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ABSTRACT
We consider astream outsourcingsetting, where a data owner del-
egates the management of a set of disjoint data streams to an un-
trusted server. The ownerauthenticateshis streams via signatures.
The server processes continuous queries on the union of the streams
for clients trusted by the owner. Along with the results, the server
sends proofs of result correctness derived from the owner’s sig-
natures, which are easily verifiable by the clients. We design novel
constructions for a collection of fundamental problems over streams
represented aslinear algebraicqueries. In particular, our basic
schemes authenticatedynamic vector sumsand dot products, as
well asdynamic matrix products. These techniques can be adapted
for authenticating a wide range of important operations in stream-
ing environments, includinggroup by queries, joins, in-network
aggregation, similarity matching, and event processing. All our
schemes are verylightweight, and offer strongcryptographicguar-
antees derived from formal definitions and proofs. We experimen-
tally confirm the practicality of our schemes.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication

General Terms
Algorithms, Security

Keywords
Data Integrity, Data Streams, Query Authentication

1. INTRODUCTION
Tremendous amounts of data are being generated in a streaming

fashion in a variety of applications, such as web and telephony net-
works, wireless sensor networks, social networks, and more. The
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Figure 1: System setting

continuous nature of such data has motivated the need for sophis-
ticated data stream management systems (DSMS), which offer ef-
ficient storage and reliable querying services to clients. Follow-
ing research prototypes such as Stream [3] and Aurora [1], ro-
bust DSMS have been deployed for many applications, including
IBM’s InfoSphere Streams [21], Microsoft’s StreamInsight [20]
and AT&T’s Gigascope [8]. Due to the overwhelming volume of
streaming data, companies may not possess, or wish to acquire,
the resources for deploying a DSMS. A practical alternative is to
outsourcethe stream storage and processing to a specialized third
party with strong DSMS infrastructure. Outsourcing offers signifi-
cant cost savings to companies, especially start-ups.

Despite its merits, outsourcing naturally raises the issue oftrust.
Specifically, the third party may act maliciously to increase profit,
e.g., it may collude with rival companies and present fraudulent re-
sults to bias the competition; or it may shed some of the workload
and only compute on a sample of the input to save effort. Even
when the server is honest, problems can arise, as it may run buggy
software, or (given the scale of the problems considered) suffer
from equipment failure or read/write errors. It is therefore particu-
larly important to adopt methods forstream authentication. These
enable the clients to verify thecorrectnessof the streaming results
they receive from the server, i.e., that they are untampered with
(integrity) and up-to-date (freshness). The goal is to make stream
authentication a very lightweight operation for all parties involved,
and establish it as a standard tool for error-checking, in a similar
way to the ubiquitous use of checksums for reliable file transfer.

Targeted setting. Figure 1 illustrates our system architecture. An
ownerpossesses a set of machinesM1,M2, . . . ,Mm, each gener-
ating or observing a data streamXi and outsourcing it to athird
party server. These machines are not required to directly com-
municate with each other, and their streams are disjoint. Aclient
registers a continuous (i.e., long-running) queryQ on the union of



the streams at the server. The latter periodically reports the result
to the client at regular time intervals, demarcated into epochsτ .

Each machineMi maintains a smallsummarySi on its stream,
which is updated with every new tuple arrival. At the end of every
epochτ , Mi computes asignatureσi,τ on Si, and sends it to the
server. This signatureauthenticatesMi’s stream at that particular
epoch, and is created with a secret keysk installed by the owner
at the machine. The server then processes queryQ, and transmits
resultresτ along with a smallproof πτ . The proof is produced in
a query-specific fashion by combining all the signatures with some
public informationpub (registered at the server by the owner at
anofflinesetup stage). We assume that the client istrustedby the
owner and, thus, possessessk. Using this key andπτ , the client
canverify the correctness of the result received for epochτ .

Our aim is to provide the above functionality for a wide range of
query types, offeringcryptographicsecurity and satisfying certain
performance desiderata. In particular, our goals are to minimize
the memory, communication and computational costs for the owner
and clients. This is particularly crucial in applications such as wire-
less sensor networks, where the owner’s machines are motes with
scarce resources and limited battery. The life-time of these systems
is diminished by intense operations and communication. Secondar-
ily, we further aim to ensure that the server’s costs are also low.

Our contributions. The existing literature on stream authentica-
tion is limited in its applicability for a variety of reasons. Firstly,
the range of supported queries is somewhat narrow: prior work has
been primarily concerned with authenticating particular computa-
tions such asgroup by,sum queries which, while fundamental,
do not cover all stream outsourcing scenarios. Secondly, the au-
thentication cost at the owner is non-trivial; it typically entails ex-
pensive cryptographic operations (e.g., modular exponentiations)
for each epoch at the owner. While the cost of one such operation
is minor, the overhead imposed for high speed data streams and
short epochs can become intolerably high, especially when each
machineMi might be a low-powered embedded device. This fact
also limits the data rates that the owner can process.

In contrast to current literature, we seek for more general solu-
tions that impose a minimal, essentiallynegligible, cost to the data
owner. We first devise constructions for fundamental problems rep-
resented aslinear algebraicqueries. We then use these schemes
as building blocks in the design of authentication techniques for
a wide range of important queries in streaming environments. In
more detail, our contributions are summarized as follows:

• We introduce constructions for authenticating (i)sums of dy-
namic vectorsproduced by one or multiple streams, (ii)dot
productsof dynamic vectors produced by different streams, and
(iii) productsbetweendynamic matricesgenerated by different
streams. Our schemes are extremely lightweight for the owner,
as they mainly involve inexpensive hash operations and mod-
ular additions/multiplications in a very small finite field. They
are also cheap for the client, who verifies the result without
adding substantially to the cost of reading the output. More-
over, they impose only a small extra overhead to the computa-
tion cost of the server.

• We provide strongcryptographicguarantees for all our con-
structions, derived from formal definitions and proofs.

• We show how to adapt the basic schemes in order to solve a
range of database queries in stream authentication, including
group by queries, joins, in-network aggregation, similarity
matching, and event processing. To our knowledge, we are the
first to address result authentication for such a large range of
complex queries.

Table 1: Notation
Symbol Definition

m Number of owner machines
Mi Owner machinei
Xi The stream of tuples generated atMi

Xi(τ) The tuple sequence ofMi at or before epochτ
Q The continuous query of the client

Q(
⋃m

i=1{Xi(τ)}) Result ofQ on streamsX1, . . . ,Xm at epochτ
resτ Result sent by the server to the client at epochτ

σi,τ Signature created by machineMi at epochτ
πτ Proof transmitted by the server to the client atτ

ra,τ , ρa,τ Key values/vectors computed for machinea at τ
Si The summary maintained atMi at all times
pub Public information output by the owner during setup
a, b Symbols (in lowercase bold letters) of vectors
A, B Symbols (in uppercase bold letters) of matrices

x
$← S An elementx being sampled uniformly from setS

x← A The outputx of aprobabilisticalgorithmA
x := B The outputx of adeterministicalgorithmB

‘‖’ Symbol denoting string concatenation
‘ |’ Symbol denoting logical OR
s The security parameter

poly(s) / negl(s) A positive polynomial ins / A negligible function ins
[n] The set{1, 2, . . . , n}

Fk(x)
def
= F (k, x) Pseudo-random functionF of keyk and messagex
sk The secret key of the owner
p A prime number with bit sizeΘ(s)

Zp / G The finite field / cyclic group our algorithms operate on

2. BACKGROUND

2.1 Preliminaries
Stream model and notation.The time domain is decomposed into
intervals, calledepochs. An epoch can be perceived as a discrete
timestamp denoted byτ . We assume that the clocks of the owner’s
machines, the server and the client are (at least loosely)synchro-
nized. This requirement isinherentin most streaming applications
(e.g., sensor networks) and is orthogonal to our work. Table 1 sum-
marizes the most important notation used in this paper.

Adversary. Henceforth, any reference to an adversary implies a
probabilisticadversary that runs in timepolynomialin some secu-
rity parameters.

Negligible functions. We call a functionν : N → N negligible
in s if ν(s) < 1/poly(s) for everypoly(·) and sufficiently larges.
We denote a negligible function bynegl(s).

Pseudo-random functions.LetF : K× S1 → S2 be an efficient,
keyed function, whereK, S1 andS2 are indexed by a security pa-
rameters. We say thatF is apseudo-random function(PRF) if for
all adversariesA it holds

|Pr[AFk(·)(1s) = 1]− Pr[Af(·)(1s) = 1]| ≤ negl(s) ,

whereFk(x)
def
= F (k, x), k

$← K andf
$← (S1 → S2). Sim-

ply stated, an adversary distinguishes a PRF from a truly random
function only with negligible probability ins.

Cyclic groups, generators and multiplicative cyclic groups [19].
Let G be a group, letp = |G| denote the order ofG and let1
denote the identity element ofG. For any elementg ∈ G, the
order ofg is the least positive integern such thatgn = 1. Let
〈g〉 = {gi : i ∈ Zn} = {g0, g1, . . . , gn−1} denote the set of
group elements generated byg. The groupG is calledcyclic if



there exists an elementg ∈ G such that〈g〉 = G. In such a case,
the order of g is equal top = |G| andg is called ageneratorof
G. A cyclic groupG with the binary operator of multiplication is
called amultiplicativecyclic group.

The Diffie Hellman Exponent (n-DHE) Assumption [5]. Our se-
curity relies on a variant of the well-knowndiscrete logarithm prob-
lem. LetG be a multiplicative cyclic group of orderp, g ∈ G a gen-
erator ofG, ands the bit size ofp. Then-DHE problem is defined

as follows: given setV = {g, gk, gk2

, . . . , gk
n

, gk
n+2

, . . . , gk
2n}

wherek
$← Z

∗
p, computegk

n+1

. Then-DHE assumption states
that, for any adversaryA, it holds:

Pr[A(g, gk, gk
2

, . . . , gk
n

, gk
n+2

, . . . , gk
2n

) = gk
n+1

] ≤ negl(s)

Simply stated, even given the information inV, the (polynomially

bounded) adversary is unable to solve the problem to findgk
n+1

with any non-negligible probability.

One-time pad and nonces.One-time pad is a method of encrypt-
ing data which exhibitsperfect secrecy[15], if implemented cor-
rectly. In one-time pad encryption, a messageM is encrypted us-
ing a random keyK which (i) has (at least) thesamesize asM ,
and (ii) is used exactlyonce. The encryption is performed via an
XOR operation asM ⊕K. In our work, we use an alternative form
of one-time pad that uses modular arithmetic. In particular, we en-
crypt a numberM ∈ Zp by a random (used once) keyK ∈ Z

∗
p

as(M + K) mod p. While slightly less time efficient than an
XOR operation, this alternative mode of one-time pad offers the
same security as the original, and it will be particularly helpful in
our proposed techniques. Finally, we refer to any key that is used
just once as anonce.

2.2 Related Work
The closest schemes to ours are PIRS [31] and DiSH [22], which

both focus on authenticating results forgroup by,sum queries.
In these works, the stream consists of unaggregated tuples. The
server’s task is to perform agroup by operation to collate the tu-
ples into predefined groups, and then to compute an aggregate such
assum on each group. In both PIRS and DiSH the owner main-
tains a small summary on the observed stream, which facilitates
verifying the result correctness. PIRS is aprobabilistic protocol,
where the client is the owner itself. Due to its simplified model
and relaxed security guarantees, PIRS is quite lightweight. On the
other hand, DiSH is acryptographictechnique, which assumes that
the clients are partiesuntrustedby the owner. The model allows
the clients todirectly communicatewith the owner to receive the
summary. In order to address the challenge that clients cannot pos-
sess any secret material from the owner, DiSH employs expensive
cryptographic primitives such as modular exponentiations during
authentication and verification.

Note that PIRS and DiSH do not directly capture our general ar-
chitecture (described in Section 1), where the owner and the clients
are different physical entities that communicate with each other
via the untrusted server. In order to adapt PIRS and DiSH to our
scenario, the ownermust rely onsome other message authentica-
tion technique for securely forwarding the summary to the clients
via the server, e.g., using HMACs and public-key digital signa-
tures [19], respectively. This inflicts extra overhead to both the
owner (for authentication) and the client (for verification).

Also related to our work is the use of message authentication
codes (MACs) that are homomorphic, since they allow the linear
combination of messages from different sources, along with the
corresponding combination of the MACs of these messages. In our

schemes, we also need to utilize the signatures of multiple sources
(i.e., owner machines), but these signatures must beproperly com-
putedandcombinedin order to authenticate the result of different
operators. Homomorphic MACs were first proposed in [2] for net-
work coding applications and have since been widely used, such
as in [4] for evaluating multivariate polynomials onsigneddata,
or in [26] for computing simple statistics in sensor networks. We
emphasize that homomorphism is a property that message authen-
tication techniques may exhibit, but not a tool for automatically au-
thenticating general operators/functions (such as the ones examined
in this paper) over distributed data. In particular, we are not aware
of any prior work that has addressed the general linear queries such
as matrix multiplication and dot products that we study here.

Authentication results have also been shown for other problems
and models. In the context ofoutsourced databases, there are tech-
niques that addresssnapshotrelational queries, such as ranges and
joins [11, 25, 24, 16, 30], as well ascontinuousrange queries [17,
27]. All these methods rely onauthenticated data structures(such
as Merkle trees), which are maintained by the owner and signed
with public-key cryptosystems. These data structures are large:
linear in the size of the input data. There has also been a line
of work on verifying simple aggregate computations indistributed
networks, such assum, min/max andcount [12, 26, 23]. In this
setting, the machines are organized into a tree hierarchy. The inter-
nal (potentially untrusted) nodes performin-network aggregation
as they route information from the leaves to the root (sink).

Some related studies have been conducted within the theory com-
munity. The model ofannotated streamsallows the server to insert
some “advice” into a stream to help a client compute a function of
interest. This model was applied to problems such as recovering in-
formation about particular items from the stream, functions of the
item frequencies (such as the frequency moments), and some graph
computations [6]. The costs of these protocols are typically sublin-
ear but polynomial in the size of the stream. These costs were sub-
sequently reduced to logarithmic for some key problems, but only
when there are multiple rounds of communication between the data
owner and server [7]. Quite general computations can be authenti-
cated following a streaming pass over the data, but this can require
many thousands of rounds of interaction between the parties [14].

Our work differs from these prior efforts in several important
respects. Firstly, we consider fundamental problems that can be
adapted to solve a wider range of important queries in stream out-
sourcing. Secondly, our constructions impose a very low overhead
to all parties. In particular, they do not entail the costly exponen-
tiation operations involved in DiSH, and do not require the owner
to maintain sophisticated structures, as in the database outsourcing
solutions. Lastly, unlike PIRS, our work comes with strongcrypto-
graphic guarantees that formally demonstrate the security and ro-
bustness of our schemes against malicious activity and errors.

3. FORMULATION
Section 3.1 defines the system setting outlined in Section 1 as

a formal stream authentication protocol executed by the involved
parties. Section 3.2 presents the security model.

3.1 Stream Authentication Protocol
The definition below formulates a stream authentication scheme,

assuming a security parameters.

DEFINITION 1. A stream authentication scheme is a set of five
algorithms(KeyGen, Update, Sign, Combine, Verify) running in
time polynomial ins and described as follows:



(sk, pub)← KeyGen(1s): A probabilistic algorithm that takes as
input a security parameters, and outputs secret keysk and
public informationpub.

Si ← Update(i, sk,Si, t): A (potentially) probabilistic algorithm
that takes as input idi, secret keysk, summarySi, and in-
coming tuplet. It produces an updated summarySi.

σi,τ ← Sign(i, sk,Si, τ): A (potentially) probabilistic algorithm
that takes as input idi, secret keysk, summarySi, and epoch
τ . It produces signatureσi,τ .

πτ := Combine(
⋃m

i=1{σi,τ},
⋃m

i=1{Xi(τ)}, pub): A determinis-
tic algorithm that takes as input the union of the signatures
and streams atτ and public infopub. It produces proofπτ .

Yes|No := Verify(sk, πτ , resτ , τ): A deterministic algorithm that
takes as input secret keysk, proofπτ , resultresτ and epoch
τ . It outputs a string that is eitherYesor No.

The protocol is executed in the following stages:

• Setup: The protocol commences with anofflinesetup phase.
The owner runsKeyGen and produces a secret keysk and
public info pub. It installs a unique identifieri, key sk and
an initial summarySi in every machineMi and sendspub to
the server. It also securely provides the client withsk, e.g.,
via an SSL channel. Next, it concludes the setup phase and
sets the system into motion.

• Update and signing atMi: Whenever a new tuplet is gen-
erated byMi, the machine runsUpdate before forwarding
t to the server. This algorithm uses keysk andt on current
summarySi and outputs a new summary thatsubstitutesfor
the old one. At the end of epochτ , Mi runsSign on i, sk, τ
and current summarySi to produce a signatureσi,τ , which
is sent to the server.

• Result and proof generation at the server: At the end
of epochτ the server receives new signatures from the ma-
chines. It computes and sends resultresτ to the client in re-
sponse to continuous queryQ. Moreover, it transmits a proof
πτ that is produced by algorithmCombine on

⋃m

i=1{σi,τ},
⋃m

i=1{Xi(τ)} andpub.

• Verification at the client: At the end of epochτ the client
receives from the server a new resultresτ , accompanied by a
new proofπτ . It verifies result correctness viaVerify, which
combinesresτ with πτ and the owner’s secret keysk. The
output is Yes if verification succeeds, andNo, otherwise.
Note that the client isstateless, i.e., it verifies w.r.t. the en-
tire history of the data streams, not since the last successful
verification.

The next definition formulatesscheme correctness.

DEFINITION 2. A stream authentication scheme iscorrect if
the following condition holds. For any security parameters, let
(sk, pub) be any output of algorithmKeyGen(1s). LetXi(τ) be
any stream observed byMi up until τ , andQ(

⋃m

i=1{Xi(τ)}) the
result of queryQ at τ . LetSi be the summary computed by execut-
ingUpdate onsk and on everyt ∈ Xi(τ). Letσi,τ be the signature
produced byMi via Sign(i, sk,Si, τ). Finally, letπτ be the proof
that is output byCombine(

⋃m

i=1{σi,τ},
⋃m

i=1{Xi(τ)}, pub). Then,
Verify(sk, πτ , resτ , τ) returnsYeswhen

resτ = Q

(

m
⋃

i=1

{Xi(τ)}
)

Note that scheme correctness does not specify the output ofVer-
ify in caseresτ 6= Q(

⋃m

i=1{Xi(τ)}). This is captured by the defi-
nition of security, included in the next subsection.

3.2 Security Definition
The adversaryAmay be the server or any other entity other than

the owner’s machines and the client.A is allowed to access the raw
data streams, i.e., data privacy isorthogonalto our work. Never-
theless,A may tamper with the outputs at any epoch. Our security
goal againstA is result correctness, which jointly guarantees (i)
integrity (i.e., that the result is not falsified) and (ii)freshness(i.e.,
that the result is up-to-date).

We rigorously model security via the following experiment, which
is a variation of the standardexistential unforgeability under an
adaptive chosen-message attack[15]:

Experiment ExpA(1s)

1. Pair(sk, pub) is output byKeyGen, andpub is given toA.

2. A is given oracle access toSign as follows: A presents a
triplet (T, i, τ ′), whereT is a set of tuples. The oracle keeps
record of all submitted queries, and rejects a query that re-
quests a signature for a certain(i, τ ′) more than once. If
it does not reject, the oracle initializesSi = 0 and runs
Update(i, sk,Si, t) for everyt ∈ T , producing summarySi.
It then runsSign(i, sk,Si, τ ′), and returns the result toA.

3. A outputs a pair(res∗τ , π
∗
τ ), with the restriction that

• res∗τ 6= Q(
⋃m

i=1{Xi(τ)})
• Sign was not queried for any triplet(T, i, τ ′), such that

(τ ′ = τ) ∧ (T 6= Xi(τ))

4. If Verify(sk, π∗
τ , res

∗
τ , τ) returnsYes, then output1; other-

wise output0.

We say that a stream authentication scheme issecure, if no ad-
versaryA can succeed in the above experiment with non-negligible
probability, i.e., if it holds that

Pr[ExpA(1s) = 1] ≤ negl(s)

where the probability is taken over the random choice ofsk and the
random coin tosses ofA.

Simply stated, during the attackA is allowed to obtain (through
the oracle) any number of signatures for any machine and stream of
its choice, at any epoch other than the epochτ for which it launches
the attack. Atτ , A is only allowed access to the valid signatures
produced by the machines.A then launches the attack by present-
ing a pair(res∗τ , π

∗
τ ), such thatres∗τ is different from the actual

result. Our aim is to provide protocols that are secure against such
attacks and will not accept any such incorrect results.

4. BASIC CONSTRUCTIONS
In this section we present constructions that can be used as build-

ing blocks for designing authentication schemes for a wide range
of query types. In particular, we design techniques for authenticat-
ing dynamic vector sums(Section 4.1),dynamic matrix products
(Section 4.2), anddynamic dot products(Section 4.3). Through-
out, we consider a security parameters, a primep whose bit size
is Θ(s), and a PRFF : Z∗

p × {0, 1}∗ → Z
∗
p, which are all known



asglobalsto all parties. We assume that all the stream values and
aggregate results belong toZp. This is without loss of general-
ity, since (i) for practical values ofs, Zp is large enough for any
application, and (ii) application domains that involve negative inte-
gers work directly forp large enough, while those that involve real
numbers can be converted toZp via scaling and rounding.

4.1 Dynamic Vector Sum Authentication
We focus onm machinesMi, and consider a vectorai with n

entries, which is dynamically updated as new tuplest are generated
by Mi. Each tuplet ∈ Xi is of the form(j, v), and updatesai by
addingv to ai[j]. The client’s queryQ requests the sum of the
vectors produced by all machines at every epochτ , i.e.,

Q(

m
⋃

i=1

{Xi(τ)}) =
m
∑

i=1

ai =

[

m
∑

i=1

ai[1], . . . ,

m
∑

i=1

ai[n]

]

We term such a query adynamic vector sumquery, and present
below a scheme calledDVS for authenticating it.

Figure 2 presents theDVS construction, which instantiates the
general stream authentication protocol outlined in Section 3.1. The
intuition behind this construction is straightforward: the summary
Si captures the current state of vectorai, in such a way that the ad-
versary, lacking knowledge of the secretsk, has no way of finding
another vectora∗

i that would have the same summary, even given
access to other signatures. The signatureσi,τ includes additional
information (the nonceri,τ ) that prevents the server from re-using
the same signature at different epochs or for different machines.
All operations are performed modulop (i.e., the results are inZp).

Every summary is initialized to0 during the setup phase. Al-
gorithmUpdate works in a way such thatSi is equal to the dot
productk · ai, wherek = [k1, . . . , kn]. Sign injects a machine-
and time-dependent keyri,τ usedonce. Observe that everykj and
ri,τ value is produced withsk via PRFF , where “element”, “ma-
chine” and “epoch” are string labels.Combine simply adds all the
signatures retrieved from the machines.Combine does not need
any public information from the owner and, thus,pub is set to a
null value inKeyGen. The client assumes that allm machines are
involved in the protocol when executingVerify. In general, the
client must know exactly which machines participate in the proto-
col, in order to properly calculate theri,τ values. As an additional
remark, observe thatDVS can be used even when only asinglema-
chine is involved. In this case,DVS essentially supportsdynamic
vector authentication. We provide formal correctness and security
guarantees forDVS below.

Correctness and security.The following theorem proves the cor-
rectness ofDVS as specified in Figure 2.

THEOREM 1. DVS is correct.

PROOF. Let theactualresult ofQ at τ beQ(
⋃m

i=1{Xi(τ)}) =
∑m

i=1 ai, whereai[j] =
∑

t∈Xi(τ)∧t.j=j t.v. Observe that, after
executingUpdate for all t ∈ Xi(τ) at anyMi, Si =

∑n

j=1 kj ·
ai[j]. Then,Combine calculatesπτ = (

∑n

j=1 kj ·(
∑m

i=1 ai[j]))+
∑m

i=1 ri,τ . Now notice that, ifresτ passed inVerify is equal to
Q(
⋃m

i=1{Xi(τ)}), then the algorithm computes aπ that is equal to
theπτ calculated above and, hence, the output isYes.

We next state the security ofDVS (the proof is in Appendix A.1).

THEOREM 2. If F is a PRF, thenDVS is secure.

Performance. Every machineMi needs to store only the keysk,
and its idi. Therefore, the memory consumption isO(s+ logm),

KeyGen(1s)

1. k
$
← Z∗

p

2. Outputsk = k andpub = ⊥

Update(i, sk,Si, t)
1. Parset as(j, v), andsk ask
2. kj = Fk(“element”‖j)
3. Si = Si + kj · v
4. OutputSi

Sign(i, sk,Si, τ)
1. ri,τ = Fk(“machine”‖i‖“epoch”‖τ)
2. σi,τ = Si + ri,τ
3. Outputσi,τ

Combine(
⋃m

i=1{σi,τ},
⋃m

i=1{Xi(τ)}, pub)
1. Outputπτ =

∑m
i=1 σi,τ

Verify(sk, πτ , resτ , τ)
1. Parsesk = k andresτ as an-element vector
2. Fori = 1 tom, ri,τ = Fk(“machine”‖i‖“epoch”‖τ)
3. Initializeπ =

∑m
i=1 ri,τ

4. Forj = 1 to n
5. kj = Fk(“element”‖j)
6. π = π + kj · resτ [j]
7. If π = πτ outputYes, otherwiseNo

Figure 2: The DVS construction

wheres is the security parameter that dictates the size ofsk, and
logm is the size of the machine id (wherem is the number of
machines). Since the size ofp is Θ(s), the communication cost
between any two parties isO(s). For any practical application,s
andlogm can be regarded as constants that do not exceed20 bytes.
Note that we implementFk as an HMAC [19], which involves two
hash operations. BothUpdate andSign entail a constant number
of modular multiplications/additions and hashes. The overhead for
the server isO(m) modular additions. Finally, the burden at the
client isO(m+ n) modular additions/multiplications and hashes.

4.2 Dynamic Matrix Product Authentication
We focus on two machines,Ma andMb. We consider ana ×

n matrix A and an × nb matrix B. Matrix A (respectivelyB)
is dynamically updated as new tuples are generated byMa (Mb).
Each tuplet ∈ Xa (respectivelyt ∈ Xb) is of the form(i, j, v)
and updatesA (B) by addingv to A[i][j] (B[i][j]). The client’s
queryQ requests thematrix product, denoted byAB, betweenA
andB at every epochτ . We term such a query as adynamic matrix
product query. We next present a scheme, termed asDMP, for
dynamic matrix product query authentication.

Figure 3 presents theDMP construction. The technique takes
advantage of the following property of matrix multiplication. Let
A = [a1a2 . . .an], whereaj denotes thej th columnof A. Also let
B = [b1b2 . . .bn]

T, wherebj is thej th row of B. Then it holds:

Q(Xa(τ) ∪ Xb(τ)) = AB =
n
∑

j=1

aj ⊗ bj

whereaj ⊗ bj is the outer product of vectorsaj ,bj , such that:

aj ⊗ bj =









aj [1]bj [1] aj [1]bj [2] . . . aj [1]bj [nb]
aj [2]bj [1] aj [2]bj [2] . . . aj [2]bj [nb]

. . . . . . . . . . . .
aj [na]bj [1] aj [na]bj [2] . . . aj [na]bj [nb]









Ma (respectivelyMb) can create a summarySa[j] (Sb[j]) for
vectoraj (bj) in a similar manner toDVS. We can then compute a



summary ofaj ⊗ bj from the productSa[j] · Sb[j]: for each entry
of this outer product, there is a corresponding term inSa[j] · Sb[j],
scaled by a secret value (i.e., the product of the two corresponding
keys). In other words, we obtain a summary of the outer product
result matrix with similar properties to theDVS summary for a sin-
gle vector. Since matrix multiplication can be expressed as a sum
of outer products, we can usen different summariesSa[j],Sb[j]
(i.e., one for each column ofA, and one for each row ofB), and
build a summary for productAB by summing them up.

We assume thatMa knows thatMb participates in the query and
vice-versa (this information is part of the query description). The
summariesSa,Sb are both initialized to zeron-element vectors
during the setup phase. AlgorithmsUpdate andSign are presented
in the context ofMa. Sa now containsn entries, one for eachcol-
umn. The case ofMb is symmetric:Sb also includesn entries,
but one for eachrow. This can be achieved by instead parsingt as
(j, i, v) in Line 1 ofUpdate, and proceeding accordingly.

To provide security for these summaries, theSign function pro-
duces composite signaturesσa,τ [j], σb,τ [j], each consisting of two
elements/signatures. In particular, their first elements (σa,τ [j][1]
andσb,τ [j][1]) integrate machine-, time-, and column-/row- depen-
dent valuesr to mask the summaries as inDVS. In order to produce
a proof for summaries of the formSa[j] · Sb[j], the server needs
to multiply σa,τ [j][1] with σb,τ [j][1]. However, observe that terms
ra,τ [j] · Sb[j] andrb,τ [j] · Sa[j] will appear in the resulting proof,
which are hard to verify by the client withoutSa[j] and Sb[j].
Therefore, the machines provide additional information (namely
signaturesσa,τ [j][2], σb,τ [j][2]) that enable the server to remove
these values from the proof. To ensure security, these signatures
incorporatenewone-time keys (denoted asρ).

Based on the above,Combine now takes a combination of2n
elements together to build a compact proof that includes the sum-
mary of the whole product matrix. Note thatπτ is just a single
value modulop. Similar toDVS, Combine does not need any pub-
lic information from the owner and, thus,pub is set to a null value
in KeyGen. Finally, algorithmVerify needs to include the various
masking values created byMa andMb for each of theirn paral-
lel summaries and outputsYes only if the proof computed for the
claimed result matches the provided proofπτ .

Correctness and security.The following two theorems state the
correctness and security ofDMP as given in Figure 3:

THEOREM 3. DMP is correct.

PROOF. Let theactualresult ofQ atτ beQ({Xa(τ)∪Xb(τ)}) =
AB, whereA[i][j] =

∑

t∈Xa(τ)∧(t.i=i)∧(t.j=j) t.v andB[i][j] =
∑

t∈Xb(τ)∧(t.i=i)∧(t.j=j) t.v. Observe that, after executingUpdate
for all t ∈ Xa(τ) and t ∈ Xb(τ) at Ma andMb, respectively,
Sa[j] =

∑na

i=1 ka,i · aj [i] andSb[j] =
∑nb

i=1 kb,i · bj [i]. More-
over, notice that

πτ =
n
∑

j=1

(Sa[j] · Sb[j] + ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

However, it holds that

n
∑

j=1

(Sa[j] · Sb[j]) =
n
∑

j=1

(

na
∑

i=1

ka,i · aj [i] ·
nb
∑

i=1

kb,i · bj [i]

)

=
∑

i∈[na],j∈[nb]

ka,i · kb,j ·
n
∑

z=1

az[i] · bz[j]

=
∑

i∈[na],j∈[nb]

ka,i · kb,j · (AB)[i][j]

KeyGen(1s)

1. k
$
← Z∗

p

2. Outputsk = k andpub = ⊥

Update(a, sk,Sa, t)
1. Parset as(i, j, v), andsk ask
2. ka,i = Fk(“machine”‖a‖“element”‖i)
3. Sa[j] = Sa[j] + ka,i · v
4. OutputSa

Sign(a, sk,Sa, τ)
1. Forj = 1 to n
2. ra,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“r”‖j)
3. ρa,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”‖j)
4. rb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“r”‖j)
5. σa,τ [j] = [(Sa[j] + ra,τ [j]), (Sa[j] · rb,τ [j] + ρa,τ [j])]
6. Outputσa,τ

Combine({σa,τ , σb,τ}, {Xa(τ),Xb(τ)}, pub)
1. πτ =

∑n
j=1(σa,τ [j][1] · σb,τ [j][1]− σa,τ [j][2]− σb,τ [j][2])

2. Outputπτ

Verify(sk, πτ , resτ , τ)
1. Parsesk ask andresτ as ana × nb matrix
2. Forj = 1 to n
3. ra,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“r”‖j)
4. ρa,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”‖j)
5. rb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“r”‖j)
6. ρb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“ρ”‖j)
7. Initializeπ =

∑n
j=1 ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j]

8. Fori = 1 to na, ka,i = Fk(“machine”‖a‖“element”‖i)
9. Forj = 1 to nb, kb,j = Fk(“machine”‖b‖“element”‖j)
10.π = π +

∑

i∈[na],j∈[nb]
ka,i · kb,j · resτ [i][j]

11. If π = πτ outputYes, otherwiseNo

Figure 3: The DMP construction

If resτ is equal toAB, then it is easy to see that theπ computed
in Verify is equal toπτ and, thus, the algorithm outputsYes. This
concludes our proof.

THEOREM 4. If F is a PRF, thenDMP is secure.

For the proof, see Appendix A.2.

Performance. The memory consumption and computational cost
of Update at each machine is the same as inDVS. Due to then
masked summaries, algorithmSign involvesO(n) modular addi-
tions/multiplications and hashes, whereas the communication cost
between a machine and the server becomesO(n). The server com-
putesO(n)modular additions/multiplications inCombine. Finally,
the client receives a constant sized proof, butVerify entailsO(na+
nb + n) hashes, andO(nanb) modular additions/multiplications,
proportional to the cost of reading the result. This is reduced if the
result matrix is sparse: then, the time taken is proportional to the
number of non-zero entries, which can be much lower.

Note that this protocol substantially reduces the burden on the
data owner, compared to the cost it would pay to perform the matrix
multiplication itself. Without outsourcing, the data owner would
have to store theO(n2) entries of the matrices, and perform the
super-quadratic amount of work to carry out the multiplication.
Here, the data owner’s requirements are reduced toO(n) storage
per machine, and constant work per update.

4.3 Dynamic Dot Product Authentication
We focus on two machines,Ma andMb, and considern-element

vectorsa,b. Vectora (respectivelyb) is dynamically updated as



new tuples are generated byMa (Mb). Each tuplet ∈ Xa (respec-
tively t ∈ Xb) is of the form(j, v), and updatesa (b) by addingv to
a[j] (b[j]). The client’s queryQ requests thedot productbetween
a andb at every epochτ , i.e.,

Q(Xa(τ) ∪ Xb(τ)) = a · b =

n
∑

i=1

a[i] · b[i]

We refer to such a query as adynamic dot productquery, and
present a scheme calledDDP for authenticating it.

Figure 4 presents theDDP construction. Similar toDMP, we
assume thatMa knows thatMb participates in the query and vice-
versa. AlgorithmsUpdate andSign are described in the context of
Ma. The case ofMb is symmetric, with the vital difference that the
summary is updated asSb = Sb +kn−j+1 · v in Line 2 ofUpdate.
The summariesSa,Sb are initialized to0 during the setup phase.
We make use of a (multiplicative) cyclic groupG of orderp with
generatorg, whose specifications arepublic and where then-DHE
problem is hard (see Section 2.1).

Note that the dot product of two vectors is thetraceof their outer
product. We use this fact to construct the protocol. We derive a sig-
nature of the outer producta ⊗ b in a similar manner toDMP,
where each element of the resulting matrix is scaled with a secret
key. Furthermore, certain machine- and time-dependent masking
is performed via ther andρ values. The server is then respon-
sible for removingcertain elementsa[i] · b[j], which are scaled
by ki+(n−j+1), from the signature inCombine. Specifically, the
server does this foreveryi 6= j (i.e., all the elements but those in
the diagonal).

In order to facilitate this task, the owner provides some public
info pub to the server concerning the scalar valueski+(n−j+1),
with the exception ofkn+1. These keys are given as exponents of
generatorg ∈ G. This is necessary because, otherwise, the server
could trivially retrievekn+1 askn+i+1 · (ki)−1 mod p for some
i, where(ki)−1 is the multiplicative inverse ofki modulop. This
cannot happen if the keys are in the exponent ofg due to then-DHE
assumption (we will use this fact later in our rigorous proof). All
computations inVerify are performed in the exponent ofg. Follow-
ing this, the outputπτ should contain solely the contribution from
elements on the diagonal of the outer product, all scaled bykn+1,
plus the masking values.

Correctness and security.The following theorems state the cor-
rectness and security ofDDP (Figure 4), respectively.

THEOREM 5. DDP is correct.

PROOF. Let theactualresult ofQ atτ beQ({Xa(τ)∪Xb(τ)}) =
a · b =

∑n

i=1 a[i] · b[i], wherea[j] =
∑

t∈Xa(τ)∧t.j=j t.v, and
b[j] =

∑

t∈Xb(τ)∧t.j=j t.v. Observe that, after executingUpdate
for all t ∈ Xa(τ) and t ∈ Xb(τ) at Ma andMb, respectively,
Sa =

∑n

j=1 k
j · a[j] andSb =

∑n

j=1 k
n−j+1 · b[j]. Moreover,

the proof output byCombine is

πτ = g(
∑n

j=1 kj ·kn−j+1·a[j]·b[j])+ra,τ ·rb,τ−ρa,τ−ρb,τ

= gk
n+1·(a·b)+ra,τ ·rb,τ−ρa,τ−ρb,τ

If resτ is equal toa · b, then theπ computed inVerify is equal to
πτ and, thus,Verify outputsYes. This concludes our proof.

THEOREM 6. If F is a PRF, thenDDP is secure under then-
DHE assumption.

For the formal proof, see Appendix A.3.

KeyGen(1s)

1. k
$
← Z∗

p

2. pub = {gk
j
}j∈[2n]\{n+1}

3. Outputsk = k andpub

Update(a, sk,Sa, t)
1. Parset as(j, v), andsk ask
2. Sa = Sa + kj · v
3. OutputSa

Sign(a, sk,Sa, τ)
1. ra,τ = Fk(“machine”‖a‖“epoch”‖τ‖“r”)
2. ρa,τ = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”)
3. rb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“r”)
4. σa,τ = [(Sa + ra,τ ), (Sa · rb,τ + ρa,τ )]
5. Outputσa,τ

Combine({σa,τ , σb,τ}, {Xa(τ),Xb(τ)}, pub)

1. Parsepub as{gk
i
}i∈[2n]\{n+1}

2. Computea andb fromXa(τ) andXb(τ), respectively
3. Computec = a⊗ b

4. πτ = g(σa,τ [1]·σb,τ [1]−σa,τ [2]−σb,τ [2])

5. πτ = πτ ·

[

∏

i,j∈[n]∧i 6=j

(

gk
i+(n−j+1)

)

c[i][j]
]−1

6. Outputπτ

Verify(sk, πτ , resτ , τ)
1. Parsesk ask andresτ as a value inZp

2. ra,τ = Fk(“machine”‖a‖“epoch”‖τ‖“r”)
3. ρa,τ = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”)
4. rb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“r”)
5. ρb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“ρ”)
6. Initializeπ = g(ra,τ ·rb,τ−ρa,τ−ρb,τ )

7. π = π · g(k
n+1·resτ )

8. If π = πτ outputYes, otherwiseNo

Figure 4: The DDP construction

Performance. In this scheme, the owner has to invest in someone-
time preprocessing effort to createpub. This accounts forO(n)
exponentiations inZp (for ki), and anotherO(n) exponentiations

in G (for gk
i

). Nevertheless, this cost isamortizedover the entire
lifetime of the system. The memory consumption and the compu-
tational cost ofSign at each machine are (asymptotically) the same
as inDVS. The cost inUpdate now involves a modular exponen-
tiation. Note though that the latter is performed in the small finite
fieldZp and, hence, it is extremely lightweight.

To analyze the server’s computation cost inCombine, first ob-
serve that, settingi+ (n− j + 1) = z, the server can calculate

∏

i,j∈[n]∧i 6=j

(

gk
i+(n−j+1)

)c[i][j]

=
∏

z∈[2n]\{n+1}

(gk
z

)
∑

z=i+n−j+1 c[i][j]

assuming that it has access to the set of outer product valuesc.
However, the server does not need to explicitly generatec. Rather,
it only needs the vector ofn different

∑

i+(n−j+1)=z c[i][j] values,
for 2 ≤ z ≤ 2n. We can compute these values from the (discrete)
convolution of the vectorsa,b, in time O(n log n) via the Fast
Fourier Transform. Assuming we have these, then the cost at the
server is dominated byO(n) exponentiations inG. For storage, the
server has to store theO(n) values inpub, which is comparable to
the cost of storing the inputsXa andXb.

Finally,Verify at the client simply involves a constant number of
evaluations ofFk, and a (single) exponentiation inG.



5. APPLICATIONS
In this section, we discuss some common queries in stream out-

sourcing, and explain how the constructions that we have provided
can address them. We stress, though, that the applicability of our
schemes is not limited to these cases; we are confident that our
fundamental tools can capture a much wider set of applications.
For brevity, we omit detailed discussion of correctness and secu-
rity, which follow the pattern established by the main protocols in
Section 4.

Group by queries. The class ofgroup by,sum aggregation
queries are at the heart of many outsourced computation scenarios
and have been the sole motivation for much of the prior work on
stream authentication. The setting is that a large number of tuples
is observed as a stream. These tuples may correspond, for exam-
ple, to activity on a network, updates to a large database table, or
events in an event-processing system. The requirement is for the
server to collate the stream tuples into groups and report the sum
for each group. We typically consider cases where the number of
active groups (those with a non-zero sum) is substantially large, so
that the data owner benefits from enlisting the server to perform the
aggregation.

This problem is solved directly by the dynamic vector sum au-
thentication protocol,DVS, applied to a single vector. Each stream
tuple is translated into an update to the vector. The entries of
the vector give the aggregate associated with each corresponding
group. The approach naturally holds for the distributed setting,
where updates might be spread across multiple streams. In this
case, the object of the authentication is the vector given by the sum
of the vectors derived from each of the streams.DVS captures this
scenario due to itshomomorphic property, which allows the client
to verify a sum of vectors by checking asingleproof (produced by
the server) that combines all individual vector signatures together.

Join Queries. Beyond simple grouping and aggregation, many
important outsourced queries involve the computation of ajoin
query on relations. In traditional data stream management systems,
join queries are regarded particularly challenging, with prior work
focusing on approximate results [9, 29]. Hence, join queries are a
prime candidate for outsourcing.

We explain how to authenticate join results in our setting, focus-
ing on the common case ofequi-join, for queries such asSELECT
* FROM R, S WHERE R.x = S.x. Assume without loss of
generality that the join result is given by the multiset of tuples
(tR, tR.x, tS), wheretR is a tuple fromR, tS is a tuple fromS,
and tR.x = tS .x is their common value on the join attributex.
Also suppose that the domain of the join values is[n]. We reduce
this problem to an instance of a dot-product query, making use of
a cryptographic hash functionH, e.g., SHA-1 [19]. The inputs to
our schemes are streams of(tR.x, tR) and(tS .x, tS) pairs originat-
ing from dynamic relationsR andS, respectively. We transform an
update toR of (tR.x, tR) into a tuple inXa as(tR.x,HR(tR)), ap-
plying the hash functionH to tR. Similarly, we transform updates
to S of (tS .x, tS) into a tuple inXb as(tS .x,HS(tS)). We then
run theDDP protocol over updates(j, v) = (tR.x,HR(tR)) ∈ Xa

atMa, and(j, v) = (tS .x,HS(tS)) ∈ Xb atMb.
The server presents the claimed output multiset of(tR, tR.x, tS)

tuples, along with the accompanying proofπτ from theDDP pro-
tocol. The client computesresτ =

∑

tR.x=tS .x HR(tR) ·HS(tS)
within the Verify routine. The protocol is correct, since the dot
product between the two vectors generated by the above transfor-
mation is exactly thisresτ value. In addition to the security of
DDP, here we need to show that the adversary cannot present a
result that produces the sameresτ as the actual result. In order

to achieve this, we must follow the so-calledrandom oracle model
[15, 13]. Briefly stated, this is a proof methodology that allows us
to first prove the security of the scheme considering thatH is a truly
random function. We can do this along the lines of our proof for
DDP in Appendix A.3. Then, we substituteH with a hash func-
tion like SHA-1, and claim security due to the assumption about
its cryptographic properties. We omit further details due to space
constraints.

In the aforementioned problem, the goal was to authenticate the
tuples produced by a join query on relationsR, S on attributex.
Assume thatR.y andS.z are attributes of relationsR andS, re-
spectively. If, instead of the actual tuples, we are interested in au-
thenticating the joint frequency distribution of each(R.y, S.z) pair
in the join result, then this authentication can be achieved by a di-
rect application of ourDMP protocol. In this case, the machine
containing relationR (respectively,S) builds a two-dimensional
matrix, where each element of the matrix corresponds to the joint
frequency of occurrences of each(R.y,R.x) (resp.,(S.x, S.z))
pair of values inR (S). It is easy to see that the product of these
two matrices provides the desired result in this application.

Another interesting query is computing thesizeof the equi-join
result. This is given by a direct application ofDDP: if we treat
every tuplet with join valuet.x as an update of the form(t.x, 1),
then vectorsa,b will hold the frequencies of the relations on each
join value. Therefore, the equi-join size is exactlya · b.

In-network Aggregation. This is a popular paradigm employed
typically in sensor networks, which reduces the energy expenditure
in routing raw data from the motes to a remote client [18]. Con-
sider a set of sensors organized (without loss of generality) into a
tree-structured network. Also assume that a client communicates
only with the root sensor (sink), and wishes to perform some ag-
gregation task (e.g.,sum or count) on the readings of the sen-
sors. Transmitting the raw data to the client imposes a considerable
burden on the nodes positioned close to the sink, as they have to
forward a considerable number of messages from nodes lower in
the tree. In-network aggregation mandates that internal nodes per-
form the aggregation task on the data received from their children
and forward only a small result, thus achieving significant battery
savings.

In our setting, only the leaf sensors belong to the owner, whereas
the internal tree infrastructure is outsourced to an untrusted third
party [12, 26, 23]. The goal is to allow the client to authenticate the
aggregation result on the union of the leaf readings received from
the sink. OurDVS construction applies to this scenario as well. Its
KeyGen,Update, Sign andVerify routines remain the same in this
case. The main changes occur to theCombine algorithm executed
by the server. Here, each server in the network executesCombine

on the inputs received from its children, and forwards the output
to its parent in the routing tree. Notice that the client eventually
receives a proof from the sink that is equal to the summation of
the leaf sensor signatures. This is exactly whatCombine would
output in case a single server collected all the sensor signatures.
Our scheme is extremely lightweight for all parties involved and,
hence, it is ideal for the resource constrained sensor networks.

Similarity measures. It is increasingly common to deal with ob-
jects represented by a (potentially) very large number of features in
a high-dimensional vector space. In machine learning and other
modeling applications, a single object (such as a user of a web
search engine) may be represented by a vector which has millions
or billions of components. Similarity measures are vital in such
settings. For instance, clustering of objects often entails distance
(i.e., dissimilarity) computation between feature vectors. Another



example involves determining the correlation of items (i.e., market
stocks, retail products, etc) whose information (i.e., shares values,
sales volume) is dispersed across different server machines. Mea-
sures of correlation are also based on similarity.

Similarity between vectors is typically measured by an appro-
priate similarity or dissimilarity measure, such as thecosine simi-
larity andEuclidean distance, respectively. The cosine similarity
between vectorsa,b is computed as a·b

‖a‖·‖b‖
, where‖a‖ = √a · a

is theL2 norm ofa. The Euclidean distance betweena andb is
equal to‖a− b‖ =

√

‖a‖2 + ‖b‖2 − 2a · b.
We can authenticate such measures by engaging theDDP con-

struction, since both cosine similarity and Euclidean distance de-
pend on inner product computation. The case ofa · b is carried
out by direct application ofDDP. For a · a andb · b, Ma and
Mb must apply twoseparateinstances (i.e., with different keys) of
DDP on the same vectora andb, respectively. The modifications
in Combine andVerify are straightforward and, thus, omitted.

Event co-occurrence. Event monitoring applications operate on
massive streams in order to find patterns or correlations between
certain events [10]. These include supply chain management of
RFID tagged products, stock trading, monitoring of machines for
malfunctions, environmental sensing for surveillance of establish-
ments, and more. An important class of queries in this scenario
is findingco-occurrenceof events. We provide a simple example.
Let A (respectivelyB) be ann × 1 (1 × n) matrix representing a
set ofn events occurring at machineMa (Mb). A cell value is1
if the event occurs during the latest (or at a specific) epoch, and0
otherwise. Then,AB is an× n matrix where cellAB[i][j] is 1 if
eventi co-occurs with eventj at the latest (or at a specific) epoch.
The result matrix can help in determining event correlations. The
above can be generalized to matrices with arbitrary dimensions. It
is apparent that ourDMP construction is directly applicable for au-
thenticating such queries.

6. EXPERIMENTS
In this section we experimentally evaluate our basic protocols,

namelyDVS, DMP andDDP. We compareDVS with PIRS (specif-
ically PIRS-1) [31], which is the only scheme that addresses our
trusted-client setting, in the context ofgroup by,sum queries.
However, we stress that PIRS isnot a direct competitor, as it as-
sumes that the client is the owner itself and has a weaker security
model. We slightly adapt PIRS so that the machines send their sum-
maries to the client via the server, after authenticating them using
another authentication scheme. On the other hand, as we are the
first to address authentication of dot and matrix products, there are
no alternatives to compare toDMP andDDP.

Implementation. We implemented all protocols in C on a 2.66GHz
Intel Core i7 with 4GB of RAM, running MAC OS X. We used the
GMP1 and OpenSSL2 libraries for implementing the cryptographic
operations involved. We utilized HMAC with SHA-1 [19] for the
F function, which produces 20-byte outputs. We employed HMAC
with SHA-1 also as the message authentication scheme in PIRS for
authenticating the summaries to the clients.

An important discussion concerns the selection of the size of the
primep that defines theZp domain (i.e., the value for security pa-
rameters). In DVS, DMP andPIRS, this can be as small as10
bytes for safeguarding against guessing attacks on the keys. On
the other hand, inDDP this must be at least20 bytes. The reason

1
http://gmplib.org/

2
http://www.openssl.com/

Table 2: Primitive Costs
Description Cost

Modular addition inZp (|p| = 10 / 20 bytes) 0.15µs / 0.18µs
Modular multiplication inZp (|p| = 10 / 20 bytes) 0.19µs / 0.28µs
Modular exponentiation inZp (|p| = 10 / 20 bytes) 4.8µs / 7.4µs
Time to derive the generator ofZq (|q| = 64 bytes) 2.7sec
Modular multiplication inZq (|q| = 64 bytes) 0.56µs
Modular exponentiation inZq (|q| = 64 bytes) 55.6µs
HMAC computation (with SHA-1) 3.53µs

Table 3: Comparison ofDVS with PIRS (single machine)
Evaluated Cost DVS PIRS

CPU time forUpdate 5.3µs 2.3µs
CPU time forSign 4.8µs 4.7µs
CPU time forVerify 48.9ms 19.1ms

Summary size 10 bytes 10 bytes
Proof size 10 bytes 30 bytes

is thatDDP relies on the discrete logarithm problem. The well-
known Pollard rho algorithm takesO(

√
p) steps to find a logarithm

in Zp [19], suggesting that the size ofp should be twice as long as
the one that protects against simple guessing.

Furthermore, we computed the generator of the group used in
DDP employing the implementation techniques included in [19].
Specifically, the element of orderp that generates our group of con-
cernG is selected fromZq, whereq is a64-byte prime of the form
q = 2ℓp + 1 [19]. All computations inG are moduloq. Table 2
includes the average cost (over 10,000 runs) of each primitive op-
eration entailed in the implemented protocols.

Evaluation of DVS vs. PIRS.We comparedDVS with PIRS using
theWorld Cup Dataset3. The latter contains Web server logs from
the 1998 Soccer World Cup. Each log entry consists of a client ID,
the ID of the requested URL, the size of the response, etc. We used
the first2 million tuples from the log of day50. From each tuple
in this set, we produced a tuple(j, v), wherej is a client ID, andv
is the size of the response. We then focused on agroup by,sum
query that returns a vector, where thej th element corresponds to
a unique clientj, and the value of thej th element is the sum of
response sizes of all requests issued by clientj.

Table 3 illustrates the various costs we evaluated during our ex-
periment, assuming asinglestream generated by asinglemachine.
We decomposed PIRS into algorithms of the formUpdate, Sign,
andVerify (Combine has no cost in the single machine setting in
both schemes and, thus, is omitted). The average number of non-
zero elements in the result vector (which affects the CPU time in
Verify) was around 12,000. PIRS andDVS have comparable CPU
overheads forSign. However, PIRS outperformsDVS for Update
andVerify because, contrary toDVS, it does not involve HMAC in-
vocations. Recall though that this performance advantage of PIRS
comes at the expense of a weaker security model. Moreover, ob-
serve that the CPU times forDVS are in the order of a few mi-
croseconds at the owner (5.3 µs for Update and4.8 µs for Sign),
and a few milliseconds at the client (48.9ms for Verify). The sum-
mary and proof size is negligible inDVS (10 bytes). The summary
size in PIRS is the same, but its proof size is 20 bytes longer due to
the additional HMAC that authenticates the summary.

Table 4 depicts the costs in the scenario where we repeat the pre-
vious experiment, but now the tuples are generated bym = 100

3
http://ita.ee.lbl.gov/html/contrib/WorldCup.html



Table 4: Comparison ofDVS with PIRS (m = 100 machines)
Evaluated Cost DVS PIRS

CPU time forCombine 10.1µs -
CPU time forVerify 50.16ms 19.69ms

Proof size 10 bytes 3000 bytes

Table 5: Scalability of DMP with n (na = nb = n)
Evaluated Cost n = 5 n = 50 n = 500

CPU time forUpdate 5.5µs 5.4µs 6.0µs
CPU time forSign 58.4µs 567µs 5.7ms

CPU time forCombine 3.0µs 24.3µs 263µs
CPU time forVerify 0.13ms 2.13ms 78.3ms

machines. TheUpdate andSign costs are unaffected bym and,
hence, are omitted. In PIRS, there is noCombine cost, since the
server simply forwardsm summaries and HMACs to the client.
This considerably increases the total proof size to 3000 bytes. On
the other hand, inDVS, the server combines the signatures of all the
machines into asingleone, always maintaining the communication
cost of 10 bytes. This comes with a very small overhead for the
server due toCombine (10.1 µs). The cost ofVerify increases by
them extra hash computations in bothDVS and PIRS. However,
note that the overall cost is rather dominated by the operations im-
posed by then vector elements and, therefore, the overhead is very
similar to the case of a single machine in bothDVS and PIRS.

Evaluation of DMP. We consider the costs for matrix multiplica-
tion between twon×n matrices. Here, we generate synthetic data
by randomly filling entries—note that the data itself does not affect
the performance of theDMP construction, as the steps taken are
largely data independent. Table 5 shows the time costs of each of
the operations asn varies. TheUpdate step is similar in all cases
(∼ 6 µs), as it does not depend onn. TheSign operation scales
linearly withn (proportionally to the square root of the input size),
exactly as predicted by our analysis. Even for large matrices with
hundred of thousands of entries, this cost is in the order of a few
milliseconds; extrapolating to billion entry matrices, the cost will
remain below a second.Combine scales similarly, proportional to
the size of the summary. OnlyVerify is more expensive, due to the
cost of reading the fulln× n result, performing modular multipli-
cations for each entry, and invokingO(n) HMAC calls. Yet this
too is far below a second even for our largest example.

Evaluation of DDP. We give our results forDDP in Table 6. Here,
we also generate synthetic vectors of differing sizes. Observe that
there is a non-trivial setup cost for this protocol, which stems from
determining a generator forG and computing the exponentiated
values inpub. Most of the work is in finding a suitable generator,
although this truly is a one-time operation. The cost varies little
with the vector sizen. As before,Update does not depend onn,
and in this case neither doesSign. Therefore, the two overheads are
relatively unaffected byn. Our cost forCombine grows linearly
with n, as predicted by our performance analysis, and remains be-
low one second even in our worst-case experiment (n = 10000).
The cost forVerify is quite low, since it requires only a constant
amount of light work for checking the proof.

Summary. Our experimental study confirms our claims that the
constructions presented are lightweight and practical. The over-
heads of all protocols have very low streaming cost: the central
Update operation is always measured in single-digitmicrosecond

Table 6: Scalability of DDP with n

Evaluated Cost n=100 n=1000 n=10000

CPU time forKeyGen 2.8sec 2.9sec 3.9sec
CPU time forUpdate 2.58µs 3.38µs 4.3µs
CPU time forSign 14.5µs 13.95µs 14.6µs
CPU time forCombine 2.43ms 30.75ms 538ms

CPU time forVerify 129µs 143µs 160µs

costs, corresponding to very high stream rates. The cost forSign

operations is comparable, except in the case ofDMP, which scales
proportionally to the square root of the input size. The computa-
tion inVerify scales linearly with the size of the input. The server’s
overhead (Combine) is also small, and remains smaller than a sec-
ond even in the computationally intensive case ofDDP. Moreover,
ourDVS scheme is superior to PIRS in terms of client communica-
tion cost in the case of multiple machines. Finally,DMP andDDP
are the first secure, efficient, and scalable protocols for the prob-
lems of dynamic matrix multiplication and dynamic dot product,
respectively.

7. CONCLUSIONS AND FUTURE WORK
In this paper we addressed the problem of result authentication

in stream outsourcing settings. While prior work has focused on
simplegroup by, sum queries in such scenarios, our protocols
allow the authentication of several linear algebraic operators, such
as sums or dot products over dynamic vectors and dynamic ma-
trix multiplication, which are used in numerous applications over
distributed data. Our experimental evaluation demonstrated that
our protocols are extremely lightweight especially for the owner in
terms of running time, storage requirements and bandwidth con-
sumption. Moreover, our schemes offer strong cryptographic guar-
antees for their security. In our future work, we plan to extend
our lightweight techniques to the challenging setting where clients
may collude with the server to attack other clients. In this case, the
owner only grants a public key to the clients, hiding his secret key.
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APPENDIX

A. SECURITY PROOFS
We will prove all our constructions under the following gen-

eral methodology [13]. We will construct anideal version of each
scheme, where functionF is substituted by a truly random function
f . The adversary will be able to obtain outputs off for inputs of its
choice, but it will not be given direct access tof itself. We will next
prove that the scheme is secure under this ideal model. Finally, we
will conclude that thereal implementation of the scheme (i.e., the
one that uses the PRFF instead off ) is secure, since otherwise the
adversary would distinguish the PRF from a truly random function.

A.1 Proof of Theorem 2 (Security ofDVS)
Let k = [k1, k2, . . . , kn], wherekj is generated as inUpdate,

but now via truly random functionf instead of PRFF . The adver-
saryA interacts with the oracle as outlined inExpA in Section 3.2,
and obtains asinglesignature for every (i, τ ′) pair for any stream
of its choice, such thatτ ′ 6= τ . Leta∗

i,τ ′ be the dynamic vector pro-
duced by machineMi at τ ′ for an arbitrary stream selected by the
adversary. Note thatA can query the oracle forpoly(s) different
epochsτ ′. Then,A obtains the following set:

V = {a∗
i,τ ′ , (k · a∗

i,τ ′ + ri,τ ′)}(i∈[m])∧(τ ′ 6=τ)

∪ {ai,τ , (k · ai,τ + ri,τ )}i∈[m]

whereai,τ is thereal dynamic vector produced by machineMi at
epochτ when the stream is the actualXi(τ). All the r values are
constructed as inSign, but again via functionf instead ofF . Set
V is theviewof the adversary in the attack.
A succeeds in the attack if it presents(res∗τ , π

∗
τ ), such thatres∗τ

is differentfrom theactualresultresτ =
∑m

i=1 ai,τ , and

π∗
τ = k · res∗τ +

m
∑

i=1

ri,τ

so thatVerify outputsYes. Observe that this is equivalent to finding
a pair(v∗,k · v∗) from V, and then computingres∗τ = resτ + v

∗

andπ∗
τ = πτ + k · v∗ (note thatv∗ must benon-zero).

Nevertheless, everyri,τ ′ , ri,τ used in the components ofV are
random(due tof ) and usedonly once. As such, every(k · a∗

i,τ ′ +
ri,τ ′) and(k ·ai,τ +ri,τ ) in V can be considered as the encryption
of k ·a∗

i,τ ′ , k ·ai,τ with keysri,τ ′ andri,τ , respectively, where the
encryption scheme is a straightforward variant of theone-time pad
(see Section 2.1). Due to this scheme and sincek is random and
secret, the adversary computesk ·v∗ for any givenv∗ fromV only
with probabilitynegl(s).

Based on the above discussion,A can onlyguessa pair(res∗τ , π
∗
τ ).

Consider the followingmultivariate polynomialin finite fieldZp

P (X1, X2, . . . , Xn+1) = k1X1+ . . .+knXn−Xn+1+
m
∑

i=1

ri,τ

Notice thatA guesses(res∗τ , π
∗
τ ) correctly if and only ifres∗τ =

[v∗1 , v
∗
2 , . . . , v

∗
n] such thatP (v∗1 , v

∗
2 , . . . , v

∗
n, π

∗
τ ) = 0. However,

due to Lemma 1 in [28], for any (non-zero) multivariate polynomial
P in Zp of degreed (in our cased = 1) and randomly chosen
v∗1 , v

∗
2 , . . . , v

∗
n, π

∗
τ , the probability thatP (v∗1 , v

∗
2 , . . . , v

∗
n, π

∗
τ ) = 0

is d/p
d=1
= 1/p = negl(s).

We derive thatDVS is securew.r.t. ExpA in the ideal model.
Therefore, we also conclude thatDVS is secure in thereal model,
under the assumption thatF is a PRF.



A.2 Proof of Theorem 4 (Security ofDMP)
Let ka = [ka,1, . . . , ka,na ] andkb = [kb,1, . . . , kb,nb

], where
ka,i, kb,i are created as inUpdate, but now via truly random func-
tion f instead of PRFF . Also definena×nb matrixK = ka⊗kb,
such thatK[i][j] = ka,i · kb,j . The adversaryA interacts with the
oracle as outlined inExpA in Section 3.2, and obtains asinglesig-
nature per every (i, τ ′) pair for any stream of its choice, such that
τ ′ 6= τ . Let A∗

τ ′ (respectivelyB∗
τ ′ ) be the dynamic matrix pro-

duced by machineMa (Mb) at τ ′ for an arbitrary stream selected
by the adversary. Note thatA can query the oracle forpoly(s)
different epochsτ ′. Then,A obtains the set:

V = {a∗
j,τ ′ , (ka · a∗

j,τ ′ + ra,τ ′ [j])}(j∈[n])∧(τ ′ 6=τ)

∪ {b∗
j,τ ′ , (kb · b∗

j,τ ′ + rb,τ ′ [j])}(j∈[n])∧(τ ′ 6=τ)

∪ {ka · a∗
j,τ ′ · rb,τ ′ [j] + ρa,τ ′ [j]}(j∈[n])∧(τ ′ 6=τ)

∪ {kb · b∗
j,τ ′ · ra,τ ′ [j] + ρb,τ ′ [j]}(j∈[n])∧(τ ′ 6=τ)

∪ {aj,τ , (ka · aj,τ + ra,τ [j])}j∈[n]

∪ {bj,τ , (kb · bj,τ + rb,τ [j])}j∈[n]

∪ {(ka · aj,τ · rb,τ [j] + ρa,τ [j])}j∈[n]

∪ {kb · bj,τ · ra,τ [j] + ρb,τ [j]}j∈[n]

wherea∗
j,τ ′ (respectivelyb∗

j,τ ′ ) is the j th column (row) ofA∗
τ ′

(B∗
τ ′ ) at τ ′, andaj,τ (bj,τ ) is the j th column (row) of thereal

Aτ (Bτ ) produced byMa (Mb) at τ . All the r andρ values are
constructed as inSign, but again via functionf instead ofF . Set
V is theviewof the adversary in the attack.

Suppose that the adversary presents(res∗τ , π
∗
τ ) in the end of the

attack, such thatres∗τ is different from the actual result resτ =
AτBτ . LetK : res∗τ ′ =

∑

i∈[na],j∈[nb]
K[i][j]·res∗τ ′ [i][j] denote

theFrobenius productbetweenK andres∗τ ′ . Then, notice thatA
succeeds in the attack if

π∗
τ = K : res∗τ +

∑n

j=1(ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

so thatVerify outputsYes. Observe that this is equivalent to finding
a pair(V∗,K : V∗) from V, and then computingres∗τ = resτ +
V

∗ andπ∗
τ = πτ +K : V∗ (note thatV∗ must benon-zero).

We divideV into two subsets:V1 that includes the components
incorporatingρ values; andV2 = V \V1. The first key observation
is that everyρa,τ ′ [j], ρa,τ [j], ρb,τ ′ [j], ρb,τ [j] used in the compo-
nents ofV1 arerandom(due tof ) and usedonly once. Similar to
the discussion in Appendix A.1 forDVS, these serve as keys for
one-time padencryption and, thus,no functioncan be computed
by A on ka, kb, ra,τ ′ [j], ra,τ [j], rb,τ ′ [j], rb,τ [j] from V1 with
non-negligible probability.

The second observation is that, based on the above discussion,
valuesra,τ ′ [j], ra,τ [j], rb,τ ′ [j], rb,τ ′ [j] appearrandomin viewV1
of A. Moreover, observe that they are used onlyoncein the com-
ponents ofV2. Hence, they can also be regarded asone-time pad
keys for the components inV2. This means thatno functioncan be
computed byA onka, kb (and, hence, also onK = ka⊗kb) from
V2 with non-negligible probability. We conclude thatA computes
K : V∗ for any givenV∗ from V with probabilitynegl(s).

Similar to the case ofDVS,A can onlyguessthe pair(res∗τ , π
∗
τ ).

Consider the followingmultivariate polynomialin finite fieldZp

P (X1, . . . , Xna·nb+1) = ka,1 · kb,1 ·X1 + . . .

+ ka,na · kb,nb
·Xna·nb

−Xna·nb+1

+

n
∑

j=1

(ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

Notice thatA guesses(res∗τ , π
∗
τ ) correctly if and only ifres∗τ =

[v∗1 , v
∗
2 , . . . , v

∗
na·nb

] such thatP (v∗1 , v
∗
2 , . . . , v

∗
na·nb

, π∗
τ ) = 0. Nev-

ertheless, due to Lemma 1 in [28], for any (non-zero) multivari-
ate polynomialP in Zp of degreed (again, in our cased = 1)
and randomly chosenv∗1 , v∗2 , . . ., v∗na·nb

, π∗
τ , the probability that

P (v∗1 , v
∗
2 , . . . , v

∗
na·nb

, π∗
τ ) = 0 is d/p

d=1
= 1/p = negl(s).

We derive thatDMP is securew.r.t. ExpA in the ideal model.
Therefore, we also conclude thatDMP is secure in thereal model,
under the assumption thatF is a PRF.

A.3 Proof of Theorem 6 (Security ofDDP)
Define vectorska = [k, k2, . . . , kn] andkb = [kn, kn−1, . . . , k],

wherek is a random value inZ∗
p. The adversaryA interacts with

the oracle as outlined inExpA in Section 3.2, and obtains asingle
signature per every (i, τ ′) pair for any stream of its choice, such that
τ ′ 6= τ . Leta∗

τ ′ (respectivelyb∗
τ ′ ) be the dynamic vector produced

by machineMa (Mb) at τ ′ for an arbitrary stream selected by the
adversary. Note thatA can query the oracle forpoly(s) different
epochsτ ′. Taking into account alsopub generated inKeyGen, A
obtains the set:

V = {a∗
τ ′ , (ka · a∗

τ ′ + ra,τ ′), (ka · a∗
τ ′ · rb,τ ′ + ρa,τ ′)}τ ′ 6=τ

∪ {b∗
τ ′ , (kb · b∗

τ ′ + rb,τ ′), (kb · b∗
τ ′ · ra,τ ′ + ρb,τ ′)}τ ′ 6=τ

∪ {(aτ ,ka · aτ + ra,τ ), (ka · aτ · rb,τ + ρa,τ )}
∪ {bτ , (kb · bτ + rb,τ ), (kb · bτ · ra,τ + ρb,τ )}

∪ {gk
j

}j∈[2n]\{n+1}

whereaτ (respectivelybτ ) is the real dynamic vector produced
by machineMa (Mb) at epochτ . All the r andρ values are con-
structed as inSign, but again via functionf instead ofF . The set
V is theviewof the adversary in the attack.

Suppose that the adversary presents(res∗τ , π
∗
τ ) in the end of the

attack, such thatres∗τ is different from the actual result resτ =
aτ · bτ . Then, notice thatA succeeds in the attack if

π∗
τ = gk

n+1·res∗
τ′

+(ra,τ ·rb,τ−ρa,τ−ρb,τ )

so thatVerify outputsYes. Observe that this is equivalent to finding
a pair(v∗, kn+1·v∗) fromV, and then computingres∗τ = resτ+v∗

andπ∗
τ = πτ · gk

n+1·v∗

(note thatv∗ must benon-zero).
We divideV into two subsets:V1 that includes{gkj}j∈[2n]\{n+1},

and subsetV2 = V \ V1. Following a similar argumentation as
in the case ofDMP in Appendix A.2, due to its equivalence to a
one-time pad, the adversary cannot extract any information about
ka andkb (and, hence, also forkn+1) fromV2 with non-negligible
probability. Moreover, due to then-DHE assumption (Section 2.1),

A can computegk
n+1

from V1 only with negl(s) probability. We
conclude thatA finds a pair(v∗, kn+1 · v∗) from the entireV with
probabilitynegl(s).

Thus, similar to the case ofDVS andDMP,A can onlyguessa
pair (res∗τ , π

∗
τ ). Consider the followingmultivariate polynomialin

thefinite fieldZp

P (X1, X2) = kn+1 ·X1 −X2 + (ra,τ · rb,τ − ρa,τ − ρb,τ )

Let π∗
τ = gx

∗

τ . For randomπ∗
τ , x∗

τ is also random.A guesses
(res∗τ , π

∗
τ ) correctly if and only ifP (res∗τ , x

∗
τ ) = 0. Due to Lemma

1 in [28], for any (non-zero) multivariate polynomialP in Zp of
degreed (in our cased = 1) and randomly chosenres∗τ , x∗

τ , the

probability thatP (res∗τ , x
∗
τ ) = 0 is d/p

d=1
= 1/p = negl(s).

We derive thatDDP is securew.r.t. ExpA in the ideal model,
under then-DHE assumption. Therefore, we also conclude that
DDP is secure in thereal model, under then-DHE assumption and
the assumption thatF is a PRF.


