Lightweight Authentication o
on Data S

Stavros Papadopoulos
HKUST
stavrosp@cse.ust.hk

Antonios Deligiannakis*
Technical University of Crete
adeli@softnet.tuc.gr

ABSTRACT

We consider atream outsourcingetting, where a data owner del-
egates the management of a set of disjoint data streams to an un
trusted server. The ownauthenticatesis streams via signatures.
The server processes continuous queries on the union of the stream
for clients trusted by the owner. Along with the results, the server
sends proofs of result correctness derived from the owner’s sig-
natures, which are easily verifiable by the clients. We design novel
constructions for a collection of fundamental problems over streams
represented anear algebraicqueries. In particular, our basic
schemes authenticatlynamic vector sumand dot products as

well asdynamic matrix productsThese techniques can be adapted
for authenticating a wide range of important operations in stream-
ing environments, includingr oup by queries, joins, in-network
aggregation, similarity matching, and event processing. All our
schemes are vetightweight and offer strongryptographicguar-
antees derived from formal definitions and proofs. We experimen-
tally confirm the practicality of our schemes.

Categories and Subject Descriptors
D.4.6 [Security and Protectior]: Authentication

General Terms
Algorithms, Security

Keywords
Data Integrity, Data Streams, Query Authentication

1. INTRODUCTION

Tremendous amounts of data are being generated in a streamin
fashion in a variety of applications, such as web and telephony net
works, wireless sensor networks, social networks, and more. The

*Research partially supported by the European Commission un-
der ICT-FP7-LEADS-318809 (Large-Scale Elastic Architecture for
Data-as-a-Service).

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

SIGMOD’13,June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

f Linear Algebraic Queries
treams

Graham Cormode
AT&T Labs-Research
graham@research.att.com

Minos Garofalakis*
Technical University of Crete
minos@softnet.tuc.gr

Owner
X

Machine) »

Sk’, S 1 I~ 01,7

| Server "5t [Client
Q, pub T sk

Machine]Mm/o_/' 5

sk, S

SK; Om X,

Figure 1: System setting

continuous nature of such data has motivated the need for sophis-
ticated data stream management systems (DSMS), which offer ef-
ficient storage and reliable querying services to clients. Follow-
ing research prototypes such as Stream [3] and Aurora [1], ro-
bust DSMS have been deployed for many applications, including
IBM’s InfoSphere Streams [21], Microsoft’s Streaminsight [20]
and AT&T'’s Gigascope [8]. Due to the overwhelming volume of
streaming data, companies may not possess, or wish to acquire,
the resources for deploying a DSMS. A practical alternative is to
outsourcethe stream storage and processing to a specialized third
party with strong DSMS infrastructure. Outsourcing offers signifi-
cant cost savings to companies, especially start-ups.

Despite its merits, outsourcing naturally raises the issurist
Specifically, the third party may act maliciously to increase profit,
e.g., it may collude with rival companies and present fraudulent re-
sults to bias the competition; or it may shed some of the workload
and only compute on a sample of the input to save effort. Even
when the server is honest, problems can arise, as it may run buggy

%oftware, or (given the scale of the problems considered) suffer

from equipment failure or read/write errors. It is therefore particu-
larly important to adopt methods fetream authenticatianThese
enable the clients to verify theorrectnes®f the streaming results
they receive from the server, i.e., that they are untampered with
(integrity) and up-to-dateffeshnesp The goal is to make stream
authentication a very lightweight operation for all parties involved,
and establish it as a standard tool for error-checking, in a similar
way to the ubiquitous use of checksums for reliable file transfer.

Targeted setting. Figure 1 illustrates our system architecture. An
ownerpossesses a set of machidds, M-, ..., M,,, each gener-
ating or observing a data streafy and outsourcing it to #hird
party server These machines are not required to directly com-
municate with each other, and their streams are disjointlignt
registers a continuous (i.e., long-running) quéryn the union of

the streams at the server. The latter periodically reports the result
to the client at regular time intervals, demarcated into epachs

Each machiné//; maintains a smabkummarysS; on its stream,
which is updated with every new tuple arrival. At the end of every
epochr, M; computes aignatures; » on S;, and sends it to the
server. This signaturauthenticates\/;’s stream at that particular
epoch, and is created with a secret kdyinstalled by the owner
at the machine. The server then processes g@emnd transmits
resultres. along with a smalproof 7. The proof is produced in
a query-specific fashion by combining all the signatures with some
public informationpub (registered at the server by the owner at
anoffline setup stage). We assume that the clientustedby the
owner and, thus, possessds Using this key andr-, the client
canverify the correctness of the result received for epoch

Our aim is to provide the above functionality for a wide range of
query types, offeringryptographicsecurity and satisfying certain
performance desiderata. In particular, our goals are to minimize
the memory, communication and computational costs for the owner
and clients. This is particularly crucial in applications such as wire-

less sensor networks, where the owner’s machines are motes with
scarce resources and limited battery. The life-time of these systems

is diminished by intense operations and communication. Secondar-
ily, we further aim to ensure that the server’s costs are also low.

Our contributions. The existing literature on stream authentica-
tion is limited in its applicability for a variety of reasons. Firstly,
the range of supported queries is somewhat narrow: prior work has
been primarily concerned with authenticating particular computa-
tions such agr oup by, sumqueries which, while fundamental,

do not cover all stream outsourcing scenarios. Secondly, the au-
thentication cost at the owner is non-trivial; it typically entails ex-
pensive cryptographic operations (e.g., modular exponentiations)
for each epoch at the owner. While the cost of one such operation

is minor, the overhead imposed for high speed data streams andS
short epochs can become intolerably high, especially when each;,

machineM; might be a low-powered embedded device. This fact
also limits the data rates that the owner can process.

In contrast to current literature, we seek for more general solu-
tions that impose a minimal, essentiatiggligible cost to the data
owner. We first devise constructions for fundamental problems rep-
resented atinear algebraicqueries. We then use these schemes
as building blocks in the design of authentication techniques for
a wide range of important queries in streaming environments. In
more detail, our contributions are summarized as follows:

e We introduce constructions for authenticating §i)ms of dy-
namic vectorgproduced by one or multiple streams, (@pt
productsof dynamic vectors produced by different streams, and
(iii) productsbetweerdynamic matricegenerated by different
streams. Our schemes are extremely lightweight for the owner,
as they mainly involve inexpensive hash operations and mod-
ular additions/multiplications in a very small finite field. They
are also cheap for the client, who verifies the result without
adding substantially to the cost of reading the output. More-
over, they impose only a small extra overhead to the computa-
tion cost of the server.

We provide strongryptographicguarantees for all our con-
structions, derived from formal definitions and proofs.

We show how to adapt the basic schemes in order to solve a
range of database queries in stream authentication, including
group by queries, joins, in-network aggregation, similarity
matching, and event processing. To our knowledge, we are the
first to address result authentication for such a large range of
complex queries.

Table 1: Notation

[Symbol | Definition
m Number of owner machines
M; Owner machineg
X; The stream of tuples generated\d
X;i(7) The tuple sequence @f; at or before epoch

The continuous query of the client

Result of@ on streamsY, . .., X,, at epochr
Result sent by the server to the client at epech
Signature created by machifné; at epochr
Proof transmitted by the server to the clientat

Q
QUL XM}

res,

Oir

Tr

Ta,ry Pa,r Key values/vectors computed for machinat
Si The summary maintained at; at all times
pub Public information output by the owner during setup
a, b Symbols (in lowercase bold letters) of vectors
A, B Symbols (in uppercase bold letters) of matrices
&S An elementz being sampled uniformly from sét
z+— A The outputz of a probabilisticalgorithm.A

T The outpute of adeterministicalgorithmB
r Symbol denoting string concatenation
i) Symbol denoting logical OR
The security parameter
A positive polynomial ins / A negligible function ins
The set{1,2,...,n}

poly(s) / negl(s)
["]

Fy(x) o F(k,z) | Pseudo-random functiof of key £ and message
sk The secret key of the owner
P A prime number with bit siz&(s)
Zp 1 G The finite field / cyclic group our algorithms operate pn
2. BACKGROUND

2.1 Preliminaries

tream model and notation.The time domain is decomposed into
intervals, callecepochs An epoch can be perceived as a discrete
timestamp denoted by. We assume that the clocks of the owner’s
machines, the server and the client are (at least loosghyghro-
nized This requirement i;mherentin most streaming applications
(e.g., sensor networks) and is orthogonal to our work. Table 1 sum-
marizes the most important notation used in this paper.

Adversary. Henceforth, any reference to an adversary implies a
probabilisticadversary that runs in timgolynomialin some secu-
rity parametes.

Negligible functions. We call a functionv : N — N negligible
in s if v(s) < 1/poly(s) for everypoly(-) and sufficiently large.
We denote a negligible function megl(s)

Pseudo-random functionsLet F' : I x S1 — S2 be an efficient,
keyed function, wheréC, S: and.S, are indexed by a security pa-
rameters. We say thaf’ is apseudo-random functiofiPRF) if for
all adversariesd it holds

|Pr[ATE O (1%) = 1] — Pr[A7 (1%) = 1]] < negl(s) ,

where Fy () oo F(k,x), k gk and f & (S1 — S2). Sim-
ply stated, an adversary distinguishes a PRF from a truly random
function only with negligible probability irs.

Cyclic groups, generators and multiplicative cyclic groups [19].
Let G be a group, lep = |G| denote the order ofs and letl
denote the identity element @é&. For any elemeny € G, the
order of g is the least positive integer such thatg” = 1. Let
(g) = {¢" : i € Zn,} = {4°g",...,g" "} denote the set of
group elements generated hy The groupG is calledcyclic if

there exists an elemepte G such that(g) = G. In such a case,
the order of ¢ is equal top = |G| andg is called ageneratorof
G. A cyclic groupG with the binary operator of multiplication is
called amultiplicativecyclic group.

The Diffie Hellman Exponent (n-DHE) Assumption [5]. Our se-
curity relies on a variant of the well-knowvdiscrete logarithm prob-
lem LetG be a multiplicative cyclic group of ordex, g € G a gen-
erator ofG, ands the bit size ofp. Then-DHE problem is defined

. 2 n n+2 2n
as follows: givenset = {g,¢",¢" ,...,¢" ,¢" ,....,¢" }

wherek & Zy, computeg’“nH. The n-DHE assumption states
that, for any adversary, it holds:

RO
9 59 oo

k2n

2 n+1
PrlA(g,¢",¢" ,... g) =g""] < negl(s)

Simply stated, even given the informationlf the (polynomially

bounded) adversary is unable to solve the problem togfﬁLch
with any non-negligible probability.

One-time pad and noncesOne-time pad is a method of encrypt-
ing data which exhibitperfect secrecyl5], if implemented cor-
rectly. In one-time pad encryption, a messddes encrypted us-

ing a random keyK which (i) has (at least) theamesize asM,

and (i) is used exactlpnce The encryption is performed via an
XOR operation a8/ & K. In our work, we use an alternative form
of one-time pad that uses modular arithmetic. In particular, we en-
crypt a numberM € Z, by a random (used once) kéy € Zj
as(M + K) mod p. While slightly less time efficient than an
XOR operation, this alternative mode of one-time pad offers the
same security as the original, and it will be particularly helpful in
our proposed techniques. Finally, we refer to any key that is used
just once as aonce

2.2 Related Work

The closest schemes to ours are PIRS [31] and DiSH [22], which
both focus on authenticating results fproup by, sumqueries.

In these works, the stream consists of unaggregated tuples. The

server’s task is to performgr oup by operation to collate the tu-

ples into predefined groups, and then to compute an aggregate suc

assumon each group. In both PIRS and DiSH the owner main-

tains a small summary on the observed stream, which facilitates

verifying the result correctness. PIRS ip@babilistic protocol,
where the client is the owner itself. Due to its simplified model

and relaxed security guarantees, PIRS is quite lightweight. On the

other hand, DiSH is aryptographictechnique, which assumes that
the clients are partiegntrustedby the owner. The model allows
the clients todirectly communicatevith the owner to receive the

summary. In order to address the challenge that clients cannot pos
sess any secret material from the owner, DiSH employs expensive

cryptographic primitives such as modular exponentiations during
authentication and verification.
Note that PIRS and DiSH do not directly capture our general ar-

chitecture (described in Section 1), where the owner and the clients

are different physical entities that communicate with each other
via the untrusted server. In order to adapt PIRS and DiSH to our
scenario, the ownemnust rely onsome other message authentica-
tion technique for securely forwarding the summary to the clients
via the server, e.g., using HMACs and public-key digital signa-
tures [19], respectively. This inflicts extra overhead to both the
owner (for authentication) and the client (for verification).

Also related to our work is the use of message authentication
codes (MACs) that are homomorphic, since they allow the linear
combination of messages from different sources, along with the

schemes, we also need to utilize the signatures of multiple sources
(i.e., owner machines), but these signatures mustrdyeerly com-
putedandcombinedn order to authenticate the result of different
operators. Homomorphic MACs were first proposed in [2] for net-
work coding applications and have since been widely used, such
as in [4] for evaluating multivariate polynomials @igneddata,

or in [26] for computing simple statistics in sensor networks. We
emphasize that homomorphism is a property that message authen-
tication techniques may exhibit, but not a tool for automatically au-
thenticating general operators/functions (such as the ones examined
in this paper) over distributed data. In particular, we are not aware
of any prior work that has addressed the general linear queries such
as matrix multiplication and dot products that we study here.

Authentication results have also been shown for other problems
and models. In the context ofitsourced databasgthere are tech-
niques that addresmapshotelational queries, such as ranges and
joins [11, 25, 24, 16, 30], as well @®ntinuousange queries [17,

27]. All these methods rely cauthenticated data structurg¢such

as Merkle trees), which are maintained by the owner and signed
with public-key cryptosystems. These data structures are large:
linear in the size of the input data. There has also been a line
of work on verifying simple aggregate computationglistributed
networks such asum m n/max andcount [12, 26, 23]. In this
setting, the machines are organized into a tree hierarchy. The inter-
nal (potentially untrusted) nodes perfoimnetwork aggregation

as they route information from the leaves to the root (sink).

Some related studies have been conducted within the theory com-
munity. The model oinnotated streamallows the server to insert
some “advice” into a stream to help a client compute a function of
interest. This model was applied to problems such as recovering in-
formation about particular items from the stream, functions of the
item frequencies (such as the frequency moments), and some graph
computations [6]. The costs of these protocols are typically sublin-
ear but polynomial in the size of the stream. These costs were sub-
sequently reduced to logarithmic for some key problems, but only
when there are multiple rounds of communication between the data
owner and server [7]. Quite general computations can be authenti-
Igated following a streaming pass over the data, but this can require
many thousands of rounds of interaction between the parties [14].

Our work differs from these prior efforts in several important
respects. Firstly, we consider fundamental problems that can be
adapted to solve a wider range of important queries in stream out-
sourcing. Secondly, our constructions impose a very low overhead
to all parties. In particular, they do not entail the costly exponen-
tiation operations involved in DiSH, and do not require the owner
to maintain sophisticated structures, as in the database outsourcing
solutions. Lastly, unlike PIRS, our work comes with strangpto-

graphic guarantees that formally demonstrate the security and ro-
bustness of our schemes against malicious activity and errors.

3. FORMULATION

Section 3.1 defines the system setting outlined in Section 1 as
a formal stream authentication protocol executed by the involved
parties. Section 3.2 presents the security model.

3.1 Stream Authentication Protocol

The definition below formulates a stream authentication scheme,
assuming a security parameter

DEFINITION 1. A stream authentication scheme is a set of five
algorithms(KeyGen, Update, Sign, Combine, Verify) running in

corresponding combination of the MACs of these messages. In ourtime polynomial ins and described as follows:

(sk, pub) < KeyGen(1°): A probabilistic algorithm that takes as
input a security parametet, and outputs secret keyt and
public informationpub.

Si + Update(i, sk, S;, t): A (potentially) probabilistic algorithm
that takes as input id, secret keyk, summarysS;, and in-
coming tuplet. It produces an updated summasy.

os,r < Sign(i, sk, S;, 7): A (potentially) probabilistic algorithm
that takes as input id, secret keyk, summarysS;, and epoch
7. It produces signature; .

77 := Combine(|J" {04+ }, U/~ {Xi(7)}, pub): Adeterminis-
tic algorithm that takes as input the union of the signatures
and streams at and public infopub. It produces proofr..

YesNo := Verify(sk, 7+, res,, 7): A deterministic algorithm that
takes as input secret kay, proof 7., resultres, and epoch
7. It outputs a string that is eitheYesor No.

The protocol is executed in the following stages:

e Setup: The protocol commences with affflinesetup phase.
The owner run¥KeyGen and produces a secret key and
public info pub. It installs a unique identifiet, key sk and
an initial summarys; in every machiné/; and sendsub to
the server. It also securely provides the client with e.g.,
via an SSL channel. Next, it concludes the setup phase and
sets the system into motion.

Update and signing atM;: Whenever a new tupleis gen-
erated byM;, the machine run¥/pdate before forwarding
t to the server. This algorithm uses kel andt on current
summarys; and outputs a new summary ttsatbstitutegor

the old one. At the end of epoeh M; runsSign oni, sk, T

and current summarg; to produce a signature; -, which

is sent to the server.

Result and proof generation at the server: At the end

of epochr the server receives new signatures from the ma-
chines. It computes and sends result. to the client in re-
sponse to continuous quefy. Moreover, it transmits a proof
w, that is produced by algorithiGombine on .-, {o: - },
Uz, {Xi(7)} andpub.

Verification at the client: At the end of epoch the client
receives from the server a new result -, accompanied by a
new proofr .. It verifies result correctness vigerify, which
combinesres, with 7 and the owner’s secret keyk. The
output is Yes if verification succeeds, ando, otherwise.
Note that the client istatelessi.e., it verifies w.r.t. the en-
tire history of the data streams, not since the last successful
verification.

The next definition formulatescheme correctness

DEFINITION 2. A stream authentication schemederrect if
the following condition holds. For any security parameteret
(sk, pub) be any output of algorithniKeyGen(1°). Let X;(7) be
any stream observed by/; up until 7, andQ(U~, {Xi(7)}) the
result of query® at . LetS; be the summary computed by execut-
ing Update onsk and on every € X;(7). Leto; - be the signature
produced byM; via Sign(i, sk, S;, 7). Finally, letr. be the proof
that is output byCombine(U:~ , {04, }, Ui~ {Xi(7)}, pud). Then,
Verify(sk, 7+, res-, T) returnsYeswhen

res; = Q <U{XL(T)}>

Note that scheme correctness does not specify the outMatrof
ify in caseres. # Q(UJ;~,{X:(7)}). This is captured by the defi-
nition of security included in the next subsection.

3.2 Security Definition

The adversaryd may be the server or any other entity other than
the owner’s machines and the cliest.is allowed to access the raw
data streams, i.e., data privacyoghogonalto our work. Never-
theless,A may tamper with the outputs at any epoch. Our security
goal againstA is result correctnesswhich jointly guarantees (i)
integrity (i.e., that the result is not falsified) and (fifeshnesgi.e.,
that the result is up-to-date).

We rigorously model security via the following experiment, which
is a variation of the standarexistential unforgeability under an
adaptive chosen-message attfitk]:

Experiment Exp 4(1°)

1. Pair(sk, pub) is output byKeyGen, andpub is given to.A.

2. A is given oracle access ®ign as follows: A presents g
triplet (7,7, '), whereT is a set of tuples. The oracle kee
record of all submitted queries, and rejects a query thal
quests a signature for a certajiy 7') more than once. I
it does not reject, the oracle initializés = 0 and runs
Update(s, sk, S;, t) for everyt € T, producing summarg;.
It then runsSign (3, sk, S;, '), and returns the result td.

ps

. A outputs a paifresy, mr), with the restriction that

o rest # QUL {Xi(7)})
e Sign was not queried for any triplfl’, i, 7'), such that
(7" = 1) AT # Xi(7))

. If Verify(sk, 7y, resy, T) returnsYes then outputl; other-
wise outpuf).

We say that a stream authentication schemseaire if no ad-
versaryA can succeed in the above experiment with non-negligible
probability, i.e., if it holds that

Pr[Exp 4(1°) = 1] < negl(s)

where the probability is taken over the random choicetoéind the
random coin tosses oA.

Simply stated, during the attack is allowed to obtain (through
the oracle) any number of signatures for any machine and stream of
its choice, at any epoch other than the epadbr which it launches
the attack. Atr, A is only allowed access to the valid signatures
produced by the machinegl then launches the attack by present-
ing a pair(res;,), such thatres; is different from the actual
result. Our aim is to provide protocols that are secure against such
attacks and will not accept any such incorrect results.

4. BASIC CONSTRUCTIONS

In this section we present constructions that can be used as build-
ing blocks for designing authentication schemes for a wide range
of query types. In particular, we design techniques for authenticat-
ing dynamic vector sumgSection 4.1) dynamic matrix products
(Section 4.2), andlynamic dot product§Section 4.3). Through-
out, we consider a security parametera primep whose bit size
is©(s), and a PRE" : Z;, x {0,1}" — Zj, which are all known

asglobalsto all parties. We assume that all the stream values and KeyGen(1°)

aggregate results belong #,. This is without loss of general- 1. & Z3

ity, since (i) for practical values of, Z, is large enough for any = 2. Outputsk = k andpub = L
application, and (ii) application domains that involve negative inte-

gers work directly fop large enough, while those that involve real Update(i, sk, Si,)

numbers can be convertedZg via scaling and rounding. % ,':?r_seFiS(Séi:r)n’;ﬁ‘;]; ask
k=

4.1 Dynamic Vector Sum Authentication 5 oupus Y

We focus onm machines)M;, and consider a vecter; with n
entries, which is dynamically updated as new tupleee generated ~ Sign(, sk, Si,7)
by M;. Each tuplet € X; is of the form(j, v), and updates; by L. 7 = Fj("machine’:*epoch’|T)
addingv to a;[j]. The client's queryQ requests the sum of the 2. gir = SitTir

. . 3. Outputo;
vectors produced by all machines at every epogdte., upHes,
m m m m Combine(ugl{ai%}ﬂU;Zl{Xi(T)}v pUb)
Q(U{Xl(T)}) = Zai = Za¢[1}7...,2a¢[n] 1. Outputr, =377, 04+
i=1 =1 =1 i=1

Verify(sk, 7r, res+, T)
Parsesk = k andres, as an-element vector
Fori = 1tom, r; » = Fj,(“machine’|i||“epoch’||T)
Initialize = -7 74 7
Forj=1ton
k; = Fy(“element|j)
m=m+kj - res:|[j]
If 7 = 7 outputYes otherwiseNo

We term such a query dynamic vector sunguery, and present
below a scheme callddVsS for authenticating it.

Figure 2 presents thBVS construction, which instantiates the
general stream authentication protocol outlined in Section 3.1. The
intuition behind this construction is straightforward: the summary
S; captures the current state of vectgr in such a way that the ad-
versary, lacking knowledge of the secsét has no way of finding
another vecton; that would have the same summary, even given Figure 2: The DVS construction
access to other signatures. The signature includes additional
information (the nonce;) that prevents the server from re-using . .))
the same signature at different epochs or for different machines. Wheres is the security parameter that dictates the sizekofand
All operations are performed moduid(i.e., the results are ifi,). logm is the size of the machine id (where is the number of

Every summary is initialized t0 during the setup phase. Al- Mmachines). Since the size pfis ©(s), the communication cost
gorithm Update works in a way such thas; is equal to the dot between any two parties 3(s). For any practical application,
productk - a;, wherek = [k, ..., kn]. Sign injects a machine- andlogmcan_ be regarded as constants that do _not _exzfebgites.
and time-dependent key , usedonce Observe that everly; and Note that we implemenk};, as an HMAC [19], which involves two
r:.» value is produced witkk via PRFF, where “element’, “ma- hash operatlons_. _Botﬁpdate a_n_d Sign entail a constant number
chine” and “epoch” are string label€ombine simply adds all the of modular _muItlpllcatlons/add|t|'o_ns and 'hashes. The overhead for
signatures retrieved from the machingSombine does not need ~ the server isO(m) modular additions. Finally, the burden at the
any public information from the owner and, thysyb is set to a clientisO(m + n) modular additions/multiplications and hashes.

null value inKeyGen. The client assumes that atl machines are - : : :
involved in the protocol when executingerify. In general, the 4.2 Dynamlc Matrix Product Authentication

client must know exactly which machines participate in the proto- ~ We focus on two machines\/, and M,. We consider a, x
col, in order to properly calculate the , values. As an additional ~ ™ Matrix A and an x n, matrix B. Matrix A (respectivelyB)

Noup,rwhpE

remark, observe th@V'S can be used even when onlgiaglema- is dynamically updated as new tuples are generated/by(My).
chine is involved. In this cas@VS essentially supportdynamic Each tuplet € X, (respectivelyt € ;) is of the form(i, j, v)
vector authenticationWe provide formal correctness and security and updatesi (B) by addingv to A[i][j] (B[][j]). The client's
guarantees fobVS below. query@ requests thenatrix product denoted byA B, betweenA

]) andB at every epoch. We term such a query asdgnamic matrix
Correctness and securl_ty.Th_e fo_IIowmg theorem proves the cor- productquery. We next present a scheme, termeddP, for
rectness oDVS as specified in Figure 2. dynamic matrix product query authentication.

Figure 3 presents thBMP construction. The technique takes
advantage of the following property of matrix multiplication. Let
PROOF Let theactualresult ofQ at T be Q(U", {X;(1)}) = A = [a1az ... a,], wherea, denotes thg"" columnof A. Also let
™ ag, wherea;[j] = Ztexm)mj:j t.v. Observe that, after B = [biba...b,]", whereb; is the;" row of B. Then it holds:

THEOREM 1. DVSis correct.

executingUpdate for all t € X;(7) atany M;, S; = 377, k; - n
a;[j]. Then,Combine calculatesr. = (Y7 k;-(37", ai[j]))+ Q(Xa(T)UXy(1)) =AB =) a;®b;
> rir. Now notice that, ifres, passed irVerify is equal to j=1

QUL {Xi(7)}), then the algorithm computesrathat is equalto \herea; ® b, is the outer product of vectoes;, b;, such that:
ther, calculated above and, hence, the outpiYes [

a;[l]b;[1] a;[l]bs[2] ... a;[l]b;[ns]
We next state the security BVS (the proof is in Appendix A.1). a @b, = | 2]bs[1] a;[2]bs[2] ... a;[2]bj[ne)
J J
THEOREM 2. If F'is a PRF, therDVS is secure. aj[n.b;[1] ajnab;[2] ... aj[nab;ns]
Performance. Every machineM; needs to store only the key:, M, (respectivelyM,) can create a summag,[j] (Sy[;]) for

and its idi. Therefore, the memory consumptiorOd$s + log m), vectora; (b;) in a similar manner t®VS. We can then compute a

summary ofa; ® b; from the productS,[j] - Sy[5]: for each entry
of this outer product, there is a corresponding ter&.ify] - Su[7],

KeyGen(19)
1 k&7

scaled by a secret value (i.e., the product of the two corresponding2. Outputsk = k andpub = L

keys). In other words, we obtain a summary of the outer product
result matrix with similar properties to tHg/S summary for a sin-

gle vector. Since matrix multiplication can be expressed as a sum
of outer products, we can usedifferent summariesS,[;], Sy [J]

(i.e., one for each column &, and one for each row dB), and
build a summary for producA B by summing them up.

We assume that/,, knows that),, participates in the query and
vice-versa (this information is part of the query description). The
summariesS,, S, are both initialized to zerm-element vectors
during the setup phase. Algorithripdate andSign are presented
in the context ofM,. S, now containg: entries, one for eactol-
umn The case of\/, is symmetric: S, also includes: entries,
but one for eaclow. This can be achieved by instead parsiras
(4,4, v) in Line 1 of Update, and proceeding accordingly.

To provide security for these summaries, Sign function pro-
duces composite signatures, - [j], o»,-[j], €ach consisting of two
elements/signatures. In particular, their first elemeats-(;][1]
andoy, - [7][1]) integrate machine-, time-, and column-/row- depen-
dent values to mask the summaries aslVS. In order to produce
a proof for summaries of the fori&,[j] - Sp[;], the server needs
to multiply o4, [5][1] with ab ~[4][1]. However, observe that terms
ra,r[j] - Su[j] @andry - [j] - Sa[4] will appear in the resulting proof,
which are hard to verify by the client witho,[j] and S,[;].
Therefore, the machines provide additional information (namely
signaturess, - [j][2], o»,~[4][2]) that enable the server to remove

Update(a, sk, Sq, t)

1. Parse as(i, j,v), andsk ask

2. kq,; = F(“machine’||a||"element’|7)
3. Su[]] = Sa[]] + ka,i - v

4. OutputS,

Sign(a, sk, Sa, T)
1. Forj=1 tOn

2. rarlj] = Fy(‘machine’|al|"epoch’| 7")

3. pa,r[j] = Fr(*machine’a||"epoch’l|7|"p"||5)

4. rer[j] = Fi("machine’|b||*epoch’|=|*r" |I5)

5 ogarll= [(Sa[a] +7a,7[31); (Sald] - 76,7 3] + pa,7 [5])]
6. Outputo,,+

Combine({oa,r,0p,+}, {Xa(T), Xs(T)}, pud)
1 7w =320 1 (0a, I - ob, 5] (1] — o, [5][2] — o, [4][2])
2. Outputr,

Verify(sk, 7r, res-,)

Initialize m = zg 1Ta lal e, 7—[.7] — pa,rlil — Po, 4]
Fori = 1tong, kq,; = Fi (' machlne1|aH ‘element’|7)
Forj = 1tony, kb,j = F}(“machine’|bl|“element]|5)

1. Parsesk ask andres, as ang X nj matrix

2. Forj=1ton

3. ra,r[j] = Fr(“machine’|a||“epoch”||r||“r"||5)
4. pa,r[j] = Fr.(‘machine’|a|epoch’|7||* P 119)
5. 7p,7[j] = Fi(*machine’|b||“epoch’||7(|*r"{|7)
g. pb,r 7] = Fi(“machine’||b||“epoch’|| " p"{|7)
8.

9.

these values from the proof. To ensure security, these signatureslO.m = + 3", 1,1 se[n,] Fa,i - Kb,j - res=[i][j]

incorporatenewone-time keys (denoted a}.

Based on the abové&ombine now takes a combination &fn
elements together to build a compact proof that includes the sum-
mary of the whole product matrix. Note that is just a single
value modulg. Similar toDVS, Combine does not need any pub-
lic information from the owner and, thugub is set to a null value
in KeyGen. Finally, algorithmVerify needs to include the various
masking values created by, and M, for each of theirn paral-
lel summaries and outpuies only if the proof computed for the
claimed result matches the provided praof

Correctness and security. The following two theorems state the
correctness and security BMP as given in Figure 3:

THEOREM 3. DMP is correct.

PROOF Lettheactualresult of@ atT beQ({X.(7)UXy(7)}) =
AB, whereA[i][j] = 3 cx, (ra(timiya(.jmg) BV andB_[i] U] =
Doty (mA(hizi)A(ej—g) L-V- Observe that, after executiipdate
for allt € X,(7) andt € Xy(7) at M, and M, respectively,

Salj] = o0e, kayi - ;i) andSy[j] = Y10, ki - bj[i]. More-
over, notice that

e =D (Salil - Sld] + 70,] - 7.2 1] = par 3] = oo [4])
j=1

However, it holds that

n

> (Salil - Solil)

Jj=1

Ka,i - kb,j ~Zaz[i] -b.[j]

- (AB)[i][j]

16[”(1],]6[”}:]

ka,i : kb 7
i€[nal,j€np]

11. If # = 7, outputYes otherwiseNo

Figure 3: The DMP construction

If res. is equal toA B, then itis easy to see that thecomputed
in Verify is equal torr, and, thus, the algorithm outpuYes This
concludes our proof. (]

THEOREM 4. If I'is a PRF, therDMP is secure.

For the proof, see Appendix A.2.

Performance. The memory consumption and computational cost
of Update at each machine is the same aDWS. Due to then
masked summaries, algorithfign involves O(n) modular addi-
tions/multiplications and hashes, whereas the communication cost
between a machine and the server becofigs). The server com-
putesO(n) modular additions/multiplications iombine. Finally,

the client receives a constant sized proof,\etify entailsO (nq +

np + n) hashes, an@(n,n;,) modular additions/multiplications,
proportional to the cost of reading the result. This is reduced if the
result matrix is sparse: then, the time taken is proportional to the
number of non-zero entries, which can be much lower.

Note that this protocol substantially reduces the burden on the
data owner, compared to the cost it would pay to perform the matrix
multiplication itself. Without outsourcing, the data owner would
have to store th€(n?) entries of the matrices, and perform the
super-quadratic amount of work to carry out the multiplication.
Here, the data owner’s requirements are reduced (o) storage
per machine, and constant work per update.

4.3 Dynamic Dot Product Authentication

We focus on two machined/, andM,, and considen-element
vectorsa, b. Vectora (respectivelyb) is dynamically updated as

new tuples are generated By, (M;). Each tuple € X, (respec-
tively t € &) is of the form(j, v), and updates (b) by addingv to
a[j] (b[4]). The client’s queny requests thelot productbetween
a andb at every epoch, i.e.,

QX (1)U Xp(r)) =a-b= Za[i} -b[i

=1
We refer to such a query asdynamic dot producguery, and
present a scheme call&DP for authenticating it.

Figure 4 presents thBDP construction. Similar tdMP, we
assume thad/, knows thatM, participates in the query and vice-
versa. AlgorithmdJpdate andSign are described in the context of
M,. The case of\f, is symmetric, with the vital difference that the
summary is updated &, = S, + k" 71 . v in Line 2 of Update.
The summariesS,, S, are initialized to0 during the setup phase.
We make use of a (multiplicative) cyclic grodp of orderp with
generatow, whose specifications apiblicand where the.-DHE
problem is hard (see Section 2.1).

Note that the dot product of two vectors is thaceof their outer

product. We use this fact to construct the protocol. We derive a sig-

nature of the outer produet ® b in a similar manner t®MP,

where each element of the resulting matrix is scaled with a secrete.
key. Furthermore, certain machine- and time-dependent masking

is performed via the: and p values. The server is then respon-
sible for removingcertain elemental:] - b[j], which are scaled
by £+ (»=3+1 from the signature itCombine. Specifically, the
server does this foevery: # j (i.e., all the elements but those in
the diagonal).

In order to facilitate this task, the owner provides some public
info pub to the server concerning the scalar valés(™—7+1),
with the exception ok™*. These keys are given as exponents of

generatoy € G. This is necessary because, otherwise, the server

could trivially retrievek™*! ask™ ! . (k)™ mod p for some

i, where(k%) ™! is the multiplicative inverse o’ modulop. This
cannot happen if the keys are in the exponemtdde to the:.-DHE
assumption (we will use this fact later in our rigorous proof). All
computations iVerify are performed in the exponentafFollow-
ing this, the outputr should contain solely the contribution from
elements on the diagonal of the outer product, all scaleddy,
plus the masking values.

Correctness and security. The following theorems state the cor-
rectness and security &P (Figure 4), respectively.

THEOREM 5. DDP is correct.

PROOF. Lettheactualresult ofQ atT beQ({ X, (7)UX,(7)}) =
a-b=737" ali-b[i], wherea[j] = 3=, (1. =, t-v, and
b[j] = > cx, (r)nr.j—; t-v- Observe that, after executitigpdate
for aIIt e Xa(1) andt € Ay(7) at M, and My, respectively,
So = Kk’ - alj] andS, = -7, k" 77+ - b[j]. Moreover,
the prooizoutput byCombine is
7y = g KT Al Bl 4 r Ty —pa P,

k"+1'(a‘b)"’"‘a,r""b,r—Pa,‘r—Pb,-r

If res, is equal toa - b, then ther computed inVerify is equal to
7 and, thusVerify outputsYes This concludes our proof.[]

THEOREM 6. If F'is a PRF, therDDP is secure under the-
DHE assumption.

For the formal proof, see Appendix A.3.

KeyGen(19)
1 k&7

2. pub = {g" }cpnp fnt1}
3. OUtpUtSk =k aﬂdpub

Update(a, sk, Sa, t)

1. Parse as(j,v), andsk ask
2. Sa =8, +k v

3. OutputS,

S|gn(a sk,Sa,T)

ra,r = F(*machine’|a||“epoch’]|r||“+")
pa,~ = Fi(“machine”|a|“epoch’]|r|“p")
.- = F(“machine’|b||“epoch’]|||*r")
Gayr = [(Sa +ra,r), (Sa 7,7 + pa,r)]
Outputog,

agrwNE

Combine({oa,r,0b,7}, {Xa(T), ()}, pub)

Parsepub as{g*" }ic2n)\ {nt1}

Computea andb from X, (7) and X (7), respectively
Computec =a®b

T = g(da,ﬂ' [1]-0‘;),7. [1]_‘7@‘7'[2]_‘71),1- 2D

_ git(n—i+1)\cldls]
Tr =77~ [Hi,je[nw;ﬁj (9)
Outputr-

-1

o pONE

Verify(sk, 7r, resr, T)

. Parsesk ask andres- as a value itZ,
ra,r = F(*machine’|a||“epoch’]|r||“+")
pa,» = Fi(“machine’|a|“epoch’]|r|“p")
.- = F(“machine’|b||“epoch’]|||“r")
pb.r = Fi(“machine’l|b||“epoch’]|7||“p")

Initialize w = g("‘a T'Tb,7 —Pa,m —Pb,T
T=1- g(k”+1<res.,-)
If 7 = 7 outputYes otherwiseNo

ONoGOhwNE

Figure 4: The DDP construction

Performance. In this scheme, the owner has to invest in same-
time preprocessing effort to creagewb. This accounts foO(n)
exponentiations ifZ,, (for k), and anotheO(n) exponentiations

in G (for g**). Nevertheless, this cost &mortizedover the entire
lifetime of the system. The memory consumption and the compu-
tational cost oSign at each machine are (asymptotically) the same
as inDVS. The cost inUpdate now involves a modular exponen-
tiation. Note though that the latter is performed in the small finite
field Z, and, hence, it is extremely lightweight.

To analyze the server’s computation cosiGombine, first ob-
serve that, setting+ (n — j + 1) = z, the server can calculate

11 (gm+<nﬂ'+l>> T[T (") Tsmstnmsa ctil

i,j€[n]AiFE] ze[2n]\{n+1}

elilli]

assuming that it has access to the set of outer product values
However, the server does not need to explicitly genetaiRather,
itonly needs the vector of differenty_, , . .,,__ c[i][j] values,
for 2 < z < 2n. We can compute these values from the (discrete)
convolution of the vectora, b, in time O(nlogn) via the Fast
Fourier Transform. Assuming we have these, then the cost at the
server is dominated b (n) exponentiations ifs. For storage, the
server has to store th@(n) values inpub, which is comparable to
the cost of storing the input¥, andX}.

Finally, Verify at the client simply involves a constant number of
evaluations off,, and a (single) exponentiation @.

5. APPLICATIONS to achieve this, we must follow the so-callehdom oracle model

In this section, we discuss some common queries in stream out-[15, 13]. Briefly stated, this is a proof methodology that allows us
sourcing, and explain how the constructions that we have provided t© first prove the security of the scheme considering tha a truly
can address them. We stress, though, that the applicability of ourfandom function. We can do this along the lines of our proof for
schemes is not limited to these cases; we are confident that ourPDP in Appendix A.3. Then, we substitutd with a hash func-
fundamental tools can capture a much wider set of applications. tion like SHA-1, and claim security due to the assumption about
For brevity, we omit detailed discussion of correctness and secu- itS cryptographic properties. We omit further details due to space

rity, which follow the pattern established by the main protocols in constraints. _ _
Section 4. In the aforementioned problem, the goal was to authenticate the

tuples produced by a join query on relatioRs S on attributez.
Group by queries. The class ofgroup by, sumaggregation Assume thatR.yy and S.z are attributes of relationg and S, re-
queries are at the heart of many outsourced computation scenariogpectively. If, instead of the actual tuples, we are interested in au-
and have been the sole motivation for much of the prior work on thenticating the joint frequency distribution of eadh.y, S.z) pair
stream authentication. The setting is that a large number of tuplesin the join result, then this authentication can be achieved by a di-
is observed as a stream. These tuples may correspond, for examrect application of ouDMP protocol. In this case, the machine
ple, to activity on a network, updates to a large database table, orcontaining relationR (respectively,S) builds a two-dimensional
events in an event-processing system. The requirement is for thematrix, where each element of the matrix corresponds to the joint
server to collate the stream tuples into groups and report the sumfrequency of occurrences of ea¢R.y, R.z) (resp.,(S.z, S.z))
for each group. We typically consider cases where the number of pajr of values inR (S). It is easy to see that the product of these
active groups (those with a non-zero sum) is substantially large, sotwo matrices provides the desired result in this application.
that the data owner benefits from enlisting the server to performthe Another interesting query is computing teizeof the equi-join
aggregation. result. This is given by a direct application DDP: if we treat

This problem is solved directly by the dynamic vector sum au- every tuplet with join valuet.z as an update of the forift.z, 1),
thentication protocolDVS, applied to a single vector. Each stream then vectors, b will hold the frequencies of the relations on each
tuple is translated into an update to the vector. The entries of join value. Therefore, the equi-join size is exacilyb.
the vector give the aggregate associated with each corresponding
group. The approach naturally holds for the distributed setting, In-network Aggregation. This is a popular paradigm employed
where updates might be spread across multiple streams. In thistypically in sensor networks, which reduces the energy expenditure
case, the object of the authentication is the vector given by the sumin routing raw data from the motes to a remote client [18]. Con-
of the vectors derived from each of the stread¥S captures this sider a set of sensors organized (without loss of generality) into a
scenario due to ittomomorphic propertywhich allows the client tree-structured network. Also assume that a client communicates
to verify a sum of vectors by checkingsingleproof (produced by only with the root sensor (sink), and wishes to perform some ag-
the server) that combines all individual vector signatures together. gregation task (e.gsumor count) on the readings of the sen-

))))] sors. Transmitting the raw data to the clientimposes a considerable
Join Queries. Beyond simple grouping and aggregation, many pyrden on the nodes positioned close to the sink, as they have to
important outsourced queries involve the computation pban forward a considerable number of messages from nodes lower in
query on relations. In traditional data stream management systemsihe tree. In-network aggregation mandates that internal nodes per-
join queries are regarded particularly challenging, with prior work form the aggregation task on the data received from their children
focusing on approximate results [9, 29]. Hence, join queries are a and forward only a small result, thus achieving significant battery

prime candidate for outsourcing. savings.
_ We explain how to authenticate join results in our setting, focus- | our setting, only the leaf sensors belong to the owner, whereas
ing on the common case efjui-join for queries such aSELECT the internal tree infrastructure is outsourced to an untrusted third

* FROMR S WHERE R x = S. x. Assume without loss of party[12, 26, 23]. The goal is to allow the client to authenticate the
generality that the join result is given by the multiset of tuples aggregation result on the union of the leaf readings received from
(tr,tr.z,ts), wheretr is a tuple fromR, ¢s is a tuple froms, the sink. OuDVS construction applies to this scenario as well. Its
andtr.z = ts.x is their common value on the join attribute KeyGen, Update, Sign andVerify routines remain the same in this
Also suppose that the domain of the join valuefnls We reduce case. The main changes occur to @enbine algorithm executed
this problem to an instance of a dot-product query, making use of py the server. Here, each server in the network exeditiesbine
acryptographic hash functio#, e.g., SHA-1 [19]. The inputsto o the inputs received from its children, and forwards the output

our schemes are streams(ok.z, tr) and(ts.z, ts) pairs originat- to its parent in the routing tree. Notice that the client eventually
ing from dynamic relation& and.S, respectively. We transforman recejves a proof from the sink that is equal to the summation of
update taf of (¢z.z, tr) into atuple in, as(tr.z, Hr(tr)), ap- the leaf sensor signatures. This is exactly whambine would
plying the hash functiort to ¢. Similarly, we transform updates gytput in case a single server collected all the sensor signatures.
to S of (ts.z,Ls) into a tuple i} as(ts.z, Hs(ts)). We then oyr scheme is extremely lightweight for all parties involved and,
run theDDP protocol over update§, v) = (tr-z, Hr(tr)) € Xa hence, it is ideal for the resource constrained sensor networks.
atM,, and(j,v) = (ts.z, Hs(ts)) € X at Mp.

The server presents the claimed output multisé€tgftr.x, ts) Similarity measures. It is increasingly common to deal with ob-
tuples, along with the accompanying proof from the DDP pro- jects represented by a (potentially) very large number of features in
tocol. The client computeses, =3, ._, . Hr(tr) - Hs(ts) a high-dimensional vector space. In machine learning and other

within the Verify routine. The protocol is correct, since the dot modeling applications, a single object (such as a user of a web
product between the two vectors generated by the above transfor-search engine) may be represented by a vector which has millions
mation is exactly thises, value. In addition to the security of or billions of components. Similarity measures are vital in such
DDP, here we need to show that the adversary cannot present asettings. For instance, clustering of objects often entails distance
result that produces the sames, as the actual result. In order (i.e., dissimilarity) computation between feature vectors. Another

example involves determining the correlation of items (i.e., market
stocks, retail products, etc) whose information (i.e., shares values,

sales volume) is dispersed across different server machines. Mea-

sures of correlation are also based on similarity.

Similarity between vectors is typically measured by an appro-
priate similarity or dissimilarity measure, such as tlosine simi-
larity and Euclidean distancerespectively. The cosine similarity
between vectors, b is computed aﬁaﬁ‘jiﬁ’b“, where||al]| = va-a
is the L, norm ofa. The Euclidean distance betwearandb is
equal tola — b|| = /||a[]2 + [[b]2 — 2a - b.

We can authenticate such measures by engaginBb con-
struction, since both cosine similarity and Euclidean distance de-
pend on inner product computation. The caseofb is carried
out by direct application oDDP. Fora - a andb - b, M, and
M, must apply twoseparateénstances (i.e., with different keys) of
DDP on the same vecter andb, respectively. The modifications
in Combine andVerify are straightforward and, thus, omitted.

Event co-occurrence. Event monitoring applications operate on
massive streams in order to find patterns or correlations between
certain events [10]. These include supply chain management of
RFID tagged products, stock trading, monitoring of machines for
malfunctions, environmental sensing for surveillance of establish-
ments, and more. An important class of queries in this scenario
is finding co-occurrenceof events. We provide a simple example.
Let A (respectivelyB) be ann x 1 (1 x n) matrix representing a
set ofn events occurring at machin¥,, (M,). A cell value isl

if the event occurs during the latest (or at a specific) epochfand
otherwise. ThenAB is an x n matrix where cellAB[i][j] is 1 if
eventi co-occurs with evenf at the latest (or at a specific) epoch.
The result matrix can help in determining event correlations. The
above can be generalized to matrices with arbitrary dimensions. It
is apparent that ouPMP construction is directly applicable for au-
thenticating such queries.

6. EXPERIMENTS

In this section we experimentally evaluate our basic protocols,
namelyDVS, DMP andDDP. We compar®VS with PIRS (specif-
ically PIRS-1) [31], which is the only scheme that addresses our
trusted-client setting, in the context gf oup by, sumqueries.
However, we stress that PIRSnst a direct competitor, as it as-
sumes that the client is the owner itself and has a weaker security
model. We slightly adapt PIRS so that the machines send their sum-
maries to the client via the server, after authenticating them using

Table 2: Primitive Costs

[Description Cost
Modular addition inZ,, (Jp| = 10/ 20 bytes) 0.15us/0.18us
Modular multiplication inZ,, (Jp| = 10/ 20 bytes) | 0.19us/0.28us
Modular exponentiation i, (Jp| = 10/20 bytes) | 4.8us/7.4us
Time to derive the generator @, (|q| = 64 bytes) 2.7 sec
Modular multiplication inZ, (|q| = 64 bytes) 0.56 s
Modular exponentiation ifZ, (|q| = 64 bytes) 55.6 s
HMAC computation (with SHA-1) 3.53us

Table 3: Comparison of DVS with PIRS (single machine)

Evaluated Cost DVS PIRS
CPU time forUpdate 5.3us 2.3us
CPU time forSign 4.8 s 4.7 s
CPU time forVerify 489ms 19.1ms
Summary size 10 bytes 10 bytes
Proof size 10 bytes 30 bytes

is that DDP relies on the discrete logarithm problem. The well-
known Pollard rho algorithm take3(.,/p) steps to find a logarithm
in Z,, [19], suggesting that the size pfshould be twice as long as
the one that protects against simple guessing.

Furthermore, we computed the generator of the group used in
DDP employing the implementation techniques included in [19].
Specifically, the element of ordgrthat generates our group of con-
cernG is selected fronZ,, whereq is a64-byte prime of the form
q = 2¢p + 1 [19]. All computations inG are modulog. Table 2
includes the average cost (over 10,000 runs) of each primitive op-
eration entailed in the implemented protocols.

Evaluation of DVS vs. PIRS.We comparedVS with PIRS using
the World Cup Datasét The latter contains Web server logs from
the 1998 Soccer World Cup. Each log entry consists of a client ID,
the ID of the requested URL, the size of the response, etc. We used
the first2 million tuples from the log of day0. From each tuple
in this set, we produced a tup(g, v), wherej is a client ID, andv
is the size of the response. We then focused gn@up by, sum
query that returns a vector, where tji& element corresponds to
a unique clientj, and the value of thg" element is the sum of
response sizes of all requests issued by client

Table 3 illustrates the various costs we evaluated during our ex-
periment, assuming singlestream generated bysinglemachine.

another authentication scheme. On the other hand, as we are th&Ve decomposed PIRS into algorithms of the fodpdate, Sign,

first to address authentication of dot and matrix products, there are
no alternatives to compare BMP andDDP.

Implementation. We implemented all protocolsin C ona2.66GHz
Intel Core i7 with 4GB of RAM, running MAC OS X. We used the
GMP' and OpenSsStlibraries for implementing the cryptographic
operations involved. We utilized HMAC with SHA-1 [19] for the
F function, which produces 20-byte outputs. We employed HMAC
with SHA-1 also as the message authentication scheme in PIRS for,
authenticating the summaries to the clients.

An important discussion concerns the selection of the size of the
prime p that defines th&,, domain (i.e., the value for security pa-
rameters). In DVS, DMP andPIRS, this can be as small d$

andVerify (Combine has no cost in the single machine setting in
both schemes and, thus, is omitted). The average number of non-
zero elements in the result vector (which affects the CPU time in
Verify) was around 12,000. PIRS ab¥S have comparable CPU
overheads foBign. However, PIRS outperfornidVs for Update
andVerify because, contrary 0VS, it does not involve HMAC in-
vocations. Recall though that this performance advantage of PIRS
comes at the expense of a weaker security model. Moreover, ob-
serve that the CPU times f@VS are in the order of a few mi-
croseconds at the ownes.§ us for Update and4.8 s for Sign),

and a few milliseconds at the cliert8.9 ms for Verify). The sum-
mary and proof size is negligible DVS (10 bytes). The summary
size in PIRS is the same, but its proof size is 20 bytes longer due to

bytes for safeguarding against guessing attacks on the keys. Onthe additional HMAC that authenticates the summary.

the other hand, iDDP this must be at least0 bytes. The reason

Yhttp://gnplib. orgl
2ht tp://ww. openssl . conl

Table 4 depicts the costs in the scenario where we repeat the pre-
vious experiment, but now the tuples are generateehby- 100

3http://ita.ee.lbl .gov/ htm /contrib/Wrl dCup. ht m

Table 4: Comparison of DVS with PIRS (m = 100 machines) Table 6: Scalability of DDP with n

Evaluated Cost DVS PIRS Evaluated Cost n=100 n=1000 n=10000
CPU time forCombine 10.1pus - CPU time forKeyGen 2.8sec 2.9sec 3.9sec
CPU time forVerify 50.16ms 19.69ms CPU time forUpdate 2.58us 3.38us 4.3 us
Proof size 10 bytes 3000 bytes CPU time forSign 145pus 13.95us 14.6 s
CPU time forCombine 2.43ms 30.75ms 538ms
CPU time forVerify 129us 143 us 160pus
Table 5: Scalability of DMP with n (n, = ny = n)
Evaluated Cost n=>5 n=>50 n=>500) _
CPU time forUpdate 5515 545 6.015 costs, .corre.spondlng to very hlgh.stream rates. Th(? cosigor
CPU time forSign 58.4us 567 us 5 7ms operations is comparable, except in the caseMP, which scales

proportionally to the square root of the input size. The computa-
tion in Verify scales linearly with the size of the input. The server’s
overhead Combine) is also small, and remains smaller than a sec-
ond even in the computationally intensive cas®bfP. Moreover,
ourDVS scheme is superior to PIRS in terms of client communica-
tion cost in the case of multiple machines. FinalyvP andDDP

are the first secure, efficient, and scalable protocols for the prob-
lems of dynamic matrix multiplication and dynamic dot product,
respectively.

CPU time forCombine 3.0us 24.3us 263 s
CPU time forVerify 0.13ms 2.13ms 78.3ms

machines. TheéJpdate andSign costs are unaffected by and,
hence, are omitted. In PIRS, there is Gombine cost, since the
server simply forwardsn summaries and HMACs to the client.
This considerably increases the total proof size to 3000 bytes. On
the other hand, iDVS, the server combines the signatures of all the
machines into aingleone, always maintaining the communication
cost of 10 bytes. This comes with a very small overhead for the 7. CONCLUSIONS AND FUTURE WORK
server due t@Combine (10.1 us). The cost ofVerify increases by In this paper we addressed the problem of result authentication
the m extra hash computations in bof/S and PIRS. However, in stream outsourcing settings. While prior work has focused on
note that the overall cost is rather dominated by the operations im- simplegr oup by, sumqueries in such scenarios, our protocols
posed by the: vector elements and, therefore, the overhead is very allow the authentication of several linear algebraic operators, such
similar to the case of a single machine in bBMS and PIRS. as sums or dot products over dynamic vectors and dynamic ma-
))) o trix multiplication, which are used in numerous applications over
Evaluation of DMP. We consider the costs for matrix multiplica- gjstributed data. Our experimental evaluation demonstrated that
tion between twa: x n matrices. Here, we generate synthetic data oy protocols are extremely lightweight especially for the owner in
by randomly filling entries—note that 'Fhe data itself does not affect (arms of running time, storage requirements and bandwidth con-
the performe_mce of thBMP construction, as th_e steps taken are sumption. Moreover, our schemes offer strong cryptographic-guar
largely data independent. Table 5 shows the time costs of each ofgntees for their security. In our future work, we plan to extend
the operations as varies. TheUpdate step is similar in all cases gy Jightweight techniques to the challenging setting where clients
(~ 6 us), as it does not depend on TheSign operation scales may collude with the server to attack other clients. In this case, the

linearly with . (proportionally to the square root of the input size), gwner only grants a public key to the clients, hiding his secret key.
exactly as predicted by our analysis. Even for large matrices with

hundred of thousands of entries, this cost is in the order of a few 8 REFERENCES

milliseconds; extrapolating to billion entry matrices, the cost will 1 D. Abadi D. C U . | M. Cherniack

remain below a secondCombine scales similarly, proportional to 1] c Co":lv:éy c "émx’ £ gztll\;giml\i ,Ha{tour?rzlal\clla{skey

the size of the summary. OnWerify is more expensive, due to the ’ AR P P o S
Y Werify P A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing,

cost of reading the fulh x n result, performing modular multipli- X
- . : - R. Yan, and S. Zdonik. Aurora: A Data Stream Management
cations for each entry, and invoki HMAC calls. Yet this !
b a(n) System. IFSIGMOD, 2003.

too is far below a second even for our largest example. .
[2] S. Agrawal and D. Boneh. Homomorphic MACs:

Evaluation of DDP. We give our results fobDP in Table 6. Here, MAC-Based Integrity for Network Coding. IACNS 2009.

we also generate synthetic vectors of differing sizes. Observe that [3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,

there is a non-trivial setup cost for this protocol, which stems from I. Nishizawa, J. Rosenstein, and J. Widom. STREAM: The
determining a generator fd& and computing the exponentiated Stanford Stream Data Manager (demonstration description).
values inpub. Most of the work is in finding a suitable generator, In SIGMOD, 2003.

although this truly is a one-time operation. The cost varies little [4] D. Boneh and D. M. Freeman. Homomorphic Signatures for
with the vector sizew. As before,Update does not depend on, Polynomial Functions. IEUROCRYPT2011.

and in this case neither doggn. Therefore, the two overheads are [5] J. Camenisch, M. Kohlweiss, and C. Soriente. An

relatively unaffected by.. Our cost forCombine grows linearly Accumulator Based on Bilinear Maps and Efficient
with n, as predicted by our performance analysis, and remains be- Revocation for Anonymous Credentials.RiC, 2009.

low one second even in our worst-case experiment(10000). [6] A. Chakrabarti, G. Cormode, and A. McGregor. Annotations
The cost forVerify is quite low, since it requires only a constant in Data Strean;s ICALP 20’09

amount of light work for checking the proof. [7] G. Cormode, J. Thaler, and K. Yi. Verifying computations

Summary. Our experimental study confirms our claims that the with streaming interactive proofs. MLDB, 2012.
constructions presented are lightweight and practical. The over- [8] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
heads of all protocols have very low streaming cost: the central Gigascope: A Stream Database for Network Applications. In

Update operation is always measured in single-digicrosecond SIGMOD, 2003.

[9] A. Das, J. Gehrke, and M. Riedewald. Approximate Join
Processing Over Data StreamsSIGMOD, 2003.

[10] A.J. Demers, J. Gehrke, B. Panda, M. Riedewald,

V. Sharma, and W. M. White. Cayuga: A general purpose
event monitoring system. IG8IDR, 2007.

[11] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine.
Authentic Data Publication over the InternétComput.
Secur, 11(3):291-314, 2003.

[12] M. N. Garofalakis, J. M. Hellerstein, and P. Maniatis. Proof
Sketches: Verifiable In-Network Aggregation.I@DE,

2007.

[13] O. Goldreich.The Foundations of Cryptography - Volume 1,
Basic TechniquesCambridge University Press, 2001.

[14] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
Computation: Interactive Proofs for Muggles.3T0OC
2008.

[15] J. Katz and Y. Lindellintroduction to Modern
Cryptography Chapman and Hall/CRC Press, 2007.

[16] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic Authenticated Index Structures for Outsourced
Databases. ISIGMOD, 2006.

[17] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios.
Proof-Infused Streams: Enabling Authentication of Sliding
Window Queries On Streams. \LDB, 2007.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks.
In OSD|, 2002.

[19] A.J. Menezes, S. A. Vanstone, and P. C. V. Oorschot.
Handbook of Applied Cryptograph€RC Press, Inc., 1996.

[20] Microsoft. Streaminsightit t p: // msdn. mi cr osof t.
com en-us/|ibrary/ ee362541. aspx, 2010.

[21] H. Nasgaard, B. Gedik, M. Komor, and M. P. Mendell. IBM

Infosphere Streams: Event Processing for a Smarter Planet.

In CASCON 2009.

[22] S. Nath and R. Venkatesan. Publicly Verifiable Grouped
Aggregation Queries on Outsourced Data StreamkCIDE,
2013.

[23] S. Nath, H. Yu, and H. Chan. Secure Outsourced
Aggregation via One-way Chains. iGMOD, 2009.

[24] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
Completeness of Relational Query Results in Data
Publishing. INSIGMOD, 2005.

[25] H. Pang and K.-L. Tan. Authenticating Query Results in
Edge Computing. IRCDE, 2004.

[26] S. Papadopoulos, A. Kiayias, and D. Papadias. Secure and
Efficient In-Network Processing of Exact SUM Queries. In
ICDE, 2011.

[27] S. Papadopoulos, Y. Yang, and D. Papadias. CADS:
Continuous Authentication on Data StreamsVIrDB, 2007.

[28] V. Shoup. Lower Bounds for Discrete Logarithms and
Related Problems. IEUROCRYPT1997.

[29] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the
Output Rate of Multi-Way Join Queries over Streaming
Information Sources. IWLDB, 2003.

[30] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis.
Authenticated Join Processing in Outsourced Databases. In
SIGMOD, 2009.

[31] K.Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios,
and D. Srivastava. Small Synopses for Group-by Query
Verification on Outsourced Data Stream@DS 34(3),

20009.

APPENDIX
A. SECURITY PROOFS

We will prove all our constructions under the following gen-
eral methodology [13]. We will construct adeal version of each
scheme, where functiof is substituted by a truly random function
f- The adversary will be able to obtain outputsfdbr inputs of its
choice, but it will not be given direct accessftitself. We will next
prove that the scheme is secure under this ideal model. Finally, we
will conclude that theeal implementation of the scheme (i.e., the
one that uses the PRFinstead off) is secure, since otherwise the
adversary would distinguish the PRF from a truly random function.

A.1 Proof of Theorem 2 (Security ofDVS)

Letk = [ki,k2,...,kn], wherek; is generated as ibipdate,
but now via truly random functiorf instead of PRE". The adver-
sary A interacts with the oracle as outlinedBsp , in Section 3.2,
and obtains ainglesignature for everyi(7’) pair for any stream
of its choice, such that’ # 7. Leta; ., be the dynamic vector pro-
duced by machiné/; at7’ for an arbitrary stream selected by the
adversary. Note thatl can query the oracle faroly(s) different
epochsr’. Then, A obtains the following set:

V= {a:,‘r"7 (k . az,‘r’ + Ti,‘r/)}(ie[m])/\(r’;ér)
U {ai,77 (k sag, T + Ti,T)}iG[m]

wherea, - is thereal dynamic vector produced by machiné; at
epochr when the stream is the actudl (). All the r values are
constructed as iign, but again via functiory instead ofF". Set
V is theviewof the adversary in the attack.

A succeeds in the attack if it preseiitss;, 77), such thatres;
is differentfrom theactualresultres, = >~ | a; -, and

m
=k ress + E Tir
i=1

so thatVerify outputsYes Observe that this is equivalent to finding
apair(v*, k- v*) from V, and then computinges;y = res, + v*
andrw; = 7, + k - v* (note thatv* must benon-zerg.

Nevertheless, every; ./, r; - used in the components df are
random(due tof) and usednly once As such, everyk - a; , +
r;) and(k-a; - +1;,,) in YV can be considered as the encryption
ofk-aj ./, k-a,; r withkeysr; .» andr; -, respectively, where the
encryption scheme is a straightforward variant oféhe-time pad
(see Section 2.1). Due to this scheme and skée random and
secret, the adversary compulesv™ for any givenv* fromV only
with probability negl(s).

Based on the above discussioh¢can onlyguessa pair(res;, 7y).
Consider the followingnultivariate polynomiain finite fieldZ,

P(X1,X2,....,. Xnq1) =k1 X1 +.. .+ knXn — Xng1 +Z7’z‘,r

i=1

Notice thatA guessegresy, 75) correctly if and only ifresy =
[v1,v3,...,v;] such thatP(vy,vs,...,v,,mr) = 0. However,
due to Lemma 1in [28], for any (non-zero) multivariate polynomial
P in Z, of degreed (in our cased = 1) and randomly chosen
1,03, ...,vn, 7r, the probability thatP (vy, v3, ..., v, 75) =0
isd/p o=t 1/p = negl(s).

We derive thaiDVS is securew.r.t. Exp 4 in theideal model
Therefore, we also conclude thaV'S is secure in theeal mode]
under the assumption thatis a PRF. [

A.2 Proof of Theorem 4 (Security ofDMP)

Letk, = [ka’l, ey k'a_’na] andk, = [ka, ey kb,nb], where
ka,i, kp,; are created as idpdate, but now via truly random func-
tion f instead of PR, Also definen, x n, matrixK = k, ®ky,
such thatK[é][j] = ka,: - ks,;. The adversary interacts with the
oracle as outlined ifExp 4 in Section 3.2, and obtainssinglesig-
nature per everyi(') pair for any stream of its choice, such that
7' # 1. Let A, (respectivelyB,) be the dynamic matrix pro-
duced by machiné/, (M,) at 7’ for an arbitrary stream selected
by the adversary. Note thad can query the oracle fosoly(s)
different epochs’. Then,A obtains the set:

V=A{aj,,(Ka-aj .+ 7 [1])Gemhacen
{b} -, (ko - b] - + 74+ [1]) }iemh a2
{ka - aj 7 7 [3] + a1} Gem a2
ko - bj o 7o (5] 4 po, (]} Getnl) AGr)
{aj.r: (ka - aj,r +7a,r[1]) }jem

{bjr, (ky - bjr +10,-[3]) }jem

{(ka - aj,r - 7o,] + par[5]) Fiem)

{ks - bjr - Ta,r[§] + po,r 3]} e

wherea} _, (respectivelyb’ /) is the ;" column (row) of A7,
(BL) at 7', anda;,. (b) is the 5™ column (row) of thereal
A (B;) produced byM, (M;) atr. All the » andp values are
constructed as iign, but again via functiory instead off". Set
V is theviewof the adversary in the attack.

Suppose that the adversary presémts;, 77) in the end of the
attack, such thates; is differentfrom the actual resultres, =
A-Br. LetK : resty =3 .1, Klili]-rest [i][j] denote
the Frobenius producbetweenK andres;,. Then, notice thad
succeeds in the attack if

C

cC C CcCccc

mr =Kirest + 370 (rar[i] - 7o, (5] = pa,rld] — po.-[d])

so thatVerify outputsYes. Observe that this is equivalent to finding
apair(V*, K : V*) from V, and then computinges; = res- +
V*andn; = 7. + K : V* (note thatV* must benon-zer9.

We divide'V into two subsetsd); that includes the components
incorporating values; and, = V \ V;. The first key observation
is that everyp, - [j], pa,r[4], Po.~[4]: pb,-[4] used in the compo-
nents ofY; arerandom(due to f) and usednly once Similar to
the discussion in Appendix A.1 fdVS, these serve as keys for
one-time padencryption and, thusjo functioncan be computed
by A onk,, kp, Ta,r! []], T‘aﬂ—[ﬂ, Th, ! []], rb,.r[j} from V1 with
non-negligible probability.

[v1,v3,...,05,, .,] SUChthaP (v], 03, ... V5, ., , Tr) = 0. Nev-
ertheless, due to Lemma 1 in [28], for any (non-zero) multivari-
ate polynomialP in Z, of degreed (again, in our caseg = 1)
and randomly choseny, v3, ..., v, ., 77, the probability that
P(vi,v3,...,v5 p,,7r) =0isd/p = 1/p = negl(s).

We derive thaDMP is securew.r.t. Exp 4 in theideal model
Therefore, we also conclude tHaMP is secure in theeal mode)
under the assumption thatis a PRF. []

A.3 Proof of Theorem 6 (Security ofDDP)

Define vectork, = [k, k%, ..., k"] andk, = [k", k""", ... k],
wherek is a random value iZ,,. The adversaryd interacts with
the oracle as outlined iBxp 4 in Section 3.2, and obtainssingle
signature per every (7 pair for any stream of its choice, such that
7' # 7. Letal, (respectivelyb’,) be the dynamic vector produced
by machineM,, (M,) at7’ for an arbitrary stream selected by the
adversary. Note thatl can query the oracle faoly(s) different
epochsr’. Taking into account alspub generated irKeyGen, A
obtains the set:

V={al, (Ko @} + 7o), (Ka 3 70 +) b
U (b3, (ks - bl +75,00), (K bY Tarr o+ pr) o
U {(ar,ka-ar +74,r), Ka-ar To,r + pa,r)}
U {b-, (ks -br +75,-), (ko - br - Ta,r + po,r)}

kI
U {g" }jepnn{n+1}

wherea. (respectivelyb;) is thereal dynamic vector produced
by machineM, (M;) at epochr. All the r andp values are con-
structed as irbign, but again via functiorf instead ofF". The set
V is theviewof the adversary in the attack.

Suppose that the adversary presémts;, 7y) in the end of the
attack, such thates? is differentfrom the actual result res, =
a- - b;. Then, notice tha# succeeds in the attack if

. 1.
=9

7“33:/ +(ra,r"Tb,r —Pa,r —Pb,7)
T = ’

so thatVerify outputsYes Observe that this is equivalent to finding
apair(v*, k"t1.0*) fromV, and then computinges: = res, +v*

* EnLy* *
andn; =7, - g (note thaty™ must benon-zerg.

We divide into two subsetsVs thatincludes g*’ }jcon)\ {nt1}
and subseV, = V \ V;. Following a similar argumentation as
in the case oDMP in Appendix A.2, due to its equivalence to a
one-time padthe adversary cannot extract any information about
k, andk, (and, hence, also far**') from V with non-negligible
probability. Moreover, due to the-DHE assumption (Section 2.1),

n+1 . e
The second observation is that, based on the above discussionyA can compute/*" "~ from V1 only with negl(s) probability. We

valuesr, ,[§], ra,r 4], 7o, [4], 75~ [j] appearandomin view V;
of A. Moreover, observe that they are used oogein the com-
ponents of);. Hence, they can also be regardedas-time pad
keys for the components .. This means thato functioncan be
computed by4 onk,, k; (and, hence, also d{ = k, ® k) from
V> with non-negligible probability. We conclude thdtcomputes
K : V* for any givenV™* from V with probability negl(s).

Similar to the case dDVS, A can onlyguesghe pair(res:, 7).

Consider the followingnultivariate polynomiain finite fieldZ,,
P(Xl, - ,Xna.nb+1) = k)a,l . kb,l X1+

+ k’a,n,,, . kb,nb . Xna»nb - Xn,,gnb+1
+> _(rarli) 70,7 0] = parli] = po.rli))
j=1

Notice thatA guessegresy, wx) correctly if and only ifres; =

conclude that finds a pair(v*, k" 1! - v*) from the entire) with
probability negl(s).

Thus, similar to the case @VS andDMP, A can onlyguessa
pair (resy, mx). Consider the followingnultivariate polynomiain
thefinite fieldZ,,

P(X17X2) = kn+l . Xl - X2 + (T(L,T *To,r — Pa,r — pb,T)

Letn; = gz:. For randomr}, z is also random.A guesses
(resz, ;) correctly if and only ifP(ress, 1) = 0. Due to Lemma
1 in [28], for any (non-zero) multivariate polynomi& in Z, of
degreed (in our cased = 1) and randomly choseres’, z, the
probability thatP(res*, z%) = 0isd/p “=' 1/p = negl(s).

We derive thatDDP is securew.r.t. Exp 4 in theideal mode|
under then-DHE assumption. Therefore, we also conclude that
DDP is secure in theeal mode] under then-DHE assumption and
the assumption thaf is a PRF. [

