

AMA Schemes. We also consider what we call AMA schemes, where there is a common source of public
randomness, in addition to the verifier’s private random coins. The AMA scheme model is identical to the
one considered by Gur and Raz [21], who referred to it as the “Arthur–Merlin streaming model.”

An online AMA scheme is identical to a (standard) online scheme, except that the data stream algorithm
and help function both have access to a source of public random bits. The number of random bits used is
also counted in both the hcost and the vcost of the scheme.

On Practicality and the Plausibility of Prescience. Although our definition of a scheme allows anno-
tation to be sent after each stream update, all the schemes we in fact design in this paper only require
annotation before the start or after the end of the stream (in particular, while some of our schemes require
a “retroactive modification of a hash function”, they allow this modification to be performed in its entirety
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after the stream ends, not as the stream is observed). As a practical matter, this avoids the need for fine-
grained coordination between the annotation and the data stream, and permits the annotation to be sent to
the verifier as an email attachment, or posted on a website for the verifier to retrieve at her convenience.

Online annotation schemes have the appealing property that the prover need not “see into the future” to
execute them; at any time t, the prover’s message only depends on stream updates that arrived before time t.
While the online restriction appears most natural, prescient schemes may still be suitable in some settings,
such as when P has already seen the full input prior to V beginning to read it. Consider a volunteer computing
scenario where the verifier farms out many computations to volunteers, and only inspects a particular input
if a volunteer has already looked at that input and claims to have found something interesting2. In brief, in
some settings the prover may naturally see the input before the verifier, and in this case a prescient scheme
will be feasible.

2.3 Relationship Between MA Protocols and Schemes

Any prescient (resp. online) (ca,cv)-scheme A = (h,V ) for a function F can be converted into an MA
(resp. online MA) protocol for F in the natural way: Merlin sends the output of the ith help function hi to
Alice—who receives a prefix of the input stream—or Bob, depending on which of the players possesses
the ith piece of the input. Alice runs the streaming algorithm V on her input as well as any annotation she
received, and sends the state of the algorithm to Bob. Bob uses this state to continue running V on his input
and the annotation he received, and then outputs the end result. The hcost of this protocol is at most ca logN,
since Merlin has to specify which stream update i each piece of annotation is associated with, and the vcost
of this protocol is at most cv. Thus, lower bounds on usual (resp. online) MA communication protocols
imply related lower bounds on the costs of prescient (resp. online) annotated data stream algorithms.

2.4 Additional Notation and Terminology

A data stream specifies an input x incrementally. Typically, x can be thought of as a vector (although more
generally it may represent a graph or a matrix). Each update in the stream is of the form (i,δ ) where i ∈ U
identifies an element of the universe, and δ ∈ Z describes the change to the frequency of i. The frequency
of universe item i is defined as fi(x) := ∑( jk,δk)∈x: jk=i δk. We refer to the vector f (x) = ( f1(x), . . . , fn(x)) as
the frequency vector of x, where n denotes the size of the data universe.

We consider several different update models. In the most general update model, the non-strict turnstile
model, the δ values may be negative, and so fi may also be negative. In the strict turnstile model, the δ

values may be negative, but it is assumed that the frequencies fi always remain non-negative. In the insert-
only model, the δ values must be non-negative. Orthogonal to these, in the unit-update version of each
model, the δ values are assumed to have absolute value 1. Each of our results applies to a subset of these
models, and we specify within the statement of each theorem which update models it applies to.

Throughout, n will denote the size of the data universe, N will denote the total number of stream updates,
m will denote the total number of items with non-zero frequency at the end of the stream, and M will refer
to the total number of distinct items that ever appear within some stream update. We will refer to N as the
length of the stream, to m as sparsity of the stream, and to M as the footprint of the stream. Notice that it is
always the case that m≤M ≤ N. In the case of insert-only streams, m = M, but for streams in the (strict or
general) turnstile models it is possible for m to be much smaller than M. Note also that while we talk about
“sparse” streams, this refers to the relative size of n and m, not the absolute size. Indeed, we assume that m
is typically large, too large for V to store the stream explicitly (else the problems can become trivial).

We often make use of fingerprint functions of streams, which enable a streaming verifier to test whether
two large streams have the same frequency vector. The verifier chooses a fingerprint function g(x) at random

2See, for example, http://boinc.berkeley.edu/.
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from some family of functions satisfying the property that (over the random selection of the function g),

Pr[g(x) = g(y) | f (x) 6= f (y)]< 1/p

for a parameter p. Typically, g(x) is an element of a finite field of size poly(p), and hence the number of
bits required to store the value g(x) (as well as g itself) is O(log p). Further, there are known constructions
of fingerprint functions where g(x) can be computed in space O(log p) by a streaming algorithm in the
non-strict turnstile update model [7].

3 Point Queries, Index, Selection, and Heavy Hitters

3.1 Upper Bounds

Our first result is an efficient online annotation scheme for the POINTQUERY problem, a generalization of
the familiar INDEX problem.

Definition 3.1. In the POINTQUERY problem, the data stream x consists of a sequence of updates of the
form (i,δ ), followed by an index ι , and the goal is to determine the frequency fι(x) = ∑( jk,δk)∈x: jk=ι δk.

A prescient (logn, logn)-scheme for this problem is trivial as P can just tell V the index ι at the start of
the stream, and V can track the frequency of ι while observing the stream. The vcost can be improved to
O(logm) if V retains a hashed value of ι , and tracks the frequency of matching updates. The first scheme
has perfect completeness, while the second has completeness error polynomially small in m.

The costs of the scheme below are in terms of the stream sparsity m, and not the stream length N or
the stream footprint M; this is significant if m� M, which is the case, e.g., for the well-known straggler
and set-reconciliation problems that have been studied in traditional streaming and communication models
[14, 19]. Our lower bound in Theorem 3.9 shows our scheme is essentially optimal for moderate universe
sizes, i.e. when the universe size n is sub-exponential in the sparsity m.

Theorem 3.2. For any pair (ca,cv) such that ca · cv ≥ m, there is an online (ca logn,cv logn)-scheme in the
non-strict turnstile update model for the POINTQUERY problem with imperfect completeness. Any online
(ca,cv) scheme with ca ≥ logn for this problem requires ca · cv = Ω(m log(n/m)).

Proof. V requires P to specify at the start of the stream a hash function h : [n]→ [cv]. V requires h to have
description length O(ca), rejecting if this is not the case. We define the derived streams x j ∈ UN based on h:
we set x j

k = xk iff h(xk) = j, and 0 otherwise. Intuitively, the hash function h partitions the stream updates in
x into cv disjoint buckets, and the vector x j describes the contents of the jth bucket. V maintains fingerprints
over a field of size poly(n) of each of the cv different x j vectors.

At the end of the stream, given the desired index ι , P provides a description of the (claimed) frequency
vector in the h(ι)th derived stream, f (xh(ι)). V computes a fingerprint of the claimed frequency vector, and
compares it to the fingerprint she computed from the data stream, accepting if and only if the fingerprints
match. Since each x j is sparse in expectation, the cost of this description can be low: provided h does not
map more than O(ca) items with non-zero frequency to h(ι), P can just specify the item id and frequency
of the items with non-zero frequency in f (xh(ι)). In this case, the annotation size is just O(ca logn). If P
exceeds this amount of annotation, V will halt and reject (output ⊥).

Soundness follows from the fingerprinting guarantee: if P does not honestly provide xh(ι), V ’s fingerprint
of xh(ι) computed from the data stream will not match her fingerprint of the claimed vector of frequencies.

To show (imperfect) completeness, we study the probability that the output of an honest prover is re-
jected. This happens only if m(xh(ι)), the number of non-zero entries in xh(ι), is much larger than its ex-
pectation. By the pairwise independence of h, E[m(xh(ι))] = m(x)/cv = ca. Thus, by Markov’s inequality,
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Problem Scheme Costs Completeness Prescience Source
POINTQUERY (logn, logn) Perfect Prescient [7]
POINTQUERY (m logn, logn) Perfect Online [7]
POINTQUERY (ca logn,cv logn): cacv ≥ n Perfect Online [7]
POINTQUERY (ca logn,cv logn): cacv ≥ m Imperfect Online Theorem 3.2
SELECTION (ca logn,cv logn): cacv ≥ n Perfect Online [7]
SELECTION (m logn, logn) Perfect Online [7]
SELECTION (ca log2 n,cv logn): cacv ≥ m logn Imperfect Online Corollary 3.4

φ -HEAVYHITTERS (φ−1 logn,φ−1 logn): cacv ≥ n Perfect Prescient [7]
φ -HEAVYHITTERS (φ−1ca logn,cv logn): cacv ≥ n Perfect Online [7]
φ -HEAVYHITTERS (m logn, logn) Perfect Online [7]
φ -HEAVYHITTERS (φ−1ca logn,cv logn): cacv ≥ m logn Imperfect Online Corollary 3.6
φ -HEAVYHITTERS (φ−1 logn+ ca logn,cv logn): cacv ≥ m logn Imperfect Online Corollary 5.6

Table 1: Comparison of our schemes to prior work. For all three problems, ours are the first online schemes
to achieve both annotation and space usage sublinear in the stream sparsity m when m�

√
n, and we strictly

improve over the online MA communication cost of prior schemes whenever m = o(n). For brevity, we omit
factors of logcv

(m) from the statement of costs of the φ -HEAVYHITTERS scheme due to Corollary 5.6

Pr[m(xh(ι)) > 10ca] < 1/10. So by specifying a hash function chosen at random from a pairwise indepen-
dent hash family, and then honestly playing back the items that map to the same region as ι , P can convince
V to accept with probability 9/10.

Notice that V does not need to enforce that P picks the hash function h at random from a pairwise-wise
independent hash family, as P has no incentive not to pick the hash functions in this way. That is, since
V will reject if too many items map to the same region as ι , it is sufficient for P to pick h at random from
a pairwise independent hash family in order to convince V to accept with constant probability. But it is
equally acceptable if P wants to pick h another way; if he does so, P just risks that V will reject with a
higher probability.

The lower bound follows from Theorem 3.9, which we prove in Section 3.2.

The scheme of Theorem 3.2 yields nearly optimal schemes for the HEAVYHITTERS and SELECTION

problems, described below. Table 1 summarizes these results and compares to prior work.

3.1.1 Selection

Our definition of the SELECTION problem assumes all frequencies fi := ∑( jk,δk): jk=i δk are non-negative, and
so this definition is only valid for the strict turnstile update model.

Definition 3.3. The SELECTION problem is defined in terms of the quantity N′ = ∑i∈[n] fi, the sum of all
the frequencies. Given a desired rank ρ ∈ [N′], output an item j from the stream x = 〈( j1,δ1), . . . ,( jN ,δN)〉,
such that ∑( jk,δk): jk< j δk < ρ and ∑( jk,δk): jk> j δk ≥ N′−ρ .

Corollary 3.4. For any pair (ca,cv) such that cacv ≥ m logn, there is an online (ca log2 n,cv logn)-scheme
for SELECTION in the strict turnstile update model.

The corollary follows from a standard observation to reduce SELECTION to answering prefix sum
queries, and hence to multiple instances of the POINTQUERY problem. V treats each stream update (i,δ )
in the stream x as an update to O(logn) dyadic ranges, where a dyadic range is a range of the form
[ j2k,( j + 1)2k − 1] for some j and k. Thus, we can view the set of dyadic range updates implied by x
as a derived stream of sparsity m logn. Notice we are using the fact that this transformation from the original
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stream of sparsity m results in a derived stream of sparsity at most m logn; a different derived stream was
used in [7] to address the SELECTION problem, but the sparsity of that derived stream could be substantially
larger than the sparsity of the original stream.

For any i, the quantity Ti := ∑( j,δ ): j≤i δ can be written as the sum of the counts of O(logn) dyadic
ranges. Thus, at the end of the stream P can convince V that item i has the desired Ti value by running
logn POINTQUERY protocols as in Theorem 3.2 in parallel on the derived stream of sparsity m logn. The
verifier’s space usage is the same as for a single POINTQUERY instance on this stream: V fingerprints
each of the derived streams x j defined in the proof of Theorem 3.2, and uses these fingerprints in all logn
instances of the POINTQUERY scheme. The annotation length is logn times larger than that required for a
single POINTQUERY instance because P may have to describe the frequency vectors of up to logn derived
streams.

Thus, we get an online (ca log2 n,cv logn)-scheme as long as cacv = Ω(m logn).

3.1.2 Frequent Items

Our definition of the φ -HEAVYHITTERS problem also assumes all frequencies fi := ∑( jk,δk): jk=i δk are non-
negative, and so this definition is only valid for the strict turnstile update model.

Definition 3.5. The φ -HEAVYHITTERS problem (also known as frequent items) is to list those items i such
that fi ≥ φN′, i.e. whose frequency of occurrence exceeds a φ fraction of the total count N′ = ∑i∈[n] fi.

We give a preliminary result for the φ -HEAVYHITTERS problem in Corollary 3.6 below. We give a
substantially improved scheme in Section 5 using the ideas underlying our online scheme for frequency
moments.

Corollary 3.6. For all ca,cv such that cacv ≥ m logn, there is an online (caφ−1 logn,cv logn)-scheme for
solving φ -HEAVYHITTERS in the strict turnstile update model.

Corollary 3.6 follows from the following analysis. [7, Theorem 6.1] describes how to reduce φ -HEAVYHITTERS

to demonstrating the frequencies of O(φ−1) items in a derived stream. Moreover, the derived stream has
sparsity O(m logn) if the original stream has sparsity m. We use the POINTQUERY scheme of Theorem 3.2.
As in Corollary 3.4, the annotation length blows up by a factor φ−1 relative to a single POINTQUERY, but
the space usage of V can remain the same as in a single POINTQUERY instance. Hence, we obtain an online
(caφ−1 logn,cv logn)-scheme for any cacv ≥ m logn.

3.2 Lower Bound

In this section, we prove a new lower bound on the online MA communication complexity of the (m,n)-
Sparse INDEX problem.

Definition 3.7. In the (m,n)-Sparse INDEX problem, Alice is given a vector x ∈ {0,1}n of Hamming weight
at most m, and Bob is given an index ι . Their goal is to output the value xι .

We prove our lower bound by reducing the (dense) INDEX problem (i.e. the (m,n)-Sparse INDEX prob-
lem with m = Θ(n)) in the MA communication model to the (m,n)-Sparse INDEX problem for small m. The
idea is to replace Alice’s dense input with a sparser input over a bigger universe, and then take advantage
of our sparse POINTQUERY protocol. A lower bound on the online MA communication complexity of the
dense INDEX problem was proven in [7, Theorem 3.1]; there, it was shown that any online MA communi-
cation protocol P requires hcost(P)vcost(P) ≥ n. Combining this with our reduction of the dense INDEX

problem to the sparse version, we conclude that any protocol for sparse INDEX must be costly.
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Lemma 3.8. [7, Theorem 3.1] Any online MA communication protocol P for the (n,n)-Sparse INDEX

problem must have hcost(P)vcost(P) = Ω(n).

Remark 1. The lower bound of Lemma 3.8 was originally proved by Chakrabarti et al. [7] in the commu-
nication model in which Merlin cannot send any message to Alice. However, the proof easily extends to
our online MA communication model (where Merlin can send a message to Alice, but that message cannot
depend on Bob’s input).

Theorem 3.9. Any online MA communication protocol P for the (m,n)-Sparse INDEX problem for which
hcost(P)≥ logn must have hcost(P)vcost(P) = Ω(m log(n/m)).

Proof. Assume we have an online MA communication protocol P for (m,n)-sparse INDEX. We describe
how to use this online MA protocol for the sparse INDEX problem to design one for the dense INDEX

problem on vectors of length n′ = m log(n/m).
Let k = log(n/m). Given an input x to the dense INDEX problem, Alice partitions x into n′/k blocks of

length k, and constructs a 0-1 vector y of Hamming weight n′/k over the universe {0,1}(n′/k)·2k
= {0,1}n as

follows. She replaces each block Bi with a 1-sparse vector vi ∈ {0,1}2k
, where each entry of vi corresponds

to one of the 2k possible values of block Bi. That is, if block Bi of x equals the binary representation of the
number j ∈ [2k], then Alice replaces block Bi with the vector e j ∈ {0,1}2k

, where e j denotes the vector with
a 1 in coordinate j and 0s elsewhere.

Alice now has an n′/k = m-sparse derived input y over the universe {0,1}n. Merlin looks at Bob’s input
to see what is the index ι of the dense vector x that Bob is interested in. Merlin then tells Bob the index `
such that ` = 2k(i−1)+ j, where Bi is the block that ι is located in, and block Bi of Alice’s input x equals
the binary representation of the number j ∈ [2k]. Notice that Merlin can specify ` using logn bits. If Bob is
convinced that y` = 1, then Bob can deduce the value of all the bits in block Bi of the original dense vector
x, and in particular, the value of xι .

The parties then run the assumed online MA protocol for (m,n)-Sparse INDEX. The total hcost of
this protocol is hcost(P) + logn = O(hcost(P)), and the total vcost is vcost(P). Thus, by Lemma 3.8,
hcost(P)vcost(P) = Ω(n′) = Ω(m log(n/m)) as claimed.

Theorem 3.9 should be contrasted with the following well-known upper bound.

Theorem 3.10. Assume n < mm. Then the one-way randomized communication complexity of the (m,n)-
Sparse INDEX Problem is O(m logm).

Proof. Alice chooses a hash function h : [n]→ [m3] at random from a pairwise independent family and uses h
to perform “universe reduction”. That is, she sends h along with the set S of m values {h( j) : x j = 1}. Notice
h can be specified with O(logn) = O(m logm) bits, and S can be specified with O(m logm) bits. Bob outputs
1 if h(ι) ∈ S, and 0 otherwise. The correctness of the protocol follows from the pairwise independence
property of h: if xι = 0, then with high probability ι will not collide under h with any j such that x j = 1.
The total cost of this protocol is O(m logm).

3.3 Implications of the Lower Bound

Our lower bound in Theorem 3.9 has interesting consequences when it is combined with the upper bound
in Theorem 3.10. Consider in particular the (m,n)-Sparse INDEX Problem, where n = 2m. Theorem 3.10
implies that the one-way randomized communication complexity of this problem is O(m logm); that is,
without any need of Merlin, Alice and Bob can solve the problem with O(m logm) communication.

Meanwhile, Theorem 3.9 implies that even if Merlin’s message to Bob has length Ω(logn) = Ω(m),
Alice’s message to Bob must have length Ω(m log(n/m)/m) = Ω(m). Indeed, Theorem 3.9 shows that for

12



any protocol P , if hcost(P)≥ logn = m, then we must have hcost(P)vcost(P) = Ω(m log(n/m)) = Ω(m2).
In particular, this means that if hcost(P) = m, vcost(P) must be Ω(m). This trivially implies that for any
protocol P with hcost(P) less than m, vcost(P) must still be Ω(m); otherwise we could achieve a protocol
with hcost(P) = m and vcost(P) = o(m) simply by running P and adding in extraneous bits to the proof to
bring the proof length up to m.

Consequently, the online MA communication complexity of this problem is at least Ω(m), which is
at most a logarithmic factor smaller than the one-way randomized communication complexity. To our
knowledge, this is the first problem that provably exhibits this behavior. Specifically, this rules out smooth
tradeoffs between annotation size and space usage in any annotated streaming protocol for the (m,2m)-
Sparse INDEX Problem.

Corollary 3.11. The one-way randomized communication complexity of the (m,2m)-Sparse INDEX Problem
is O(m logm). The online Merlin-Arthur communication complexity is Ω(m).

3.3.1 Other Sparse Problems

A number of lower bounds in [7] are proved via reductions from INDEX that preserve stream length up
to logarithmic factors. This holds for SELECTION and HEAVYHITTERS, as well as for the problem of
determining the existence of a triangle in a graph. For all such problems, the lower bound of Theorem 3.9
implies corresponding new lower bounds for sparse streams, i.e. streams for which m = o(n). We omit the
details for brevity.

3.3.2 Separating Online MA and AMA Communication Complexity

Another implication of Theorem 3.9 is a polynomial separation between online MA communication com-
plexity and online AMA communication complexity. Indeed, there is an online AMA protocol of cost
Õ(
√

m) for the (m,2
√

m)-Sparse INDEX Problem, where the Õ notation hides factors polylogarithmic in m:
the first message, which consists of public random coins, is used to specify a hash function h : [n]→ [m3]
from a pairwise independent hash family; this message has length O(logn) = O(

√
m). With high probabil-

ity, h is injective on the set { j : x j = 1}. The parties then run the online MA communication protocol of
Theorem 3.2 on the inputs h(x) and h(ι) and output the result. The total cost of this protocol is Õ(

√
m) as

claimed. In Appendix A, we in fact show that up to logarithmic factors in m, this online AMA protocol is
optimal.

Meanwhile, the lower bound of Theorem 3.9 implies that the online MA communication complexity
of this problem is Ω(m3/4). Indeed, if we have a protocol P with hcost(P) = m3/4 > logn, Theorem 3.9
implies that hcost(P)vcost(P) = Ω(m log(n/m)) = Ω(m3/2), and hence vcost(P)> m3/4.

To our knowledge, this is the first such separation between online AMA and online MA communica-
tion complexity (we remark that polynomial separations between online MA and MAMA communication
complexity were already known, for problems including INDEX and DISJ [2, 7]). Indeed, all previous lower
bound methods that apply to online MA communication complexity, such as the proof of [7, Theorem 3.1]
and the methods of Klauck and Prakash [24], in fact yield equivalent AMA lower bounds. At a high level,
the reason is that these methods work via round reduction – they remove the need for Merlin’s message.
They therefore turn any online MA protocol for a function F into an online “A” protocol for F , which is
really just a one-way randomized protocol without a prover, allowing one to invoke a known lower bound
on the one-way randomized communication complexity of F . Similarly, they turn an online AMA protocol
for F into an online AA protocol, which is also just a one-way randomized protocol for F .

The reason Theorem 3.9 is capable of separating online AMA from MA communication complexity
is that the reduction in the proof of Theorem 3.9 turns an online MA protocol for the (m,n)-Sparse INDEX

Problem into an online MA protocol for the (dense) INDEX Problem with related costs. However, the natural
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Scheme Costs Completeness Prescience Source
(m logm)2/3, (m logm)2/3): m = Ω(logn) Perfect Prescient Theorem 4.3

(ca logn, cv logn): cacv ≥ n Perfect Online [7]
(m logn, logn) Perfect Online [7]

(ca logn logcv
m, cv logn logv m): ca = mc−1/2

v Imperfect Online Theorem 5.1

Table 2: Comparison of our m-DISJ schemes to prior work. Ours are the first schemes to achieve annotation
length and space usage that are both sublinear in m for m�

√
n, and we strictly improve over the MA

communication cost (online or prescient) of prior schemes whenever m = o(n).

variant of the reduction applied to an online AMA protocol for the (m,n)-Sparse INDEX Problem yields an
online MAMA protocol for the dense INDEX Problem, not an online AMA protocol (see Appendix A for
details). And the dense INDEX Problem has an online MAMA protocol that is polynomially more efficient
than any online AMA protocol (see e.g. [2, 11]).

4 Prescient Schemes for Sparse Disjointness and Frequency Moments

In this section and the next, we describe schemes for the m-Disjointness (m-DISJ) and Frequency Moment
(Fk) problems. These schemes contain the main ideas of the paper.

4.1 Background: Optimal Schemes for Dense Problems

We begin with a scheme achieving optimal tradeoffs between annotation length and space usage for a broad
class of dense problems. Though this scheme follows readily from prior work [7, 9], we describe it in detail
for completeness. This scheme is a good example of a sum-check scheme as described in Section 1.1, and is
based on the Aaronson–Wigderson MA protocol for DISJ [2].

Proposition 4.1. Let f (1), . . . , f (`) denote the frequency vectors of ` data streams, each over the universe
[n]. Let g be an `-variate polynomial of total degree d over the integers. Let F = ∑

n
i=1 g( f (1)i , . . . , f (`)i ), and

let o be an a priori upper bound on |F |. Then for positive integers ca,cv with cacv ≥ n, there is an online
(dca(logn+ logo), `cv(logn+ logo))-scheme for computing F in the non-strict turnstile update model.

Proof. We work on Fq, the finite field with q elements, for a suitably large prime q; the choice q> 2d(n+o)2

suffices. V treats each n-dimensional vector f ( j) as a ca× cv array with entries in Fq, using any canonical
bijection between [ca]× [cv] and [n], and interpreting integers as elements of Fq in the natural way. Through
interpolation, this defines a unique bivariate polynomial f̃ ( j)(X ,Y ) ∈ Fq[X ,Y ] of degree ca− 1 in X and
cv−1 in Y , such that for all x ∈ [ca], y ∈ [cv], f̃ ( j)(x,y) = f ( j)(x,y).

The polynomials f̃ ( j) can then be evaluated at locations outside [ca]× [cv], so in the scheme V picks a
random position r ∈ Fq, and evaluates f ( j)(r,y) for all j ∈ [`] and y ∈ [cv]; V can do this using cv words of
memory per vector f ( j) in a streaming manner [7, Theorem 4.1]. Let g̃ denote the total-degree-d polynomial
over Fq that agrees with g at all inputs in F`

q. P then presents a polynomial b(X) of degree at most d(ca−1)
that is claimed to be identical to ∑y∈[cv] g̃( f̃ (1)(X ,y), . . . , f̃ (`)(X ,y)).

V checks that b(r) = ∑y∈[cv] g̃
(

f̃ (1)(r,y), . . . , f̃ (`)(r,y)
)
. If this sum check passes, then V believes P’s

claim and accepts ∑x∈[ca] b(x) as the correct answer. It is evident that this scheme satisfies perfect complete-
ness. The proof of soundness follows from the Schwartz-Zippel lemma: if P’s claim is false, then

Pr
[

b(r) = ∑
y∈[cv]

g̃
(

f̃ (1)(r,y), . . . , f̃ (`)(r,y)
)]
≤ d(ca−1)/q .
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4.2 A Prescient Scheme for Sparse Disjointness

An important special case of the communication problem DISJ is when Alice’s and Bob’s input sets are
promised to be small, i.e., have size at most m� n. These should be thought of as sparse instances. The
sparsity parameter m has typically been denoted by the letter k in the communication complexity literature,
and the problem has typically been referred to as k-DISJ rather than m-DISJ; we use m rather than k for
consistency with our notation in the rest of the paper (where m denotes the sparsity of a data stream).

Among the original motivations for studying this variant is its relation to the clique-vs.-independent-set
problem introduced by Yannakakis [27] to study linear programming formulations for combinatorial opti-
mization problems. More recent motivations include connections to property testing [4]. A clever protocol
of Håstad and Wigderson [16] gives an optimal O(m) communication protocol for m-DISJ, improving upon
the trivial O(m logn) and the easy O(m logm) bounds. This protocol requires considerable interaction be-
tween Alice and Bob, a feature that turns out to be necessary. Recent results of Buhrman et al. [6] and
Dasgupta et al. [12] give tight Θ(m logm) bounds for m-DISJ in the one-way model. Very recently, Brody et
al. [5] and Sağlam and Tardos [25] have given tight rounds-vs.-communication tradeoffs for m-DISJ.

Here we obtain the first nontrivial bounds for m-DISJ in the annotated streams model, and thus also in
the online MA communication model.

Definition 4.2. In the m-DISJ problem, the data stream specifies two multi-sets S,T ⊆ [n], with ‖S‖0,‖T‖0≤
m, where ‖S‖0 denotes the number of distinct items in S. An update of the form ((0, i),δ ) is interpreted as
an insertion of δ copies of item i into set S, and an update of the form ((1, i),δ ) is interpreted as an insertion
of δ copies of item i into T . The goal is to determine whether or not S and T are disjoint.

Notice Definition 4.2 allows S and T to be multi-sets, but assumes the strict turnstile update model,
where the frequency of each item is non-negative.

Theorem 4.3. Assume m > logn. There is a prescient ((m logm)2/3,(m logm)2/3)-scheme for m-DISJ with
perfect completeness in the strict turnstile update model. In particular, the MA-communication complexity
of m-DISJ is O((m logm)2/3). Any prescient (ca,cv) protocol requires cacv = Ω(m).

Proof. Obviously if S and T are not disjoint, the prescient prover can provide an item i ∈ S∩T at the start
of the stream and the verifier can check that i indeed appears in both S and T . The total space usage and
annotation length is just O(logn) in this case.

Suppose now that S and T are disjoint. We first recall that a (
√

n logn,
√

n logn)-scheme for DISJ follows
from Proposition 4.1, with f (1) and f (2) set to the indicator vectors of S and T respectively, and g equal to
the product function. We refer to this as the dense DISJ scheme because its cost does not improve if |S| and
|T | are both o(n).

Our prescient scheme for m-DISJ works as follows. At the start of the stream, the prover describes a hash
function h : [n]→ [r], for some smaller universe [r], with the property that h is injective on S∪T . We will
write h(S) to denote the result of applying h to every member of S. The parties can now run the dense DISJ

scheme whereby P convinces V that h(S) and h(T ) are disjoint. Given the existence of an injective function
h, perfect completeness follows from the fact that if S and T are disjoint, so are h(S) and h(T ), combined
with the perfect completeness of the dense DISJ scheme. Soundness follows from the fact that if i ∈ S∩T ,
then h(i) ∈ h(S)∩h(T ) i.e. if S and T are not disjoint, then the same holds trivially for h(S) and h(T ).

The dense DISJ scheme run on h(S) and h(T ) requires annotation length and space usage O(
√

r logr).
We now show that, for a suitable choice of r, P’s description of h is also limited to O(

√
r logr) communica-

tion, balancing out the cost of the rest of the scheme.
A family of functions F ⊆ [r][n] is said to be κ-perfect if, for all S ⊆ [n] with |S| ≤ κ , there exists a

function h ∈ F that is injective when restricted to S. Fredman and Komlós [15] have shown that for all
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Scheme Costs Completeness Prescience Source
(k2ca logn, kcv logn): cacv ≥ n Perfect Online [7]

(m logn, logn) Perfect Online [7]
(k2m2/3 logn, km2/3 logn) Perfect Prescient Theorem 4.5

(k2mc−1/2
v logn logcv

m, kcv logn logcv
m): cv > 1 Imperfect Online Theorem 5.1

Table 3: Comparison of our Fk schemes to prior work. Ours are the first schemes to achieve annotation
length and space usage that are both sublinear in m for m�

√
n, and we strictly improve over the MA

communication cost of prior protocols (online or prescient) whenever m = o(n).

n≥ r ≥ κ , there exists a κ-perfect family F , with

|F| ≤ (1+o(1))
(

κ logn
− log(1− t(r,κ))

)
,

where

t(r,κ) :=
κ−1

∏
j=1

(
1− j

r

)
.

For r ≥ 2κ , we can use the crude approximation

− log(1− t(r,κ)) ≥ t(r,κ) ≥
(

1− κ

r

)κ

≥ e−2κ2/r

to obtain the bound |F|= O(κe2κ2/r logn), which implies

log |F| = O(κ2/r) ,

for κ2/r = Ω(logκ) and κ = Ω(logn).
Let us pick a family F that is (2m)-perfect. Once P and V agree upon such a family F , the prover,

upon seeing the input sets S and T , can pick h ∈ F that is injective on S∪T . Describing h requires O(m2/r)
bits; P sends this to V before the stream is seen, and V stores it while observing the stream in order to run
the dense DISJ scheme on h(S) and h(T ). To balance out this communication with the O(

√
r logr) cost of

running the dense DISJ scheme on h(S) and h(T ), we choose r so that

m2

r
= Θ(

√
r logr) .

This is achieved by setting r = m4/3/ log2/3 m. The resulting upper bound is that both the annotation length
and verifier’s space usage are O

(
(m logm)2/3

)
.

The lower bound follows from known lower bounds for dense streams [7].

4.3 A Prescient Scheme for Frequency Moments

We now present prescient schemes for the kth Frequency Moment problem, Fk.

Definition 4.4. In the Fk problem, the data stream x consists of a sequence of updates of the form (i,δ ), and
the frequency of item i is defined to be fi = ∑( j`,δ`)∈x: j`=i δ`. The goal is to compute Fk = ∑i∈[n] f k

i .

The idea behind the scheme, as in the case of m-DISJ, is that P is supposed to specify a “hash function”
h to reduce the universe size in a way that does not introduce false collisions. However, for Fk it is essential
that V ensure h is truly injective on the items appearing in the data stream. This is in contrast to m-DISJ,
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where a weaker notion than injectiveness was sufficient to guarantee soundness. The fundamental difference
between the two problems is that for m-DISJ, collisions only “hurt the prover’s claim” that the two sets are
disjoint, whereas for Fk the prover could try to use collisions to convince the verifier that the answer to the
query is higher or lower than the true answer.

Theorem 4.5. There is a prescient (k2m2/3 logn,km2/3 logn)-scheme for computing Fk over a data stream of
sparsity m in the strict turnstile update model. This scheme has perfect completeness. Any prescient (ca,cv)
protocol requires cacv = Ω(m).

Proof. The idea is to have the prover specify for the verifier a perfect hash function h : [n]→ [r], where r is to
be determined later, i.e. P specifies a hash function h such that for all x 6= y appearing in at least one update
in the data stream, h(x) 6= h(y). The verifier stores the description of h, and while observing the stream runs
the dense Fk scheme of Proposition 4.1 on the derived stream in which each update (i,δ ) is replaced with
the update (h(i),δ ).

As discussed above, it is essential that V ensure h is injective on the set of items that have non-zero
frequency, as otherwise P could try to introduce collisions to try to trick the verifier. To deal with this, we
introduce a mechanism by which V can “detect” collisions.

Definition 4.6. Define the problem INJECTION as follows. We observe a stream of tuples ti = ((xi,bi),δi).
Each ti indicates that δi copies of item xi are placed in bucket bi ∈ [r]. We allow δi to be negative, modeling
deletions, and refer to the quantity f( j,b) = ∑i:(xi,bi)=( j,b) δi as the count of pair ( j,b). We assume the strict
turnstile model, so that for all pairs ( j,b) we have f( j,b) ≥ 0.

We say that the stream is an injection if for every two pairs ( j,b) and ( j′,b) with positive counts, it holds
that j = j′. Define the output as 1 if the stream defines an injection, and 0 otherwise.

Lemma 4.7. For any cacv ≥ r, there is an online (ca logr,cv logr)-scheme for determining whether a stream
in the strict turnstile model is an injection.

Proof. Say that bucket b is pure if there is at most one j ∈ [n] such that f( j,b) > 0. The stream defines an
injection if and only if every bucket b is pure.

Notice that a bucket b is pure if and only if the variance of the item identifiers mapping to the bucket
with positive count is zero. Intuitively, our scheme will compute the sum of the these variances across all
buckets b; this sum will be zero if and only if the stream defines an injection. Details follow.

Define three r-dimensional vectors u,v,w as follows:

ub = ∑
j∈[n]

f( j,b),

vb = ∑
j∈[n]

f( j,b) j,

wb = ∑
j∈[n]

f( j,b) j2.

It is easy to see that if bucket b is pure then v2
b = ub ·wb. Moreover, if bucket b is impure then v2

b < ubwb;
this holds by the Cauchy-Schwarz inequality applied to the n-dimensional vectors whose jth entries are√

f( j,b) and
√

f( j,b) · j respectively (the strict inequality holds because for an impure bucket b, the vector
given by

√
f( j,b) · j is not a scalar multiple of the vector given by

√
f( j,b)). Here, we are exploiting the

assumption that f( j,b) ≥ 0 for all pairs (i,b), as this allows us to conclude that all
√

f( j,b) values are real
numbers.

It follows that ∑b∈[r] v2
b = ∑b∈[r] ub ·wb if and only if the stream defined an injection. Both quantities

can be computed using the “dense” scheme of Proposition 4.1. Notice that each update ti = ((xi,bi),δi)
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contributes independently to each of the vectors u, v, and w, and hence it is possible for V to run the
scheme of Proposition 4.1 on these vectors as required. This yields an online (ca logr,cv logr)-scheme for
the injection problem for any cacv ≥ r as claimed.

Returning to our Fk scheme, P specifies a hash function h claimed to be one-to-one on the set of items that
appear in one or more updates of the stream x. V verifies that h is injective using the scheme of Lemma 4.7.
If this claim is true, then Fk(x) = Fk(h(x)), the frequency moment of the mapped-down stream, and P can
prove this by running the scheme of [7, Theorem 4.1] on the derived stream h(x).

Perfect completeness follows from P’s ability to find a perfect hash function just as in Theorem 4.3.
Soundness follows from the soundness of the INJECTION scheme of Lemma 4.7, in addition to the soundness
property of the Fk scheme of [7, Theorem 4.1].

To analyze the costs, note that by using the hash family of Fredman and Komlós [15], the annotation
length and space cost due to specifying and storing the hash function h is O(m2 logn/r). The annotation
length and space cost of the dense Fk scheme of Proposition 4.1 are O(k2ca logr) and O(kcv logr) for any
cacv ≥ r. The annotation length and space cost of the INJECTION scheme can be set to O(ca logr) and
O(cv logr) respectively. Setting r = m4/3 and ca = cv = m2/3 yields the desired costs.

5 An Online Scheme for Frequency Moments

We now give an online version of Fk scheme of Theorem 4.5. A simple modification of this scheme yields
the scheme for m-DISJ with analogous costs as claimed in Row 4 of Table 2. In addition to avoiding the use
of prescience, our online scheme avoids requiring V to explicitly store the hash function sent by P, allowing
us to achieve a much wider range of tradeoffs between annotation size and space usage relative to Theorems
4.3 and 4.5.

Theorem 5.1. For any cv > 1, there is an online (k2mc−1/2
v logn logcv

m, kcv logn logcv
m)-scheme for Fk in

the strict turnstile model for a stream of sparsity m over a universe of size n. Any online (ca,cv)-scheme for
this problem with ca ≥ logn requires cacv = Ω(m log(n/m)).

Notice that the annotation length is less than m logn for any cv = mΩ(1), and therefore this protocol is not
subsumed by the simple “sparse” scheme (second row of Table 3) in which P just replays the entire stream
in a sorted order, and V checks this is done correctly using fingerprints. Notice also that the product of the
space usage and annotation length is k3mc1/2

v log2 n log2
cv

m, which is in o(n) for many interesting parameter
settings. This improves upon the dense sum-check scheme (first row of Table 3) in such cases.

5.1 An Overview of the Scheme

In order to achieve an online scheme, we examine how to construct perfect hash functions such as those used
in the prescient Fk scheme of Theorem 4.5. Let S be the set of m items with non-zero frequency at the end
of the stream: we want the hash function to be one-to-one on S. Choose a hash function h at random from
pairwise independent hash family mapping [n] to [r], for r to be specified later – this requires just O(logn)
bits to specify. We only expect O(m2/r) pairs to collide under h, which means that with constant probability
there will be O(m2/r) collisions if h is chosen as specified. The final hash function h∗ is specified by writing
down h (which takes only O(logn) bits), followed by the items involved in a collision and some special
locations for them. The total (expected) bit length to specify this hash function is O(m2 log(n)/r).

In our online Fk scheme, P will send such an h at the start of the stream. Notice h does not depend on the
stream itself – it is just a random pairwise independent hash function – so P is not using prescience. P also
has no incentive not to choose h at random from a pairwise independent hash family, since the only purpose
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of choosing h in this manner is to minimize the number of collisions under h. If P chooses h in a different
way, P simply risks that there are too many collisions under h, causing V to reject.

Now while V observes the stream, she runs the online sum-check scheme for Fk given in Proposition 4.1
on the mapped-down universe of size r, using h as the mapping-down function. At the end of the stream, P
is asked to retroactively specify a hash function h∗ that is one-to-one on S as follows. P provides a list L0
of all items in S that were involved in a collision under h, accompanied by their frequencies. Assuming that
these items and their frequencies are honestly specified by P, V can compute their contribution to Fk and
remove them from the stream. By design, h∗ is then (claimed to be) injective on the remaining items. V can
confirm this tentatively using the INJECTION scheme of Lemma 4.7.

The remainder of the scheme is devoted to making the correctness a certainty by ensuring that the items
in L0 and their frequencies are as claimed (we stress that while our exposition of the scheme is modular, all
parts of the scheme are executed in parallel, with no communication ever occurring from V to P). A naive
approach to checking the frequencies of the items in L0 would be to run |L0| independent POINTQUERY

schemes, one for each item in L; however there are too many items in L0 for this to be cost-effective.
Instead, we check all of the frequencies as a batch, with a (sub-)scheme whose cost is roughly equal to that
of a single INJECTION query.

This (sub-)scheme can be understood as proceeding in stages, with each stage i using a different pairwise
independent hash function hi to map down the full original input. Say that an item j is isolated by hi if j is
not involved in a collision under hi with any other item with non-zero frequency in the original data stream
x. The goal of stage i is to isolate a large fraction of items which were not isolated by any previous stage.

A key technical insight is that at each stage i, it is possible for V to “ignore” all items that are not
isolated at that stage. This enables V to check that the frequencies of all items that are isolated at stage i are
as claimed. We bound the number of stages that are required to isolate all items if P behaves as prescribed
– if P reaches an excessive number of stages, then V will simply reject.

5.2 Details of the Scheme

Proof of Theorem 5.1: Let r =mc1/2
v . P sends a hash function h : [n]→ [r] at the start of the stream, claimed

to be chosen at random from a pairwise independent hash family. While observing the stream, V runs the
dense online sum-check scheme for Fk given in Proposition 4.1 on the mapped-down universe [r]. Let S be
the set of items with non-zero frequency at the end of the stream. After the stream is observed, P is asked to
provide a list L0 of all items with nonzero frequency that were involved in a collision, followed by a claimed
frequency f ∗i for each i ∈ L0.

Assuming that these items and their frequencies are honestly specified in L0 by P, V can compute
their contribution C0 = ∑i∈L0 f ∗i to Fk and then remove them from the stream by processing updates U =
{(i,− f ∗i ) : i ∈ L0} within the dense Fk scheme. h is injective on the remaining items. V can confirm this
using the INJECTION scheme of Lemma 4.7 (conditioned on the assumed correctness of L0). Thus the dense
Fk scheme will output C1 = ∑i6∈L0 f k

i . Assuming all of V ’s checks within the dense Fk scheme pass, V outputs
C0 +C1 as the answer.

The remainder of the scheme is directed towards determining that the frequency of items in L0 are
correctly reported. We abstract this goal as the following problem.

Definition 5.2. Define the `-MULTIINDEX problem as follows. Consider a data stream x ◦ L0, where ◦
denotes concatenation. x is a usual data stream in the strict turnstile model, while L0 is a list of ` pairs
(i, f ∗i ). Let f be the frequency vector of x. The desired output is 1 if fi = f ∗i for all i ∈ L0, and 0 otherwise.

We defer our solution to the `-MULTIINDEX problem to Section 5.3. For now, we state our main result
about the problem in the following lemma.
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Lemma 5.3. For all cv > 1, `-MULTIINDEX has an online (mc−1/2
v logn logcv

`, cv logn logcv
`)-scheme in

the strict turnstile update model.

Analysis of Costs. Let S be the set of items with non-zero frequency when the stream ends. First, we
argue that if r is the size of the mapped-down universe, and P chooses the hash function h at random from a
pairwise independent hash family, then with probability 9/10, there will be at most 10m2/r items in S that
collide under g. Indeed, by a union bound, the probability any item i with non-zero count is involved in a
collision is at most m/r, and hence by linearity of expectation, the expected number of items involved in a
collision is at most m2/r.

So by Markov’s inequality, with probability at least 9/10, the total number of items involved in a collision
will be at most 10m2/r = O(mc−1/2

v ) under the setting r = mc1/2
v . Conditioned on this event, P can specify

the list L0 and the associated frequencies with annotation length O(mc−1/2
v logn), and V can use the MULTI-

INDEX scheme of Lemma 5.3 with `=O(mc−1/2
v ) to verify the frequencies of the items in L0 are as claimed.

For any cv > 1, Lemma 5.3 under this setting of ` yields an (mc−1
v logn · logcv

`,cv logn · logcv
`)-scheme.

Running all of the sum-check schemes (i.e., the INJECTION scheme and the Fk scheme itself) on the
mapped-down universe requires annotation O(k2rc−1

v logr) and space O(kcv logr) for V ; in total, this pro-
vides an online (m2 logn/r+ k2r logn/cv + kmc−1

v logn · logcv
m,cv logn · logcv

M)-scheme.

Since we set r = mc1/2
v , we obtain a online (k2mc−1/2

v logcv
(m),kcv logn logv(m))-scheme for any cv > 1.

The lower bound stated in Theorem 5.1 follows from Theorem 3.9 and an easy reduction from the
(m,n)-sparse INDEX problem.

5.3 A Scheme for MultiIndex: Proof of Lemma 5.3

Before presenting an efficient online scheme for the `-MULTIINDEX Problem, we define two “sub”problems,
which apply a function to only a subset of the desired input.

Definition 5.4. Define the problem SUBINJECTION as follows. We observe a stream of tuples ti = (xi,bi,δi),
followed by a vector z ∈ {0,1}r. As in the INJECTION problem, each ti indicates that δi copies of item xi are
placed in bucket bi ∈ [r].

We say that the stream defines a subinjection based on z if for every b such that zb ≥ 1, for every two
pairs (x,b) and (y,b) with positive counts, it holds that x = y. The SUBINJECTION problem is to decide
whether the stream defines a subinjection based on z.

Notice that the INJECTION problem is a special case of the SUBINJECTION problem with zi = 1 for all i.

Lemma 5.5. For any cacv ≥ r, there is an online (ca logr,cv logr)-scheme for SUBINJECTION in the strict
turnstile update model. Moreover, for any constant c > 0, this scheme can be instantiated to have soundness
error 1/rc.

Proof. Define vectors u, cv, and w exactly as in the proof of Lemma 4.7, and observe that the stream defines
a sub-injection if and only if ∑b∈[r] zbv2

b = ∑b∈[r] zbubwb. V can compute both quantities using the dense
scheme of Proposition 4.1, with the same asymptotic costs as the scheme of Lemma 4.7. The soundness
error can be made smaller than 1/rc for any constant c by running the scheme of Proposition 4.1 over a finite
field of size poly(r), for a sufficiently fast-growing polynomial in r.

We similarly define the problem SUBF2 over a data universe of size n based on a vector z ∈ {0,1}n

as ∑i∈[n] zi f 2
i , the sum of squared frequencies of items indicated by z. This too is a low-degree polyno-

mial function of the input values, and so Proposition 4.1 implies SUBF2 can be computed by an online
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(ca logr,cv logr)-scheme in the general turnstile update model for any ca,cv such that cacv ≥ r (and the
soundness error in this protocol can be made smaller than 1/rc for any desired constant c).

Online scheme for `-MULTIINDEX. The scheme can be thought of as proceeding in t stages (t will be
specified later), although these stages merely serve to partition the annotation: there is no communication
from V to P during these stages. Each stage j makes use of a corresponding hash function h j : [n]→ [r]
for r = mc1/2

v . The t hash functions are provided by P at the start of the stream, so that V has access to
them throughout the stream. Each h j is claimed to be chosen at random from a pairwise independent hash
family: if they are, then there are unlikely to be too many collisions, so P has no incentive not to choose h j

at random. Let f denote the vector of frequencies defined by the input stream, and let f (0) denote the vector
satisfying f (0)i = fi for i ∈ L0, and f (0)i = 0 for i 6∈ L0.

Stage j begins with a list L j−1 of items. We will refer to these items as “exceptions”. P provides a new
list L j ⊆ L j−1 of items which remain exceptions in stage j; P implicitly claims that no items in L j−1 \L j

collide with some other input items under hash function h j. Let z( j) denote the indicator vector of the list of
buckets corresponding to L j−1 \L j, i.e. z( j)

h j(i)
= 1 if i ∈ L j−1 \L j, and z( j) entries are 0 otherwise. To check

that no items in L j−1 \L j collide under h j, V will use the SUBINJECTION scheme based on the indicator
vector z( j) over the full original input f as mapped by the hash function h j. Note that since the original input
stream is in the strict turnstile update model, so is the stream on which the SUBINJECTION scheme is run (as
the SUBINJECTION scheme is simply run on the original input stream as mapped by the hash function h j,
based on the vector z( j)). Note also that L j−1 and L j are provided explicitly, so V can compute z( j) easily.3

Having established that the items in L j−1 \L j are no longer exceptions, V also wants to ensure that the
frequencies of these items were reported correctly in L0. To do so, V run the SUBF2 scheme over the vector
f − f ∗ as mapped by h j to r buckets, based on the z( j) indicator vector. The result is zero if and only if
fi = f ( j)

i for all i where z( j)
i = 1.

The stages continue until L j = /0, and there are no more exceptions. Provided all schemes conclude
correctly, and the number of stages to reach L j = /0 is at most t, V can accept the result, and output 1 for the
answer to the MULTIINDEX decision problem.

Lastly, note that V does not need to explicitly store any of the lists L j. In fact, P can implicitly specify
all of the lists L j while playing the list L0: for each item i ∈ L0, he provides a number j, thereby implicitly
claiming that i ∈ L j′ for j′ ≤ j, and i 6∈ L j′ for j′ > j.

Analysis of costs. If h j is chosen at random from a pairwise independent hash family, the probability an
item i in L j−1 is involved in a collision with the original stream f under h j is O(m/r) = O(c−1/2

v ). Consider
the probability that any item i survives as an exception to stage t. The probability of this is O(c−t/2

v ), and
summed over all ` items, the expected number is O(`c−t/2

v ). Invoking Markov’s inequality, with constant
probability it suffices to set t = O(logcv

`) to ensure that we need at most t stages before no more exceptions
need to be reported.

In stage j, the SUBINJECTION and SUBF2 schemes cost (mc−1/2
v logn,cv logn). Summing over the t

stages, we achieve for any cv > 1 an (mc−1/2
v log(n) · logcv

(m),cv log(n) · logcv
(m))-scheme as claimed in the

statement of Lemma 5.3.

Formal Proof of Soundness. The soundness error of the protocol can be bounded by the probability any
invocation of the SUBINJECTION scheme or the SUBF2 scheme returns an incorrect answer. The soundness
errors of both the SUBINJECTION scheme and the SUBF2 scheme can be made smaller than 1

rc for any
constant c > 0, and therefore a union bound over all t = O(logcv

`) invocations of each protocol implies that
with high probability, no invocation of either scheme returns an incorrect answer.

3For example, V can add one to the corresponding entry of z( j) for each item that is marked as an exception. This will cause z( j)

to count the number of exceptions in each bucket, rather than indicate them, but this does not affect the correctness.
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5.4 Implications of the Online Scheme for Frequency Moments

Our online scheme for Fk in Theorem 5.1 has a number of important consequences.

Inner Product and Hamming Distance. Chakrabarti et al. [7] point out that computing inner products and
Hamming Distance can be directly reduced to (exact) computation of the second Frequency Moment F2, and
so Theorems 4.5 and 5.1 immediately yield schemes for these problems of identical cost.

An improved scheme for φ -HEAVYHITTERS. We can use Lemma 5.3 to yield an online scheme for the
φ -HEAVYHITTERS problem.

Corollary 5.6. For all ca,cv such that cacv ≥ m logn, there is an online (ca logn · logcv
(m) + φ−1 logn,

cv logn logcv
(m))-scheme for solving φ -HEAVYHITTERS in the strict turnstile update model.

Corollary 5.6 follows from a similar analysis to Corollary 3.6. [7, Theorem 6.1] describes how to reduce
φ -HEAVYHITTERS to demonstrating the frequencies of O(φ−1) items in a derived stream. Moreover, the
derived stream has sparsity O(m logn) if the original stream has sparsity m. We use the MULTIINDEX

scheme of Lemma 5.3 to verify these claimed frequencies.

Frequency-based functions. Chakrabarti et al. [7, Theorem 4.5] also explain how to extend the sum-check
scheme of Proposition 4.1 to efficiently compute arbitrary frequency-based functions, which are functions
of the form F(x) = ∑i∈[n] g( fi(x)) for an arbitrary g : (−[N]∪ [N]) → Z. A similar but more involved
extension applies in our setting, by replacing the dense Fk scheme implied by Proposition 4.1 with the dense
frequency-based functions scheme of [7, Theorem 4.5]. We spell out the details below, restricting ourselves
to the prescient case for brevity; an online scheme with essentially identical costs follows by using the ideas
underlying Theorem 5.1.

Corollary 5.7. Let F(x)=∑i∈[n] g( fi(x)) be a frequency-based function. Then there is a prescient (N3/4 logn,
N3/4 logn)-scheme for computing F(x) in the strict unit-update turnstile model. This scheme satisfies perfect
completeness.

Proof. We use a natural modification of the frequency-based functions scheme of [7, Theorem 4.5]. P
specifies a hash function h at the start of the stream mapping the universe [n] into [N5/4]; P chooses h
to be injective on the set of items that have non-zero frequency at the end of the stream. Using the per-
fect hash functions of Fredman and Komlós [15], h can be represented with O(N2/r logn) = O(N3/4 logn)
bits. V stores h explicitly. After the stream is observed, P and V run the φ -HEAVYHITTERS scheme of
Corollary 5.6, with φ = N−1/4. Using the fact that ∑i fi < N, by setting the parameters of Corollary 5.6
appropriately we can ensure that this part of the scheme requires annotation length O(N3/4 logn) and has
space cost O(N3/4 logn). This scheme also allows V to determine the exact frequencies of the items in H,
allowing V to compute cont(H) := ∑i∈H g( fi(x)), which gives the contribution of the items in H to the out-
put F(x). Moreover, whenever V learns the frequency fi of an item in i ∈ H, V treats this as a deletion of fi

occurrences of item i, thereby obtaining a derived stream z in which all frequencies have absolute value at
most N1/4.

P and V now run the polynomial-agreement scheme that was first presented in [9, Theorem 4.6] on the
“mapped-down” input h(z) over the universe [N5/4]. For any cacv≥ r, the polynomial agreement scheme can
achieve cost (Fmax(z)ca logn,cv logn), where Fmax(z) denotes maxi | fi(z)|, the largest frequency in absolute
value of any item. Setting cv = N3/4 and ca = N1/4, we obtain a prescient (N3/4 logn,N3/4 logn)-scheme as
claimed. V computes the final answer as F(x) = cont(H)+F(h(z))−|H|g(0).

The final issue is that V needs to verify that h is actually injective over the items that appear in x. V can
accomplish this using the INJECTION scheme of Lemma 4.7. This does not affect the asymptotic costs of
our scheme, as the INJECTION scheme can support annotation cost ca logr and space cost cv logr for any
cacv = Ω(N5/4).
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Scheme Costs Completeness Online/Prescient Source
(|X | logn, logn) Perfect Prescient [7]

(ca logn, cv logn): cacv ≥ n Perfect Online [7]
(m logn, logn) Perfect Online [7]

(mc−1/2
v logcv

(m) logn, cv logn logcv
m): cv > 1 Imperfect Online Theorem 5.8

Table 4: Comparison of our SUBSET scheme to prior work. Ours is the first online scheme to achieve
annotation length and space usage that are both sublinear in m for m�

√
n, and strictly improves over the

online MA communication cost of prior protocols whenever m = o(n).

Finally, we provide one additional corollary, which describes a protocol that will be useful in the next
section when building graph schemes.

Theorem 5.8. Let X ,Y ⊆ [n] be sets with |X | ≤ |Y | ≤ m. Then given a stream in the strict turnstile update
model with elements of X and Y arbitrarily interleaved, there is an online (mc−1/2

v · log(n) · logcv
(m),cv ·

log(n) · logcv
(m))-scheme for determining whether X ⊆ Y for any cv > 1.

Proof. If X 6⊆Y , P can specify an x ∈ X \Y and prove that x is indeed in X and not Y with two point queries
using the scheme of Theorem 3.2. For the other case, Chakrabarti et al. show how to directly reduce the
case X ⊆ Y to computation of frequency moments [7]. The claimed costs follow from Theorem 5.1.

Table 4 provides a comparison of schemes for the SUBSET problem in the dense and sparse cases.

6 Graph Problems

We now describe some applications of the techniques developed above to graph problems. The main purpose
of this section is to demonstrate that the techniques developed within the Fk and m-DISJ schemes are broadly
applicable to a range of settings.

We begin with several non-trivial graph schemes that are direct consequences of the Subset scheme of
Theorem 5.8. Recall that our definition of a scheme for a function F requires a convincing proof of the value
of F(x) for all values F(x). This is stricter than the traditional definition of interactive proofs for decision
problems, which just require that if F(x) = 1 then there is some prover that will cause the verifier to accept
with high probability, and if F(x) = 0 there is no such prover. Here, we consider a relaxed definition of
schemes that is in the spirit of the traditional definition. We require only that a scheme A= (h,V ) satisfy:

1. For all x s.t. F(x) = 1, we have PrrP,rV [outV (xh,rP ,rV ) 6= 1]≤ 1/3.

2. For all x s.t. F(x) = 0, h′ = (h′1,h
′
2, . . . ,h

′
N) ∈ ({0,1}∗)N , we have PrrV [outV (xh′ ,rV ) = 1]≤ 1/3.

Theorem 6.1. Under the above relaxed definition of a scheme, each of the problems PERFECT-MATCHING,
CONNECTIVITY, and NON-BIPARTITENESS has an (n logn+mc−1/2

v logn logcv
m, cv logn logcv

m)-scheme
on graphs with n vertices and m edges for all cv > 1. All three schemes work in the strict turnstile update
model and improve over prior work if cv = ω(log2 m) and cv = o(m).

Proof. In the case of perfect matching, the prover can prove a perfect matching exists by sending a matching
M, which requires n logn bits of annotation. In order to proveM is a valid perfect matching, P needs to
prove that every node appears in exactly one edge of M, and that M⊆ E, where E is the set of edges
appearing in the stream. V can check the first condition by comparing a fingerprint of the nodes inM to a
fingerprint of the set {1, . . . ,n}. V can check thatM⊆ E using Theorem 5.8.

23



Scheme Costs Completeness Online/Prescient Source
(ca logn,cv logn): cacv ≥ n3 Perfect Online [7]
(n2 logn, logn) Perfect Online [7]

(ca log2 n,cv log2 n): ca = mnc−1/2
v Imperfect Online Theorem 6.2

Table 5: Comparison of prior work to our scheme for counting the number of triangles in a graph
with n nodes and m edges. For concreteness, notice that by setting cv = n, Theorem 6.2 achieves a
(mn1/2 log2 n,n log2 n)-scheme, which improves over prior work as long as m� n3/2.

In the case of connectivity, the prover demonstrates the graph is connected by specifying a spanning
tree T . V needs to check T is spanning, which can be done as in [7, Theorem 7.7], and needs to check that
T ⊆ E, which can be done using Theorem 5.8.

In the case of non-bipartiteness, P demonstrates an odd cycle C. V needs to check C is a cycle, C has an
odd number of edges, and that C ⊆ E. The first condition can be checked by requiring P to play the edges
of C in the natural order. The second condition can be checked by counting. The third condition can be
checked using Theorem 5.8.

Counting Triangles. Returning to our strict definition of a scheme, we give an online scheme for counting
the number of triangles in a graph.

Theorem 6.2. For any cv > 1, there is an online (ca logn logm, cv logn logm)-scheme, with imperfect com-
pleteness, for counting the number of triangles in a graph on n nodes and m edges, where ca = mnc−1/2

v .
The scheme is valid in the strict turnstile update model.

Proof. Chakrabarti et al. [7, Theorem 7.4] show how to reduce counting the number of triangles in a graph to
computing the first three frequency moments of a derived stream. The derived stream has sparsity m(n−2).
Using the online scheme of Theorem 5.1 to compute the relevant frequency moments of the derived stream
yields the claimed bounds.

The scheme of Theorem 6.2 should be compared to the (n2, logn)-scheme from [7, Theorem 7.2] based
on matrix multiplication, referenced in Row 2 of Table 5 and the (h,v)-scheme for any cacv ≥ n3 from [7,
Theorem 7.3], referenced in Row 1 of Table 5. To compare to the former, notice that Theorem 6.2 yields
a (ca log2 n,cv log2 n)-scheme with ca < n2 as long as m < n

√
cv. To compare to the latter, note that in our

new scheme, cacv = mnc1/2
v , which is less than n3 as long as c1/2

v < n2

m . In particular, if we set cv = n, then
Theorem 6.2 improves over both old schemes as long as m < n3/2.

Unfortunately, Theorem 6.2 does not yield a non-trivial MA-protocol for showing no triangle exists.
Indeed, equalizing annotation length and space usage in our new protocol occurs by setting both quantities
to (mn)2/3. But Ω

(
(mn)2/3

)
<m only when m> n2, which is to say that the MA communication complexity

of this protocol is always larger than m, a cost that can be achieved by the trivial MA protocol where Merlin
is ignored and Alice just sends her whole input to Bob. That is, the interest in the new protocol is that it can
lower the space usage of V to less than m without drastically blowing up the message length of P to n2 as in
the matrix-multiplication based protocol from [7].

7 Non-strict Turnstile Update Model

All schemes in Sections 4 and 5 work in the strict turnstile update model. The reason these schemes require
this update model is that they use the INJECTION and SUBINJECTION schemes of Lemmata 4.7 and 5.5 as
sub-routines, and these sub-routines assume the strict turnstile update model.
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In this section, we consider two ways to circumvent this issue. To focus the discussion, we concentrate
on the online Fk protocol of Theorem 5.1.

7.1 An Online Scheme

One simple method for handling streams in the non-strict turnstile update model is the following. We use the
scheme of Theorem 5.1, but within the SUBINJECTION sub-routine, we treat deletions of items in the input
stream as insertions of items into the derived stream of (xi,bi,δi) updates. This ensures that the INJECTION

and SUBINJECTION schemes correctly output 1 if the derived stream is a subinjection (and the remainder of
the scheme computes the correct answer on the original stream). However it increases the expected number
of collisions under the universe-reduction mappings hi, from m · |Li−1|/r to M · |Li−1|/r. The result is that
we achieve the same costs as Theorem 5.1, except the costs depend on to the stream footprint M rather than
the stream sparsity m (see Section 2.4).

Corollary 7.1. For any cv > 1, there is a (k2Mc−1/2
v · log(n) · logcv

(M),kcv · log(n) · logcv
(M)) online scheme

for Fk in the non-strict turnstile update model over a stream with footprint M over a universe of size n.

7.2 An Online AMA Scheme

In this section, we describe an AMA scheme for the INJECTION problem that works in the non-strict turnstile
stream update model i.e., the input may define a frequency vector where some elements end with negative
frequency. The scheme for INJECTION of Lemma 4.7 breaks down here, since there may be some cases
where the checks performed by the protocol indicate that a bucket is pure, when this is not the case: can-
cellations of item weights in the bucket may give the appearance of purity. To address this, we use public
randomness, thereby yielding an AMA scheme. In essence, the verifier asks the prover to demonstrate the
purity of each of the r buckets via fingerprints of the bucket contents. However, if we allow the prover to
choose the fingerprint function, P could pick a function which leads to false conclusions. Instead, V chooses
the fingerprinting function using public randomness. The players then execute a new INJECTION protocol
using the data remapped under the fingerprint function, which is intended to convince V of the purity of the
buckets. This then allows us to construct protocols with costs that depend on the stream sparsity m rather
than the footprint M as in Corollary 7.1.

In detail, the new AMA scheme proceeds as follows. Consider the INJECTION problem as defined in
Definition 4.6, but generalized to allow items with arbitrary integer counts. Consider again a bucket b, and
for 1 ≤ j ≤ logn define b j=` to be the frequency vector of the subset of stream updates (xk,b,δk) placing
items into bucket b, subject to the restriction that the j’th bit of xk is equal to `. We observe the following
property: if bucket b is pure, then one of b j=0 and b j=1 must be the zero vector 0, for each j. Moreover, if b
is not pure, then there exists a j such that both b j=0 and b j=1 are not the zero vector.

A natural way to compactly test whether these vectors are equal to zero (probabilistically) is to use
fingerprinting (discussed in Section 2.4). The verifier V could do this unaided for a single bucket, but we
wish to run this test in parallel for r buckets. At a high level, we achieve this as follows. Given a stream
of updates (xk,b,δk), we define two vectors z and o of length r logn, such that each coordinate of z and o
corresponds to a (bucket, coordinate) pair (b, j) ∈ [r]× [logn]. In more detail, we will define z and o such
that for each bucket b and coordinate j ∈ [logn], the (b, j)th entry of z is a fingerprint of the vector b j=0, and
the (b, j)th entry of o is a fingerprint of the vector b j=1.

We choose the fingerprinting functions to satisfy two properties.

1. The fingerprint of the all-zeros vector 0 is always 0. This ensures that if all buckets are pure, then the
inner product of z and o is 0, as zb, j ·ob, j is 0 for all pairs (b, j) ∈ [r]× [logn].
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2. If there is an impure bucket, then the inner product of z and o will be non-zero with high probability
over the choice of fingerprint functions.

Therefore, in order to determine whether the stream defines an injection, it suffices to compute ∑(b, j)∈[r]×[logn] zb, j ·
ob, j, which can be computed using Proposition 4.1 with annotation length ca logn and space cost cv logn for
any ca · cv ≥ r logn.

The idea allowing us to achieve the second property is as follows. If bucket b is impure, then there is
at least one coordinate j ∈ [logn] such that b j=0 and b j=1 are both not equal to the all-zeros vector 0. By
basic properties of fingerprints, this ensures that both zb, j and ob, j are non-zero with high probability over
the choice of fingerprint functions. Moreover, we choose the fingerprinting functions in such a way that
non-zero terms in the sum ∑(b, j)∈[r]×[logn] zb, j ·ob, j are unlikely to “cancel out” to zero.

Consequently, we can state an analog of Lemma 4.7.

Lemma 7.2. For any cacv ≥ r logn, there is an online (ca logn,cv logn)-scheme for determining whether a
stream in the non-strict turnstile model is an injection.

Proof. Let Fq be a finite field of size q = poly(n), where the subsequent analysis determines the required
magnitude of q. V uses public randomness to choose two field elements α , and β uniformly at random from
Fq. For each bucket b ∈ [r], and each coordinate j ∈ [logn], we define two “fingerprinting” functions gb, j,α
and gb, j,β mapping an n-dimensional frequency vector F as follows:

gb, j,α(x) = α
n(b·logn+ j)

∑
`∈[n]

x`α`,

and
gb, j,β (x) = β

n(b·logn+ j)
∑
`∈[n]

x`β `,

where each entry x` of x is treated as an element of F in the natural manner.
We now (conceptually) construct two vectors z and o of dimension r logn, where for each (b, j) ∈

[r]× [logn], zb, j = gb, j,α(b j=0) and ob, j = gb, j(b
j=1
i ). That is, the (b, j)th entry of z equals the fingerprint

of the frequency vector of items mapping to bucket b with a 0 in the jth bit of their binary representation.
Observe that gb, j,α(0) = gb, j,β (0) = 0 for all (b, j) ∈ [r]× [logn], as required by Property 1 above.

We now show that Property 2 holds, i.e. if there is an impure bucket, then the inner product of z and
o will be non-zero with high probability over the choice of α and β . In the following, for an item ` ∈ [n]
and bucket b ∈ [r], we let f`(b) denote the frequency with which item ` is mapped to bucket b, and we let ` j

denote the j’th bit in the binary representation of `. We can write the inner product of z and o as

∑
(b, j)∈[r]×[logn]

gb, j,α(b j=0)gb, j,β (b
j=1)

= ∑
(b, j)∈[r]×[logn]

α
n(b·logn+ j)

β
n(b·logn+ j)

(
∑

`∈[n],` j=0
f`(b)α`

)(
∑

`∈[n],` j=1
f`(b)β `

)
= ∑

(b, j)∈[r]×[logn]
α

n(b·logn+ j)
β

n(b·logn+ j)
∑

(`,`′):` j=0,`′j=1
f`(b) f`′(b)α`

β
`′

We therefore see that the inner product of z and o is a polynomial in α and β of total degree n2r logn in
each variable. Moreover, the coefficient of the term αn(b·logn+ j)+`β n(b·logn+ j)+`′ is precisely f`(b) · f`′(b) if
` j = 0 and `′j = 1, and is 0 otherwise.

26



Recall that if bucket b is not pure, then there is at least one coordinate j ∈ [logn], and items `,`′ ∈ [n]
with ` j = 0 and `′j = 1, such that f`(b) 6= 0 and f`′(b) 6= 0. The above analysis implies that z · o is a
non-zero polynomial in α and β , as the coefficient of αn(b·logn+ j)+`β n(b·logn+ j)+`′ is non-zero. Hence, by the
Schwartz-Zippel lemma, the probability over a random choice of α and β that z ·o = 0 is at most n2r logn/q.
Setting q to be polynomial in n, there is only negligible probability (over the choice of α and β ) that z ·o is
zero if the stream is not an injection.

Finally, notice that the verifier can apply the scheme of Proposition 4.1 to compute ∑(b, j)∈[r]×[logn] zb, j ·
ob, j, as each stream update (xk,b,δk) can be treated as logn updates to the vectors z and o. For example, if
the jth bit of xk is 0, then update (xk,b,δk) causes zb, j to be incremented by δk ·αn(b·logn+ j)+xk .

Applications. We can apply this online scheme to compute Frequency Moments (and Inner Product, Ham-
ming Distance, Heavy Hitters etc.) over sparse data in the non-strict turnstile update model. The costs
of the resulting online AMA scheme are similar to the costs of the online schemes for the same problems
developed in previous sections. The only difference is that we have scaled m up by a logn factor, to ac-
count for the fact that within the new AMA sub-scheme for INJECTION, we must run the dense protocol of
Proposition 4.1 on vectors z and o of length r logn, rather than on vectors of length r as in prior sections,
and substitute the bounds from Lemma 7.2. For example, the analog of Theorem 5.1 is that for any cv > 1,
there is a (k2mc−1/2

v · log2(n) · logcv
(m),kcv · log(n) · logcv

(m)) online AMA scheme for Fk in the non-strict
turnstile model.

8 Conclusion

We have presented a number of protocols in the annotated data streaming model that for the first time allows
both the annotation length and the space usage of the verifier to be sublinear in the stream sparsity, rather
than just the size of the data universe. Our protocols substantially improve on the applicability of prior work
in natural settings where data streams are defined over very large universes, such as IP packet flows and
sparse graph data.

A number of interesting questions remain for future work. The biggest open question is to determine
the precise dependence on the stream sparsity in problems such as m-DISJ and frequency moments. When
setting the annotation length and the space usage of the verifier to be equal, our protocols have cost roughly
m2/3, where m is the sparsity of the data stream. The best known lower bound is roughly m1/2. We conjec-
ture that our upper bound is tight up to logarithmic factors, but proving any Merlin-Arthur communication
lower bound larger than m1/2 will require new lower bound techniques in communication complexity. An-
other interesting open question is to give improved protocols for multiplying an n×n matrix A by a vector
x, when A is sparse (i.e., has o(n2) non-zero entries), but x may be dense. Achieving this would yield im-
proved protocols for proving disconnectedness, bipartiteness, or the non-existence of a perfect matching in
a bipartite graph. Currently we do not know of any protocols for these problems that leverage graph sparsity
in any way.

References

[1] S. Aaronson. QMA/qpoly ⊆ PSPACE/poly: De-Merlinizing Quantum Protocols. In CCC, pages 261–
273, 2006.

[2] S. Aaronson and A. Wigderson. Algebrization: a new barrier in complexity theory. ACM Trans.
Comput. Theory, 1:1, pages 1–54, 2009. Preliminary version appeared in STOC 2008.

27



[3] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity. In FOCS, pages
337–347, 1986.

[4] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication complexity.
Computational Complexity, 21:311–358, 2012.

[5] J. Brody, A. Chakrabarti, and R. Kondapally. Certifying equality with limited interaction. Technical
Report TR12-153, ECCC, 2012.

[6] H. Buhrman, D. Garcı́a-Soriano, A. Matsliah, and R. de Wolf. The non-adaptive query complexity of
testing k-parities. arXiv preprint arXiv:1209.3849, 2012.

[7] A. Chakrabarti, G. Cormode, A. McGregor, and J. Thaler. Annotations in data streams. Electronic
Colloquium on Computational Complexity (ECCC), 19:22, 2012. A preliminary version of this paper
by A. Chakrabarti, G. Cormode, and A. McGregor appeared in ICALP 2009.

[8] A. Condon. The complexity of space bounded interactive proof systems. In Complexity Theory: Cur-
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[25] M. Sağlam and G. Tardos. On the communication complexity of sparse set disjointness. Manuscript,
privately communicated, 2012.

[26] A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[27] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J. Comput. Syst.
Sci., 43(3):441–466, 1991.

A An Online AMA Lower Bound for (m,2
√

m)-Sparse INDEX

We prove that the online Õ(
√

m) protocol for the (m,2
√

m)-Sparse INDEX problem is essentially optimal.
Our lower bound follows from a natural variant of the reduction in Theorem 3.9. That is, we turn an
online AMA protocol for the (m,2

√
m)-Sparse INDEX Problem into an online MAMA protocol for the dense

INDEX Problem. We then invoke a lower bound on the online MAMA communication complexity of INDEX

Problem due to Klauck and Prakash [24].4

Theorem A.1. The online AMA protocol complexity of the (m,2
√

m)-Sparse INDEX problem is Ω̃(
√

m).

Proof. Let n = 2
√

m. Assume we have an online AMA communication protocol P for (m,n)-sparse INDEX

with hcost(P) = Ω(
√

m). We describe how to use this protocol for the sparse INDEX problem to design one
for the dense INDEX problem on vectors of length n′ = m log(n/m) = Ω

(
m3/2

)
.

Let k = log(n/m). As in the proof of Theorem 3.9, given an input x to the dense INDEX problem, Alice
partitions x into n′/k blocks of length k, and constructs a vector y of Hamming weight n′/k over a universe
of size (n′/k) · 2k as follows. She replaces each block Bi with a 1-sparse vector vi ∈ {0,1}2k

, where each
entry of vi corresponds to one of the 2k possible values of block Bi. That is, if block Bi of x equals the binary
representation of the number j ∈ [2k], then Alice replaces block Bi with the vector e j ∈ {0,1}2k

, where e j

denotes the vector with a 1 in coordinate j and 0s elsewhere.
Thus, Alice now has an n′/k = m-sparse derived input y over a universe of size (n′/k) · 2k = n. Merlin

looks at Bob’s input to see what is the index ι of the dense vector x that Bob is interested in. Merlin then
tells Bob the index ` such that ` = 2k(ι − 1)+ j, where Bi is the block that ι is located in, and block Bi

of Alice’s input x equals the binary representation of the number j ∈ [2k]. Notice ` can be specified with
logn = O(

√
m) bits.

Alice and Bob’s now use the assumed AMA-protocol for sparse disjointness to establish whether y` = 1.
If they are convinced of this, then Bob can deduce the value of all the bits in block Bi of the original dense
vector x, and in particular, the value of xι .

4 Like the lower bound of Lemma 3.8, the lower bound of Klauck and Prakash was originally proved in the communication
model in which Merlin cannot send any message to Alice. However, the proof easily extends to our online MA communication
model (where Merlin can send a message to Alice, but that message cannot depend on Bob’s input).
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This yields an MAMA protocol for the dense INDEX problem on n′ = Ω(m3/2) bits. A lower bound
of Klauck and Prakash [24, Lemma 7] implies that the online MAMA complexity of this problem is
Ω((n′)1/3) = Ω(m1/2). Notice also that the total hcost of our MAMA protocol is O(

√
m+ hcost(P)) =

O(hcost(P)), while the vcost is O(vcost(P)). Thus, if hcost(P) = Ω(
√

m), it must be the case that vcost
is Ω(

√
m) as well. This trivially implies that for any protocol P with hcost less than

√
m, vcost(P) must

be Ω(
√

m). We conclude the online AMA communication complexity of the problem is Ω(m1/2). This
completes the proof.
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