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Lightweight Authentication of Linear Algebraic Queries
on Data Streams

1. INTRODUCTION
Tremendous amounts of data are being generated in a streaming fashion in a variety of applications,
such as web and telephony networks, wireless sensor networks, social networks, and more. The
continuous nature of such data has motivated the need for sophisticated data stream management
systems (DSMS), which offer efficient storage and reliable querying services to clients. Following
research prototypes such as Stream [3] and Aurora [1], robust DSMS have been deployed for many
applications, including IBM’s InfoSphere Streams [21], Microsoft’s StreamInsight [20] and AT&T’s
Gigascope [8]. Due to the overwhelming volume of streaming data, companies may not possess,
or wish to acquire, the resources for deploying a DSMS. A practical alternative is to outsource
the stream storage and processing to a specialized third party with strong DSMS infrastructure.
Outsourcing offers significant cost savings to companies, especially start-ups.

Despite its merits, outsourcing naturally raises the issue of trust. Specifically, the third party may
act maliciously to increase profit, e.g., it may collude with rival companies and present fraudulent
results to bias the competition; or it may shed some of the workload and only compute on a sample
of the input to save effort. Even when the server is honest, problems can arise, as it may run buggy
software, or (given the scale of the problems considered) suffer from equipment failure or read/write
errors. It is therefore particularly important to adopt methods for stream authentication. These en-
able the clients to verify the correctness of the streaming results they receive from the server, i.e.,
that they are untampered with (integrity) and up-to-date (freshness). The goal is to make stream au-
thentication a very lightweight operation for all parties involved, and establish it as a standard tool
for error-checking, in a similar way to the ubiquitous use of checksums for reliable file transfer.
Targeted setting. Figure 1 illustrates our system architecture. An owner possesses a set of ma-
chines M1,M2, . . . ,Mm, each generating or observing a data stream Xi and outsourcing it to a
third party server. These machines are not required to directly communicate with each other, and
their streams are disjoint. A client registers a continuous (i.e., long-running) query Q on the union
of the streams at the server. The latter periodically reports the result to the client at regular time
intervals, demarcated into epochs τ .

Each machine Mi maintains a small summary Si on its stream, which is updated with every new
tuple arrival. At the end of every epoch τ , Mi computes a signature σi,τ on Si, and sends it to the
server. This signature authenticatesMi’s stream at that particular epoch, and is created with a secret
key sk installed by the owner at the machine. The server then processes queryQ, and transmits result
resτ along with a small proof πτ . The proof is produced in a query-specific fashion by combining
all the signatures with some public information pub (registered at the server by the owner at an
offline setup stage). We assume that the client is trusted by the owner and, thus, possesses sk. Using
this key and πτ , the client can verify the correctness of the result received for epoch τ .

Our aim is to provide the above functionality for a wide range of query types, offering cryp-
tographic security and satisfying certain performance desiderata. In particular, our goals are to
minimize the memory, communication and computational costs for the owner and clients. This is
particularly crucial in applications such as wireless sensor networks, where the owner’s machines
are motes with scarce resources and limited battery. The life-time of these systems is diminished by
intense operations and communication. Secondarily, we further aim to ensure that the server’s costs
are also low.
Our contributions. The existing literature on stream authentication is limited in its applicability
for a variety of reasons. Firstly, the range of supported queries is somewhat narrow: prior work has
been primarily concerned with authenticating particular computations such as group by,sum
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queries which, while fundamental, do not cover all stream outsourcing scenarios. Secondly, the
authentication cost at the owner is non-trivial; it typically entails expensive cryptographic operations
(e.g., modular exponentiations) for each epoch at the owner. While the cost of one such operation is
minor, the overhead imposed for high speed data streams and short epochs can become intolerably
high, especially when each machine Mi might be a low-powered embedded device. This fact also
limits the data rates that the owner can process.

In contrast to current literature, we seek for more general solutions that impose a minimal, es-
sentially negligible, cost to the data owner. We first devise constructions for fundamental problems
represented as linear algebraic queries. We then use these schemes as building blocks in the design
of authentication techniques for a wide range of important queries in streaming environments. In
more detail, our contributions are summarized as follows:
• We introduce constructions for authenticating (i) sums of dynamic vectors produced by one or

multiple streams, (ii) dot products of dynamic vectors produced by different streams, and (iii)
products between dynamic matrices generated by different streams. Our schemes are extremely
lightweight for the owner, as they mainly involve inexpensive hash operations and modular
additions/multiplications in a very small finite field. They are also cheap for the client, who
verifies the result without adding substantially to the cost of reading the output. Moreover, they
impose only a small extra overhead to the computation cost of the server.

• We provide strong cryptographic guarantees for all our constructions, derived from formal def-
initions and proofs.

• We show how to adapt the basic schemes in order to solve a range of database queries in stream
authentication, including group by queries, joins, in-network aggregation, similarity matching,
and event processing. To our knowledge, we are the first to address result authentication for such
a large range of complex queries.

Roadmap. Section 2 includes necessary preliminary information and surveys the related work.
Section 3 formulates the framework within which our stream authentication protocols will operate.
Section 4 presents the basic constructions for authenticating the three fundamental linear algebraic
queries. Section 5 adapts our main schemes to a variety of important database applications in the
stream authentication setting. Section 6 contains our experimental evaluation, whereas Section 7
presents concluding remarks and future directions.

2. BACKGROUND
2.1. Preliminaries
Stream model and notation. The time domain is decomposed into intervals, called epochs. An
epoch can be perceived as a discrete timestamp denoted by τ . We assume that the clocks of the
owner’s machines, the server and the client are (at least loosely) synchronized. This requirement
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Table I. Notation

Symbol Definition
m Number of owner machines
Mi Owner machine i
Xi The stream of tuples generated at Mi

Xi(τ) The tuple sequence of Mi at or before epoch τ
Q The continuous query of the client

Q(
⋃m
i=1{Xi(τ)}) Result of Q on streams X1, . . . ,Xm at epoch τ
resτ Result sent by the server to the client at epoch τ
σi,τ Signature created by machine Mi at epoch τ
πτ Proof transmitted by the server to the client at τ

ra,τ , ρa,τ Key values/vectors computed for machine a at τ
Si The summary maintained at Mi at all times
pub Public information output by the owner during setup
a, b Symbols (in lowercase bold letters) of vectors
A, B Symbols (in uppercase bold letters) of matrices

x
$← S An element x being sampled uniformly from set S

x← A The output x of a probabilistic algorithmA
x := B The output x of a deterministic algorithm B

‘‖’ Symbol denoting string concatenation
‘|’ Symbol denoting logical OR
s The security parameter

poly(s) / negl(s) A positive polynomial in s / A negligible function in s
[n] The set {1, 2, . . . , n}

Fk(x)
def
= F (k, x) Pseudo-random function F of key k and message x
sk The secret key of the owner
p A prime number with bit size Θ(s)

Zp / G The finite field / cyclic group our algorithms operate on

is inherent in most streaming applications (e.g., sensor networks) and is orthogonal to our work.
Table I summarizes the most important notation used in this paper.

Adversary. Henceforth, any reference to an adversary implies a probabilistic adversary that runs in
time polynomial in some security parameter s.

Negligible functions. We call a function ν : N → N negligible in s if ν(s) < 1/poly(s) for every
poly(·) and sufficiently large s. We denote a negligible function by negl(s).

Pseudo-random functions. Let F : K×S1 → S2 be an efficient, keyed function, where K, S1 and
S2 are indexed by a security parameter s. We say that F is a pseudo-random function (PRF) if for
all adversaries A it holds

|Pr[AFk(·)(1s) = 1]− Pr[Af(·)(1s) = 1]| ≤ negl(s) ,

where Fk(x)
def
= F (k, x), k $← K and f $← (S1 → S2). Simply stated, an adversary distinguishes a

PRF from a truly random function only with negligible probability in s.

Cyclic groups, generators and multiplicative cyclic groups [19]. Let G be a group, let p = |G|
denote the order of G and let 1 denote the identity element of G. For any element g ∈ G, the order
of g is the least positive integer n such that gn = 1. Let 〈g〉 = {gi : i ∈ Zn} = {g0, g1, . . . , gn−1}
denote the set of group elements generated by g. The group G is called cyclic if there exists an
element g ∈ G such that 〈g〉 = G. In such a case, the order of g is equal to p = |G| and g is
called a generator of G. A cyclic group G with the binary operator of multiplication is called a
multiplicative cyclic group.
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The Diffie Hellman Exponent (n-DHE) Assumption [5]. Our security relies on a variant of the
well-known discrete logarithm problem. Let G be a multiplicative cyclic group of order p, g ∈ G
a generator of G, and s the bit size of p. The n-DHE problem is defined as follows: given set V =

{g, gk, gk2 , . . . , gkn , gkn+2

, . . . , gk
2n} where k $← Z∗p, compute gk

n+1

. The n-DHE assumption
states that, for any adversary A, it holds:

Pr[A(g, gk, gk
2

, . . . , gk
n

, gk
n+2

, . . . , gk
2n

) = gk
n+1

] ≤ negl(s)

Simply stated, even given the information in V , the (polynomially bounded) adversary is unable to
solve the problem with any non-negligible probability.

One-time pad and nonces. One-time pad is a method of encrypting data which exhibits perfect
secrecy [15], if implemented correctly. In one-time pad encryption, a messageM is encrypted using
a random key K which (i) has (at least) the same size as M , and (ii) is used exactly once. The
encryption is performed via an XOR operation as M ⊕K. In our work, we use an alternative form
of one-time pad that uses modular arithmetic. In particular, we encrypt a number M ∈ Zp by a
random (used once) key K ∈ Z∗p as (M + K) mod p. While slightly less efficient than an XOR
operation, this alternative mode of one-time pad offers the same security as the original, and it will
be particularly helpful in our proposed techniques. Finally, we refer to any key that is used just once
as a nonce.

2.2. Related Work
The closest schemes to ours are PIRS [31] and DiSH [22], which both focus on authenticating
results for group-by,sum queries. In these works, the stream consists of unaggregated tuples.
The server’s task is to perform a group-by operation to collate the tuples into predefined groups,
and then to compute an aggregate such as sum on each group. In both PIRS and DiSH the owner
maintains a small summary on the observed stream, which facilitates verifying the result correctness.
PIRS is a probabilistic protocol, where the client is the owner itself. Due to its simplified model and
relaxed security guarantees, PIRS is quite lightweight. On the other hand, DiSH is a cryptographic
technique, which assumes that the clients are parties untrusted by the owner. The clients can directly
communicate though with the owner to receive the summary. In order to address the challenge that
clients cannot possess any secret material from the owner, DiSH employs expensive cryptographic
primitives such as modular exponentiations during authentication and verification.

Note that PIRS and DiSH do not directly capture our general architecture (described in Section
1), where the owner and the clients are different physical entities that communicate with each other
via the untrusted server. In order to adapt PIRS and DiSH to our scenario, the owner must rely on
some other message authentication technique for securely forwarding the summary to the clients
via the server, e.g., using HMACs and public-key digital signatures [19], respectively. This inflicts
extra overhead to both the owner (for authentication) and the client (for verification).

Also related to our work is the use of message authentication codes (MACs) that are homomor-
phic, since they allow the linear combination of messages from different sources, along with the
corresponding combination of the MACs of these messages. In our schemes, we also need to utilize
the signatures of multiple sources (i.e., owner machines), but these signatures must be properly com-
puted and combined in order to authenticate the result of different operators. Homomorphic MACs
were first proposed in [2] for network coding applications and have since been widely used, such as
in [4] for evaluating multivariate polynomials on signed data, or in [26] for computing simple statis-
tics in sensor networks. We emphasize that homomorphism is a property that message authentication
techniques may exhibit, but not a tool for automatically authenticating general operators/functions
(such as the ones examined in this paper) over distributed data. In particular, we are not aware of
any prior work that has addressed the general linear queries such as matrix multiplication and dot
products that we study here.

Authentication results have also been shown for other problems and models. In the context of
outsourced databases, there are techniques that address snapshot relational queries, such as ranges
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and joins [11; 25; 24; 16; 30], as well as continuous range queries [17; 27]. All these methods
rely on authenticated data structures (such as Merkle trees), which are maintained by the owner
and signed with public-key cryptosystems. These data structures are large: linear in the size of
the input data. There has also been a line of work on verifying simple aggregate computations in
distributed networks, such as sum, min/max and count [12; 26; 23]. In this setting, the machines
are organized into a tree hierarchy. The internal (potentially untrusted) nodes perform in-network
aggregation as they route information from the leaves to the root (sink).

Some related studies have been conducted within the theory community. The model of annotated
streams allows the server to insert some “advice” into a stream to help a client compute a function of
interest. This model was applied to problems such as recovering information about particular items
from the stream, functions of the item frequencies (such as the frequency moments), and some graph
computations [6]. The costs of these protocols are typically sublinear but polynomial in the size of
the stream. These costs were subsequently reduced to logarithmic for some key problems, but only
when there are multiple rounds of communication between the data owner and server [7]. Quite
general computations can be authenticated following a streaming pass over the data, but this can
require many thousands of rounds of interaction between the parties [14].

Our work differs from these prior efforts in several important respects. Firstly, we consider fun-
damental problems that can be adapted to solve a wider range of important queries in stream out-
sourcing. Secondly, our constructions impose a very low overhead to all parties. In particular, they
do not entail the costly exponentiation operations involved in DiSH, and do not require the owner
to maintain sophisticated structures, as in the database outsourcing solutions. Lastly, unlike PIRS,
our work comes with strong cryptographic guarantees that formally demonstrate the security and
robustness of our schemes against malicious activity and errors.

3. FORMULATION
Section 3.1 defines the system setting outlined in Section 1 as a formal stream authentication proto-
col executed by the involved parties. Section 3.2 presents the security model.

3.1. Stream Authentication Protocol
The definition below formulates a stream authentication scheme, assuming a security parameter s.

Definition 3.1. A stream authentication scheme is a set of five algorithms (KeyGen, Update,
Sign, Combine, Verify) running in time polynomial in s and described as follows:

(sk, pub)← KeyGen(1s):. A probabilistic algorithm that takes as input a security parameter s, and
outputs secret key sk and public information pub.

Si ← Update(i, sk,Si, t):. A (potentially) probabilistic algorithm that takes as input id i, secret
key sk, summary Si, and incoming tuple t. It produces an updated summary Si.

σi,τ ← Sign(i, sk,Si, τ):. A (potentially) probabilistic algorithm that takes as input id i, secret key
sk, summary Si, and epoch τ . It produces signature σi,τ .

πτ := Combine(
⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)}, pub):. A deterministic algorithm that takes as input

the union of the signatures and streams at τ and public info pub. It produces proof πτ .
Yes|No := Verify(sk, πτ , resτ , τ):. A deterministic algorithm that takes as input secret key sk,

proof πτ , result resτ and epoch τ . It outputs a string that is either Yes or No.

The protocol is executed in the following stages:

— Setup: The protocol commences with an offline setup phase. The owner runs KeyGen and pro-
duces a secret key sk and public info pub. It installs a unique identifier i, key sk and an initial
summary Si in every machineMi and sends pub to the server. It also securely provides the client
with sk, e.g., via an SSL channel. Next, it concludes the setup phase and sets the system into
motion.

— Update and signing at Mi: Whenever a new tuple t is generated by Mi, the machine runs
Update before forwarding t to the server. This algorithm uses key sk and t on current summary
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Si and outputs a new summary that substitutes for the old one. At the end of epoch τ , Mi runs
Sign on i, sk, τ and current summary Si to produce a signature σi,τ , which is sent to the server.

— Result and proof generation at the server: At the end of epoch τ the server receives new
signatures from the machines. It computes and sends result resτ to the client in response to
continuous query Q. Moreover, it transmits a proof πτ that is produced by algorithm Combine
on
⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)} and pub.

— Verification at the client: At the end of epoch τ the client receives from the server a new result
resτ , accompanied by a new proof πτ . It verifies result correctness via Verify, which combines
resτ with πτ and the owner’s secret key sk. The output is Yes if verification succeeds, and No,
otherwise. Note that the client is stateless, i.e., it verifies w.r.t. the entire history of the data
streams, not since the last successful verification.

The next definition formulates scheme correctness.

Definition 3.2. A stream authentication scheme is correct if the following condition holds.
For any security parameter s, let (sk, pub) be any output of algorithm KeyGen(1s). Let Xi(τ)
be any stream observed by Mi up until τ , and Q(

⋃m
i=1{Xi(τ)}) the result of query Q at τ . Let

Si be the summary computed by executing Update on sk and on every t ∈ Xi(τ). Let σi,τ be
the signature produced by Mi via Sign(i, sk,Si, τ). Finally, let πτ be the proof that is output by
Combine(

⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)}, pub). Then, Verify(sk, πτ , resτ , τ) returns Yes when

resτ = Q

(
m⋃
i=1

{Xi(τ)}
)

Note that scheme correctness does not specify the output of Verify in case resτ 6=
Q(
⋃m
i=1{Xi(τ)}). This is captured by the definition of security, included in the next subsection.

3.2. Security Definition
The adversary A may be the server or any other entity other than the owner’s machines and the
client. A is allowed to access the raw data streams, i.e., data privacy is orthogonal to our work.
Nevertheless, A may tamper with the outputs at any epoch. Our security goal against A is result
correctness, which jointly guarantees (i) integrity (i.e., that the result is not falsified) and (ii) fresh-
ness (i.e., that the result is up-to-date).

We rigorously model security via the following experiment, which is a variation of the standard
existential unforgeability under an adaptive chosen-message attack [15]:

Experiment ExpA(1s)

(1) Pair (sk, pub) is output by KeyGen, and pub is given to A.
(2) A is given oracle access to Sign as follows: A presents a triplet (T, i, τ ′), where T is a set

of tuples. The oracle keeps record of all submitted queries, and rejects a query that requests
a signature for a certain (i, τ ′) more than once. If it does not reject, the oracle initializes
Si = 0 and runs Update(i, sk,Si, t) for every t ∈ T , producing summary Si. It then runs
Sign(i, sk,Si, τ ′), and returns the result to A.

(3) A outputs a pair (res∗τ , π
∗
τ ), with the restriction that

— res∗τ 6= Q(
⋃m
i=1{Xi(τ)})

— Sign was not queried for any triplet (T, i, τ ′), such that (τ ′ = τ) ∧ (T 6= Xi(τ))
(4) If Verify(sk, π∗τ , res

∗
τ , τ) returns Yes, then output 1; otherwise output 0.
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We say that a stream authentication scheme is secure, if no adversaryA can succeed in the above
experiment with non-negligible probability, i.e., if it holds that

Pr[ExpA(1s) = 1] ≤ negl(s)

where the probability is taken over the random choice of sk and the random coin tosses of A.
Simply stated, during the attack A is allowed to obtain (through the oracle) any number of sig-

natures for any machine and stream of its choice, at any epoch other than the epoch τ for which it
launches the attack. At τ ,A is only allowed access to the valid signatures produced by the machines.
A then launches the attack by presenting a pair (res∗τ , π

∗
τ ), such that res∗τ is different from the actual

result. Our aim is to provide protocols that are secure against such attacks and will not accept any
such incorrect results.

4. BASIC CONSTRUCTIONS
In this section we present constructions that can be used as building blocks for designing authentica-
tion schemes for a wide range of query types. In particular, we design techniques for authenticating
dynamic vector sums (Section 4.1), dynamic matrix products (Section 4.2), and dynamic dot prod-
ucts (Section 4.3). Throughout, we consider a security parameter s, a prime pwhose bit size is Θ(s),
and a PRF F : Z∗p × {0, 1}∗ → Z∗p, which are all known as globals to all parties. We assume that
all the stream values and aggregate results belong to Zp. This is without loss of generality, since
(i) for practical values of s, Zp is large enough for any application, and (ii) application domains that
involve negative integers work directly for p large enough, while those that involve real numbers
can be converted to Zp via scaling and rounding.

4.1. Dynamic Vector Sum Authentication
We focus onmmachinesMi, and consider a vector ai with n entries, which is dynamically updated
as new tuples t are generated by Mi. Each tuple t ∈ Xi is of the form (j, v), and updates ai by
adding v to ai[j]. The client’s query Q requests the sum of the vectors produced by all machines at
every epoch τ , i.e.,

Q(

m⋃
i=1

{Xi(τ)}) =

m∑
i=1

ai =

[
m∑
i=1

ai[1], . . . ,

m∑
i=1

ai[n]

]
We term such a query a dynamic vector sum query, and present below a scheme called DVS for
authenticating it.

Figure 2 presents the DVS construction, which instantiates the general stream authentication pro-
tocol outlined in Section 3.1. The intuition behind this construction is straightforward: the summary
Si captures the current state of vector ai, in such a way that the adversary, lacking knowledge of the
secret sk, has no way of finding another vector a∗i that would have the same summary, even given
access to other signatures. The signature σi,τ includes additional information (the nonce ri,τ ) that
prevents the server from re-using the same signature at different epochs or for different machines.
All operations are performed modulo p (i.e., the results are in Zp).

Every summary is initialized to 0 during the setup phase. Algorithm Update works in a way such
that Si is equal to the dot product k · ai, where k = [k1, . . . , kn]. Sign injects a machine- and time-
dependent key ri,τ used once. Observe that every kj and ri,τ value is produced with sk via PRF F ,
where “element”, “machine” and “epoch” are string labels. Combine simply adds all the signatures
retrieved from the machines. Combine does not need any public information from the owner and,
thus, pub is set to a null value in KeyGen. The client assumes that all m machines are involved
in the protocol when executing Verify. In general, the client must know exactly which machines
participate in the protocol, in order to properly calculate the ri,τ values. As an additional remark,
observe that DVS can be used even when only a single machine is involved. In this case, DVS
essentially supports dynamic vector authentication. We provide formal correctness and security
guarantees for DVS below.
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KeyGen(1s)

1. k
$← Z∗p

2. Output sk = k and pub = ⊥

Update(i, sk,Si, t)
1. Parse t as (j, v), and sk as k
2. kj = Fk(“element”‖j)
3. Si = Si + kj · v
4. Output Si

Sign(i, sk,Si, τ)
1. ri,τ = Fk(“machine”‖i‖“epoch”‖τ)
2. σi,τ = Si + ri,τ
3. Output σi,τ

Combine(
⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)}, pub)

1. Output πτ =
∑m
i=1 σi,τ

Verify(sk, πτ , resτ , τ)
1. Parse sk = k and resτ as a n-element vector
2. For i = 1 to m, ri,τ = Fk(“machine”‖i‖“epoch”‖τ)
3. Initialize π =

∑m
i=1 ri,τ

4. For j = 1 to n
5. kj = Fk(“element”‖j)
6. π = π + kj · resτ [j]
7. If π = πτ output Yes, otherwise No

Fig. 2. The DVS construction

Correctness and security. The following theorem proves the correctness of DVS.

THEOREM 4.1. DVS is correct.

PROOF. Let the actual result of Q at τ be Q(
⋃m
i=1{Xi(τ)}) =

∑m
i=1 ai, where ai[j] =∑

t∈Xi(τ)∧t.j=j t.v. Observe that, after executing Update for all t ∈ Xi(τ) at any Mi, Si =∑n
j=1 kj · ai[j]. Then, Combine calculates πτ = (

∑n
j=1 kj · (

∑m
i=1 ai[j])) +

∑m
i=1 ri,τ . Now

notice that, if resτ passed in Verify is equal to Q(
⋃m
i=1{Xi(τ)}), then the algorithm computes a π

that is equal to the πτ calculated above and, hence, the output is Yes.

We next state the security of DVS (the proof is in Appendix A.1).

THEOREM 4.2. If F is a PRF, then DVS is secure.

Performance. Every machineMi needs to store only the key sk, and its id i. Therefore, the memory
consumption is O(s + logm), where s is the security parameter that dictates the size of sk, and
logm is the size of the machine id (where m is the number of machines). Since the size of p is
Θ(s), the communication cost between any two parties is O(s). For any practical application, s and
logm can be regarded as constants that do not exceed 20 bytes. Note that we implement Fk as an
HMAC [19], which involves two hash operations. Both Update and Sign entail a constant number
of modular multiplications/additions and hashes. The overhead for the server is O(m) modular
additions. Finally, the burden at the client isO(m+n) modular additions/multiplications and hashes.

4.2. Dynamic Matrix Product Authentication
We focus on two machines, Ma and Mb. We consider a na × n matrix A and a n × nb matrix B.
Matrix A (respectively B) is dynamically updated as new tuples are generated by Ma (Mb). Each
tuple t ∈ Xa (respectively t ∈ Xb) is of the form (i, j, v) and updates A (B) by adding v to A[i][j]
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(B[i][j]). The client’s query Q requests the matrix product, denoted by AB, between A and B at
every epoch τ . We term such a query as a dynamic matrix product query. We next present a scheme,
termed as DMP, for dynamic matrix product query authentication.

Figure 3 presents the DMP construction. The technique takes advantage of the following property
of matrix multiplication. Let A = [a1a2 . . .an], where aj denotes the jth column of A. Also let
B = [b1b2 . . .bn]T, where bj is the jth row of B. Then it holds:

Q(Xa(τ) ∪ Xb(τ)) = AB =

n∑
j=1

aj ⊗ bj

where aj ⊗ bj is the outer product of vectors aj ,bj , such that:

aj ⊗ bj =

 aj [1]bj [1] aj [1]bj [2] . . . aj [1]bj [nb]
aj [2]bj [1] aj [2]bj [2] . . . aj [2]bj [nb]

. . . . . . . . . . . .
aj [na]bj [1] aj [na]bj [2] . . . aj [na]bj [nb]


Ma (respectivelyMb) can create a summary Sa[j] (Sb[j]) for vector aj (bj) in a similar manner to

DVS. We can then compute a summary of aj⊗bj from the product Sa[j]·Sb[j]: for each entry of this
outer product, there is a corresponding term in Sa[j] ·Sb[j], scaled by a secret value (i.e., the product
of the two corresponding keys). In other words, we obtain a summary of the outer product result
matrix with similar properties to the DVS summary for a single vector. Since matrix multiplication
can be expressed as a sum of outer products, we can use n different summaries Sa[j],Sb[j] (i.e.,
one for each column of A, and one for each row of B), and build a summary for product AB by
summing them up.

We assume that Ma knows that Mb participates in the query and vice-versa (this information is
part of the query description). The summaries Sa,Sb are both initialized to zero n-element vectors
during the setup phase. Algorithms Update and Sign are presented in the context of Ma. Sa now
contains n entries, one for each column. The case of Mb is symmetric: Sb also includes n entries,
but one for each row. This can be achieved by instead parsing t as (j, i, v) in Line 1 of Update, and
proceeding accordingly.

To provide security for these summaries, the Sign function produces composite signatures
σa,τ [j], σb,τ [j], each consisting of two elements/signatures. In particular, their first elements
(σa,τ [j][1] and σb,τ [j][1]) integrate machine-, time-, and column-/row- dependent values r to mask
the summaries as in DVS. In order to produce a proof for summaries of the form Sa[j] · Sb[j], the
server needs to multiply σa,τ [j][1] with σb,τ [j][1]. However, observe that terms ra,τ [j] · Sb[j] and
rb,τ [j] · Sa[j] will appear in the resulting proof, which are hard to verify by the client without Sa[j]
and Sb[j]. Therefore, the machines provide additional info (namely signatures σa,τ [j][2], σb,τ [j][2])
that enable the server to remove these values from the proof. To ensure security, these signatures
incorporate new one-time keys (denoted as ρ).

Based on the above, Combine now takes a combination of 2n elements together to build a compact
proof that includes the summary of the whole product matrix. Note that πτ is just a single value
modulo p. Similar to DVS, Combine does not need any public information from the owner and,
thus, pub is set to a null value in KeyGen. Finally, algorithm Verify needs to include the various
masking values created by Ma and Mb for each of their n parallel summaries and outputs Yes only
if the proof computed for the claimed result matches the provided proof πτ .

Correctness and security. The following two theorems state the correctness and security of DMP:

THEOREM 4.3. DMP is correct.

PROOF. Let the actual result of Q at τ be Q({Xa(τ) ∪ Xb(τ)}) = AB, where A[i][j] =∑
t∈Xa(τ)∧(t.i=i)∧(t.j=j) t.v and B[i][j] =

∑
t∈Xb(τ)∧(t.i=i)∧(t.j=j) t.v. Observe that, after execut-

ing Update for all t ∈ Xa(τ) and t ∈ Xb(τ) at Ma and Mb, respectively, Sa[j] =
∑na
i=1 ka,i · aj [i]
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KeyGen(1s)

1. k
$← Z∗p

2. Output sk = k and pub = ⊥

Update(a, sk,Sa, t)
1. Parse t as (i, j, v), and sk as k
2. ka,i = Fk(“machine”‖a‖“element”‖i)
3. Sa[j] = Sa[j] + ka,i · v
4. Output Sa

Sign(a, sk,Sa, τ)
1. For j = 1 to n
2. ra,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“r”‖j)
3. ρa,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”‖j)
4. rb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“r”‖j)
5. σa,τ [j] = [(Sa[j] + ra,τ [j]), (Sa[j] · rb,τ [j] + ρa,τ [j])]
6. Output σa,τ

Combine({σa,τ , σb,τ}, {Xa(τ),Xb(τ)}, pub)
1. πτ =

∑n
j=1(σa,τ [j][1] · σb,τ [j][1]− σa,τ [j][2]− σb,τ [j][2])

2. Output πτ

Verify(sk, πτ , resτ , τ)
1. Parse sk as k and resτ as a na × nb matrix
2. For j = 1 to n
3. ra,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“r”‖j)
4. ρa,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”‖j)
5. rb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“r”‖j)
6. ρb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“ρ”‖j)
7. Initialize π =

∑n
j=1 ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j]

8. For i = 1 to na, ka,i = Fk(“machine”‖a‖“element”‖i)
9. For j = 1 to nb, kb,j = Fk(“machine”‖b‖“element”‖j)
10. π = π +

∑
i∈[na],j∈[nb]

ka,i · kb,j · resτ [i][j]
11. If π = πτ output Yes, otherwise No

Fig. 3. The DMP construction

and Sb[j] =
∑nb
i=1 kb,i · bj [i]. Moreover, notice that

πτ =

n∑
j=1

(Sa[j] · Sb[j] + ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

However, it holds that
n∑
j=1

(Sa[j] · Sb[j]) =

n∑
j=1

(
na∑
i=1

ka,i · aj [i] ·
nb∑
i=1

kb,i · bj [i]
)

=
∑

i∈[na],j∈[nb]

ka,i · kb,j ·
n∑
z=1

az[i] · bz[j]

=
∑

i∈[na],j∈[nb]

ka,i · kb,j ·AB[i][j]

If resτ is equal to AB, then it is easy to see that the π computed in Verify is equal to πτ and,
thus, the algorithm outputs Yes. This concludes our proof.
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THEOREM 4.4. If F is a PRF, then DMP is secure.

For the proof, see Appendix A.2.

Performance. The memory consumption and computational cost of Update at each machine is
the same as in DVS. Due to the n masked summaries, algorithm Sign involves O(n) modular addi-
tions/multiplications and hashes, whereas the communication cost between a machine and the server
becomes O(n). The server computes O(n) modular additions/multiplications in Combine. Finally,
the client receives a constant sized proof, but Verify entails O(na + nb + n) hashes, and O(nanb)
modular additions/multiplications, proportional to the cost of reading the result. This is reduced if
the result matrix is sparse: then, the time taken is proportional to the number of non-zero entries,
which can be much lower.

Note that this protocol substantially reduces the burden on the data owner, compared to the cost
it would pay to perform the matrix multiplication itself. Without outsourcing, the data owner would
have to store the O(n2) entries of the matrices, and perform the super-quadratic amount of work to
carry out the multiplication. Here, the data owner’s requirements are reduced to O(n) storage per
machine, and constant work per update.

4.3. Dynamic Dot Product Authentication
We focus on two machines,Ma andMb, and consider n-element vectors a,b. Vector a (respectively
b) is dynamically updated as new tuples are generated byMa (Mb). Each tuple t ∈ Xa (respectively
t ∈ Xb) is of the form (j, v), and updates a (b) by adding v to a[j] (b[j]). The client’s query Q
requests the dot product between a and b at every epoch τ , i.e.,

Q(Xa(τ) ∪ Xb(τ)) = a · b =

n∑
i=1

a[i] · b[i]

We refer to such a query as a dynamic dot product query, and present a scheme called DDP for
authenticating it.

Figure 4 presents the DDP construction. Similar to DMP, we assume that Ma knows that Mb

participates in the query and vice-versa. Algorithms Update and Sign are described in the context
of Ma. The case of Mb is symmetric, with the vital difference that the summary is updated as
Sb = Sb + kn−j+1 · v in Line 2 of Update. The summaries Sa,Sb are initialized to 0 during the
setup phase. We make use of a (multiplicative) cyclic group G of order p with generator g, whose
specifications are public and where the n-DHE problem is hard (see Section 2.1).

Note that the dot product of two vectors is the trace of their outer product. We use this fact to
construct the protocol. We derive a signature of the outer product a ⊗ b in a similar manner to
DMP, where each element of the resulting matrix is scaled with a secret key. Furthermore, certain
machine- and time-dependent masking is performed via the r and ρ values. The server is then
responsible for removing certain elements a[i] · b[j], which are scaled by ki+(n−j+1), from the
signature in Combine. Specifically, the server does this for every i 6= j (i.e., all the elements but
those in the diagonal).

In order to facilitate this task, the owner provides some public info pub to the server concerning
the scalar values ki+(n−j+1), with the exception of kn+1. These keys are given as exponents of
generator g ∈ G. This is necessary because, otherwise, the server could trivially retrieve kn+1 as
kn+i+1 · (ki)−1 mod p for some i, where (ki)−1 is the multiplicative inverse of ki modulo p. This
cannot happen if the keys are in the exponent of g due to the n-DHE assumption (we will use this
fact later in our rigorous proof). All computations in Verify are performed in the exponent of g.
Following this, the output πτ should contain solely the contribution from elements on the diagonal
of the outer product, all scaled by kn+1, plus the masking values.

Correctness and security. The following theorems state the correctness and security of DDP, re-
spectively.
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KeyGen(1s)

1. k
$← Z∗p

2. pub = {gk
j

}j∈[2n]\{n+1}
3. Output sk = k and pub

Update(a, sk,Sa, t)
1. Parse t as (j, v), and sk as k
2. Sa = Sa + kj · v
3. Output Sa

Sign(a, sk,Sa, τ)
1. ra,τ = Fk(“machine”‖a‖“epoch”‖τ‖“r”)
2. ρa,τ = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”)
3. rb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“r”)
4. σa,τ = [(Sa + ra,τ ), (Sa · rb,τ + ρa,τ )]
5. Output σa,τ

Combine({σa,τ , σb,τ}, {Xa(τ),Xb(τ)}, pub)
1. Parse pub as {gk

i

}i∈[2n]\{n+1}
2. Compute a and b from Xa(τ) and Xb(τ), respectively
3. Compute c = a⊗ b

4. πτ = g(σa,τ [1]·σb,τ [1]−σa,τ [2]−σb,τ [2])

5. πτ = πτ ·
[∏

i,j∈[n]∧i 6=j

(
gk
i+(n−j+1)

)c[i][j]]−1

6. Output πτ

Verify(sk, πτ , resτ , τ)
1. Parse sk as k and resτ as a value in Zp
2. ra,τ = Fk(“machine”‖a‖“epoch”‖τ‖“r”)
3. ρa,τ = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”)
4. rb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“r”)
5. ρb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“ρ”)
6. Initialize π = g(ra,τ ·rb,τ−ρa,τ−ρb,τ )

7. π = π · g(k
n+1·resτ )

8. If π = πτ output Yes, otherwise No

Fig. 4. The DDP construction

THEOREM 4.5. DDP is correct.

PROOF. Let the actual result of Q at τ be Q({Xa(τ) ∪ Xb(τ)}) = a · b =
∑n
i=1 a[i] · b[i],

where a[j] =
∑
t∈Xa(τ)∧t.j=j t.v, and b[j] =

∑
t∈Xb(τ)∧t.j=j t.v. Observe that, after executing

Update for all t ∈ Xa(τ) and t ∈ Xb(τ) at Ma and Mb, respectively, Sa =
∑n
j=1 k

j · a[j] and
Sb =

∑n
j=1 k

n−j+1 · b[j]. Moreover, the proof output by Combine is

πτ = g(
∑n
j=1 k

j ·kn−j+1·a[j]·b[j])+ra,τ ·rb,τ−ρa,τ−ρb,τ

= gk
n+1·(a·b)+ra,τ ·rb,τ−ρa,τ−ρb,τ

If resτ is equal to a · b, then the π computed in Verify is equal to πτ and, thus, Verify outputs Yes.
This concludes our proof.

THEOREM 4.6. If F is a PRF, then DDP is secure under the n-DHE assumption.

For the formal proof, see Appendix A.3.
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Performance. In this scheme, the owner has to invest in some one-time preprocessing effort to create
pub. This accounts for O(n) exponentiations in Zp (for ki), and another O(n) exponentiations in
G (for gk

i

). Nevertheless, this cost is amortized over the entire lifetime of the system. The memory
consumption and the computational cost of Sign at each machine are (asymptotically) the same as
in DVS. The cost in Update now involves a modular exponentiation. Note though that the latter is
performed in the small finite field Zp and, hence, it is extremely lightweight.

To analyze the server’s computation cost in Combine, first observe that, setting i+(n−j+1) = z,
the server can calculate∏

i,j∈[n]∧i 6=j

(
gk

i+(n−j+1)
)c[i][j]

=
∏

z∈[2n]\{n+1}

(gk
z

)
∑
z c[i][j]

assuming that it has access to the set of outer product values c. However, the server does not need
to explicitly generate c. Rather, it only needs the vector of n different

∑
i+(n−j+1)=z c[i][j] values,

for 2 ≤ z ≤ 2n. We can compute these values from the (discrete) convolution of the vectors a,b, in
time O(n log n) via the Fast Fourier Transform. Assuming we have these, then the cost at the server
is dominated by O(n) exponentiations in G. For storage, the server has to store the O(n) values in
pub, which is comparable to the cost of storing the inputs Xa and Xb.

Finally, Verify at the client simply involves a constant number of evaluations of Fk, and a (single)
exponentiation in G.

5. APPLICATIONS
In this section, we discuss some common queries in stream outsourcing, and explain how the con-
structions that we have provided can address them. We stress, though, that the applicability of our
schemes is not limited to these cases; we are confident that our fundamental tools can capture a
much wider set of applications. For brevity, we omit detailed discussion of correctness and security,
which follow the pattern established by the main protocols in Section 4.

Group by queries. The class of group-by,sum aggregation queries are at the heart of many
outsourced computation scenarios and have been the sole motivation for much of the prior work on
stream authentication. The setting is that a large number of tuples is observed as a stream. These
tuples may correspond, for example, to activity on a network, updates to a large database table, or
events in an event-processing system. The requirement is for the server to collate the stream tuples
into groups and report the sum for each group. We typically consider cases where the number of
active groups (those with a non-zero sum) is substantially large, so that the data owner benefits from
enlisting the server to perform the aggregation.

This problem is solved directly by the dynamic vector sum authentication protocol, DVS, applied
to a single vector. Each stream tuple is translated into an update to the vector. The entries of the
vector give the aggregate associated with each corresponding group. The approach naturally holds
for the distributed setting, where updates might be spread across multiple streams. In this case,
the object of the authentication is the vector given by the sum of the vectors derived from each of
the streams. DVS captures this scenario due to its homomorphic property, which allows the client
to verify a sum of vectors by checking a single proof (produced by the server) that combines all
individual vector signatures together.

Join Queries. Beyond simple grouping and aggregation, many important outsourced queries involve
the computation of a join query on relations. In traditional data stream management systems, join
queries are regarded particularly challenging, with prior work focusing on approximate results [9;
29]. Hence, join queries are a prime candidate for outsourcing.

We explain how to authenticate join results in our setting, focusing on the common case of equi-
join, for queries such as SELECT * FROM R, S WHERE R.x = S.x. Assume without loss
of generality that the join result is given by the multiset of tuples (tR, tR.x, tS), where tR is a tuple
from R, tS is a tuple from S, and tR.x = tS .x is their common value on the join attribute x. Also
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suppose that the domain of the join values is [n]. We reduce this problem to an instance of a dot-
product query, making use of a cryptographic hash function H , e.g., SHA-1 [19]. The inputs to our
schemes are streams of (tR.x, tR) and (tS .x, tS) pairs originating from dynamic relations R and
S, respectively. We transform an update to R of (tR.x, tR) into a tuple in Xa as (tR.x,HR(tR)),
applying the hash functionH to tR. Similarly, we transform updates to S of (tS .x, tS) into a tuple in
Xb as (tS .x,HS(tS)). We then run the DDP protocol over updates (j, v) = (tR.x,HR(tR)) ∈ Xa
at Ma, and (j, v) = (tS .x,HS(tS)) ∈ Xb at Mb.

The server presents the claimed output multiset of (tR, tR.x, tS) tuples, along with the accompa-
nying proof πτ from the DDP protocol. The client computes resτ =

∑
tR.x=tS .x

HR(tR) ·HS(tS)
within the Verify routine. The protocol is correct, since the dot product between the two vectors
generated by the above transformation is exactly this resτ value. In addition to the security of DDP,
here we need to show that the adversary cannot present a result that produces the same resτ as the
actual result. In order to achieve this, we must follow the so-called random oracle model [15; 13].
Briefly stated, this is a proof methodology that allows us to first prove the security of the scheme
considering that H is a truly random function. We can do this along the lines of our proof for DDP
in Appendix A.3. Then, we substitute H with a hash function like SHA-1, and claim security due to
the assumption about its cryptographic properties. We omit further details due to space constraints.

In the aforementioned problem, the goal was to authenticate the tuples produced by a join query
on relations R, S on attribute x. Assume that R.y and S.z are attributes of relations R and S,
respectively. If, instead of the actual tuples, we are interested in authenticating the joint frequency
distribution of each (R.y, S.z) pair in the join result, then this authentication can be achieved by a
direct application of our DMP protocol. In this case, the machine containing relation R (S) builds
a two-dimensional matrix, where each element of the matrix corresponds to the joint frequency of
occurrences of each (R.y,R.x) ((S.x, S.z)) pair of values in R (S). It is easy to see that the product
of these two matrices provides the desired result in this application.

Another interesting query is computing the size of the equi-join result. This is given by a direct
application of DDP: if we treat every tuple t with join value t.x as an update of the form (t.x, 1),
then vectors a,b will hold the frequencies of the relations on each join value. Therefore, the equi-
join size is exactly a · b.

In-network Aggregation. This is a popular paradigm employed typically in sensor networks, which
reduces the energy expenditure in routing raw data from the motes to a remote client [18]. Consider
a set of sensors organized (without loss of generality) into a tree-structured network. Also assume
that a client communicates only with the root sensor (sink), and wishes to perform some aggregation
task (e.g., sum or count) on the readings of the sensors. Transmitting the raw data to the client
inflicts considerable burden on the nodes positioned close to the sink, as they have to forward a
considerable number of messages from nodes lower in the tree. In-network aggregation mandates
that internal nodes perform the aggregation task on the data received from their children and forward
only a small result, thus achieving significant battery savings.

In our setting, only the leaf sensors belong to the owner, whereas the internal tree infrastructure is
outsourced to an untrusted third party [12; 26; 23]. The goal is to allow the client to authenticate the
aggregation result on the union of the leaf readings received from the sink. Our DVS construction
applies to this scenario as well. Its KeyGen,Update, Sign and Verify routines remain the same in this
case. The main changes occur to the Combine algorithm executed by the server. Here, each server
in the network executes Combine on the inputs received from its children, and forwards the output
to its parent in the routing tree. Notice that the client eventually receives a proof from the sink that
is equal to the summation of the leaf sensor signatures. This is exactly what Combine would output
in case a single server collected all the sensor signatures. Our scheme is extremely lightweight for
all parties involved and, hence, it is ideal for the resource constrained sensor networks.

Similarity measures. It is increasingly common to deal with objects represented by a (potentially)
very large number of features in a high-dimensional vector space. In machine learning and other
modeling applications, a single object (such as a user of a web search engine) may be represented
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by a vector which has millions or billions of components. Similarity measures are vital in such
settings. For instance, clustering of objects often entails distance (i.e., dissimilarity) computation
between feature vectors. Another example involves determining the correlation of items (i.e., market
stocks, retail products, etc) whose information (i.e., shares values, sales volume) is dispersed across
different server machines. Correlation is also based on similarity.

Similarity between vectors is typically measured by an appropriate similarity or dissimilarity
measure, such as the cosine similarity and Euclidean distance, respectively. The cosine similar-
ity between vectors a,b is computed as a·b

‖a‖·‖b‖ , where ‖a‖ =
√
a · a is the L2 norm of a. The

Euclidean distance between a and b is equal to ‖a− b‖ =
√
‖a‖2 + ‖b‖2 − 2a · b.

We can authenticate such measures by engaging the DDP construction, since both cosine simi-
larity and Euclidean distance depend on inner product computation. The case of a · b is carried out
by direct application of DDP. For a · a and b · b, Ma and Mb must apply two separate instances
(i.e., with different keys) of DDP on the same vector a and b, respectively. The modifications in
Combine and Verify are straightforward and, thus, omitted.

Event co-occurrence. Event monitoring applications operate on massive streams in order to find
patterns or correlations between certain events [10]. These include supply chain management of
RFID tagged products, stock trading, monitoring of machines for malfunctions, environmental sens-
ing for surveillance of establishments, and more. An important class of queries in this scenario is
finding co-occurrence of events. We provide a simple example. Let A (respectively B) be an n× 1
(1 × n) matrix representing a set of n events occurring at machine Ma (Mb). A cell value is 1 if
the event occurs during the latest (or at a specific) epoch, and 0 otherwise. Then, AB is a n × n
matrix where cell AB[i][j] is 1 if event i co-occurs with event j at the latest (or at a specific) epoch.
The result matrix can help in determining event correlations. The above can be generalized to ma-
trices with arbitrary dimensions. It is apparent that our DMP construction is directly applicable for
authenticating such queries.

6. EXPERIMENTS
In this section we experimentally evaluate our basic protocols, namely DVS, DMP and DDP. We
compare DVS with PIRS (specifically PIRS-1) [31], which is the only scheme that addresses our
trusted-client setting, in the context of group by,sum queries. However, we stress that PIRS is
not a direct competitor, as it assumes that the client is the owner itself and has a weaker security
model. We slightly adapt PIRS so that the machines send to the client their summaries via the server,
after authenticating them using another authentication scheme. On the other hand, as we are the first
to address authentication of dot and matrix products, DMP and DDP have no competitors.

Implementation. We implemented all protocols in C on a 2.66GHz Intel Core i7 with 4GB of
RAM, running MAC OS X. We used the GMP1 and OpenSSL2 libraries for implementing the
cryptographic operations involved. We utilized HMAC with SHA-1 [19] for the F function, which
produces 20-byte outputs. We employed HMAC with SHA-1 also as the message authentication
scheme in PIRS for authenticating the summaries to the clients.

An important discussion concerns the selection of the size of the prime p that defines the Zp
domain (i.e., the value for security parameter s). In DVS, DMP and PIRS, this can be as small
as 10 bytes for safeguarding against guessing attacks on the keys. On the other hand, in DDP this
must be at least 20 bytes. The reason is that DDP relies on the discrete logarithm problem. The
well-known Pollard rho algorithm takes O(

√
p) steps to find a logarithm in Zp [19], suggesting that

the size of p should be twice as long as the one that protects against simple guessing.
Furthermore, we computed the generator of the group used in DDP employing the implemen-

tation techniques included in [19]. Specifically, the element of order p that generates our group of

1http://gmplib.org/
2http://www.openssl.com/
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Table II. Primitive Costs

Description Cost
Modular addition in Zp (|p| = 10 / 20 bytes) 0.15 µs / 0.18 µs
Modular multiplication in Zp (|p| = 10 / 20 bytes) 0.19 µs / 0.28 µs
Modular exponentiation in Zp (|p| = 10 / 20 bytes) 4.8 µs / 7.4 µs
Time to derive the generator of Zq (|q| = 64 bytes) 2.7 sec
Modular multiplication in Zq (|q| = 64 bytes) 0.56 µs
Modular exponentiation in Zq (|q| = 64 bytes) 55.6 µs
HMAC computation (with SHA-1) 3.53 µs

Table III. Comparison of DVS with PIRS (single
machine)

Evaluated Cost DVS PIRS

CPU time for Update 5.3 µs 2.3 µs
CPU time for Sign 4.8 µs 4.7 µs
CPU time for Verify 48.9 ms 19.1 ms
Summary size 10 bytes 10 bytes
Proof size 10 bytes 30 bytes

concern G is selected from Zq , where q is a 64-byte prime of the form q = 2`p + 1 [19]. All com-
putations in G are modulo q. Table II includes the average cost (over 10,000 runs) of each primitive
operation entailed in the implemented protocols.

Evaluation of DVS vs. PIRS. We compared DVS with PIRS using the World Cup Dataset3. The
latter contains Web server logs from the 1998 Soccer World Cup. Each log entry consists of a client
ID, the ID of the requested URL, the size of the response, etc. We used the first 2 million tuples
from the log of day 50. From each tuple in this set, we produced a tuple (j, v), where j is a client
ID, and v is the size of the response. We then focused on a group by,sum query that returns a
vector, where the jth element corresponds to a unique client j, and the value of the jth element is the
sum of response sizes of all requests issued by client j.

Table III illustrates the various costs we evaluated during our experiment, assuming a single
stream generated by a single machine. We decomposed PIRS into algorithms of the form Update,
Sign, and Verify (Combine has no cost in the single machine setting in both schemes and, thus,
is omitted). The average number of non-zero elements in the result vector (which affects the CPU
time in Verify) was around 12,000. PIRS and DVS have comparable CPU overheads for Sign.
However, PIRS outperforms DVS for Update and Verify because, contrary to DVS, it does not
involve HMAC invocations. Recall though that this performance advantage of PIRS comes at the
expense of a weaker security model. Moreover, observe that the CPU times for DVS are in the order
of a few microseconds at the owner (5.3 µs for Update and 4.8 µs for Sign), and a few milliseconds
at the client (48.9 µs for Verify). The summary and proof size is negligible in DVS (10 bytes). The
summary size in PIRS is the same, but its proof size is 20 bytes longer due to the additional HMAC
that authenticates the summary.

Table IV depicts the costs in the scenario where we repeat the previous experiment, but now
the tuples are generated by m = 100 machines. The Update and Sign costs are unaffected by m
and, hence, are omitted. In PIRS, there is no Combine cost, since the server simply forwards m
summaries and HMACs to the client. This considerably increases the total proof size to 3000 bytes.
On the other hand, in DVS, the server combines the signatures of all the machines into a single one,
always maintaining the communication cost of 10 bytes. This comes with a very small overhead for
the server due to Combine (10.1 µs). The cost of Verify increases by the m extra hash computations
in both DVS and PIRS. However, note that the overall cost is rather dominated by the operations

3http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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Table IV. Comparison of DVS with PIRS (m = 100 ma-
chines)

Evaluated Cost DVS PIRS

CPU time for Combine 10.1 µs -
CPU time for Verify 50.16 ms 19.69 ms
Proof size 10 bytes 3000 bytes

Table V. Scalability of DMP with n (na = nb = n)

Evaluated Cost n = 5 n = 50 n = 500

CPU time for Update 5.5 µs 5.4 µs 6.0 µs
CPU time for Sign 58.4 µs 567 µs 5.7 ms
CPU time for Combine 3.0 µs 24.3 µs 263 µs
CPU time for Verify 0.13 ms 2.13 ms 78.3 ms

Table VI. Scalability of DDP with n

Evaluated Cost n=100 n=1000 n=10000

CPU time for KeyGen 2.8 sec 2.9 sec 3.9 sec
CPU time for Update 2.58 µs 3.38 µs 4.3 µs
CPU time for Sign 14.5 µs 13.95 µs 14.6 µs
CPU time for Combine 2.43 ms 30.75 ms 538 ms
CPU time for Verify 129 µs 143 µs 160 µs

imposed by the n vector elements and, therefore, the overhead is very similar to the case of a single
machine in both DVS and PIRS.

Evaluation of DMP. We consider the costs for matrix multiplication between two n× n matrices.
Here, we generate synthetic data by randomly filling entries—note that the data itself does not affect
the performance of the DMP construction, as the steps taken are largely data independent. Table V
shows the time costs of each of the operations as n varies. The Update step is similar in all cases
(∼ 6 µs), as it does not depend on n. The Sign operation scales linearly with n (proportionally to
the square root of the input size), exactly as predicted by our analysis. Even for large matrices with
hundred thousands of entries, this cost is in the order of a few milliseconds; extrapolating to billion
entry matrices, the cost will remain below a second. Combine scales similarly, proportional to the
size of the summary. Only Verify is more expensive, due to the cost of reading the full n× n result,
performing modular multiplications for each entry, and invoking O(n) HMAC calls. Yet this too is
way below a second even for our largest example.

Evaluation of DDP. We give our results for DDP in Table VI. Here, we also generate synthetic
vectors of differing sizes. Observe that there is a non-trivial setup cost for this protocol, which stems
from determining a generator for G and computing the exponentiated values in pub. However, most
of the work is in finding a suitable generator, although this truly is a one-time operation. The cost
varies little with the vector size n. As before, Update does not depend on n, and in this case neither
does Sign. Therefore, the two overheads are relatively unaffected by n. Our cost for Combine grows
linearly with n, as predicted by our performance analysis, and remains below one second even in
our worst-case experiment (n = 10000). The cost for Verify is quite low, since it requires only a
constant amount of light work for checking the proof.

Summary. Our experimental study confirms our claims that the constructions presented are
lightweight and practical. The overheads of all protocols have very low streaming cost: the cen-
tral Update operation is always measured in single-digit microsecond costs, corresponding to very
high stream rates. The cost for Sign operations is comparable, except in the case of DMP, which
scales proportionally to the square root of the input size. The computation in Verify scales linearly
with the size of the input. The server’s overhead (Combine) is also small, and remains smaller than
a second even in the computationally intensive case of DDP. Moreover, our DVS scheme is supe-
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rior to PIRS in terms of client communication cost in the case of multiple machines. Finally, DMP
and DDP are the first secure, efficient, and scalable protocols for the problems of dynamic matrix
multiplication and dynamic dot product, respectively.

7. CONCLUSIONS AND FUTURE WORK
In this paper we addressed the problem of result authentication in stream outsourcing settings. While
prior work has focused on simple group by and sum queries in such scenarios, our protocols allow
the authentication of several linear algebraic operators, such as sums or dot products over dynamic
vectors and dynamic matrix multiplication, which are used in numerous applications over distributed
data. Our experimental evaluation demonstrated that our protocols are extremely lightweight espe-
cially for the owner in terms of running time, storage requirements and bandwidth consumption.
Moreover, our schemes offer strong cryptographic guarantees for their security. In our future work,
we plan to extend our lightweight techniques to the challenging setting where clients may collude
with the server to attack other clients. In this case, the owner only grants a public key to the clients,
hiding his secret key.
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A. SECURITY PROOFS
We will prove all our constructions under the following general methodology [13]. We will construct
an ideal version of each scheme, where function F is substituted by a truly random function f . The
adversary will be able to obtain outputs of f for inputs of its choice, but it will not be given direct
access to f itself. We will next prove that the scheme is secure under this ideal model. Finally, we
will conclude that the real implementation of the scheme (i.e., the one that uses the PRF F instead of
f ) is secure, since otherwise the adversary would distinguish the PRF from a truly random function.

A.1. Proof of Theorem 4.2 (DVS)
Let k = [k1, k2, . . . , kn], where kj is generated as in Update, but now via truly random function
f instead of PRF F . The adversary A interacts with the oracle as outlined in ExpA in Section 3.2,
and obtains a single signature for every (i, τ ′) pair for any stream of its choice, such that τ ′ 6= τ .
Let a∗i,τ ′ be the dynamic vector produced by machine Mi at τ ′ for an arbitrary stream selected by
the adversary. Note that A can query the oracle for poly(s) different epochs τ ′. Then, A obtains the
following set:

V = {a∗i,τ ′ , (k · a∗i,τ ′ + ri,τ ′)}(i∈[m])∧(τ ′ 6=τ)

∪ {ai,τ , (k · ai,τ + ri,τ )}i∈[m]

where ai,τ is the real dynamic vector produced by machine Mi at epoch τ when the stream is the
actual Xi(τ). All the r values are constructed as in Sign, but again via function f instead of F . Set
V is the view of the adversary in the attack.
A succeeds in the attack if it presents (res∗τ , π

∗
τ ), such that res∗τ is different from the actual result

resτ =
∑m
i=1 ai,τ , and

π∗τ = k · res∗τ +

m∑
i=1

ri,τ

so that Verify outputs Yes. Observe that this is equivalent to finding a pair (v∗,k · v∗) from V , and
then computing res∗τ = resτ + v∗ and π∗τ = πτ + k · v∗ (note that v∗ must be non-zero).

Nevertheless, every ri,τ ′ , ri,τ used in the components of V are random (due to f ) and used only
once. As such, every (k · a∗i,τ ′ + ri,τ ′) and (k · ai,τ + ri,τ ) in V can be considered as the encryption
of k · a∗i,τ ′ , k · ai,τ with keys ri,τ ′ and ri,τ , respectively, where the encryption scheme is a straight-
forward variant of the one-time pad (see Section 2.1). Due to this scheme and since k is random and
secret, the adversary computes k · v∗ for any given v∗ from V only with probability negl(s).

Based on the above discussion, A can only guess a pair (res∗τ , π
∗
τ ). Consider the following mul-

tivariate polynomial in finite field Zp

P (X1, X2, . . . , Xn+1) = k1X1 + . . .+ knXn −Xn+1 +

m∑
i=1

ri,τ

Notice that A guesses (res∗τ , π
∗
τ ) correctly if and only if res∗τ = [v∗1 , v

∗
2 , . . . , v

∗
n] such that

P (v∗1 , v
∗
2 , . . . , v

∗
n, π

∗
τ ) = 0. However, due to Lemma 1 in [28], for any (non-zero) multivariate

polynomial P in Zp of degree d (in our case d = 1) and randomly chosen v∗1 , v
∗
2 , . . . , v

∗
n, π

∗
τ , the

probability that P (v∗1 , v
∗
2 , . . . , v

∗
n, π

∗
τ ) = 0 is d/p d=1

= 1/p = negl(s).
We derive that DVS is secure w.r.t. ExpA in the ideal model. Therefore, we also conclude that

DVS is secure in the real model, under the assumption that F is a PRF.

A.2. Proof of Theorem 4.4 (DMP)
Let ka = [ka,1, . . . , ka,na ] and kb = [kb,1, . . . , kb,nb ], where ka,i, kb,i are created as in Update, but
now via truly random function f instead of PRF F . Also define na × nb matrix K = ka ⊗ kb,
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such that K[i][j] = ka,i · kb,j . The adversary A interacts with the oracle as outlined in ExpA in
Section 3.2, and obtains a single signature per every (i, τ ′) pair for any stream of its choice, such
that τ ′ 6= τ . Let A∗τ ′ (respectively B∗τ ′ ) be the dynamic matrix produced by machine Ma (Mb) at
τ ′ for an arbitrary stream selected by the adversary. Note that A can query the oracle for poly(s)
different epochs τ ′. Then, A obtains the set:

V = {a∗j,τ ′ , (ka · a∗j,τ ′ + ra,τ ′ [j])}(j∈[n])∧(τ ′ 6=τ)
∪ {b∗j,τ ′ , (kb · b∗j,τ ′ + rb,τ ′ [j])}(j∈[n])∧(τ ′ 6=τ)
∪ {ka · a∗j,τ ′ · rb,τ ′ [j] + ρa,τ ′ [j]}(j∈[n])∧(τ ′ 6=τ)
∪ {kb · b∗j,τ ′ · ra,τ ′ [j] + ρb,τ ′ [j]}(j∈[n])∧(τ ′ 6=τ)
∪ {aj,τ , (ka · aj,τ + ra,τ [j])}j∈[n]
∪ {bj,τ , (kb · bj,τ + rb,τ [j])}j∈[n]
∪ {(ka · aj,τ · rb,τ [j] + ρa,τ [j])}j∈[n]
∪ {kb · bj,τ · ra,τ [j] + ρb,τ [j]}j∈[n]

where a∗j,τ ′ (respectively b∗j,τ ′ ) is the jth column (row) of A∗τ ′ (B∗τ ′ ) at τ ′, and aj,τ (bj,τ ) is the jth

column (row) of the real Aτ (Bτ ) produced byMa (Mb) at τ . All the r and ρ values are constructed
as in Sign, but again via function f instead of F . Set V is the view of the adversary in the attack.

Suppose that the adversary presents (res∗τ , π
∗
τ ) in the end of the attack, such that res∗τ is different

from the actual result resτ = AτBτ . Let K : res∗τ ′ =
∑
i∈[na],j∈[nb] K[i][j] · res∗τ ′ [i][j] denote

the Frobenius product between K and res∗τ ′ . Then, notice that A succeeds in the attack if

π∗τ = K : res∗τ +
∑n
j=1(ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

so that Verify outputs Yes. Observe that this is equivalent to finding a pair (V∗,K : V∗) from V ,
and then computing res∗τ = resτ + V∗ and π∗τ = πτ + K : V∗ (note that V∗ must be non-zero).

We divide V into two subsets: V1 that includes the components incorporating ρ values; and V2 =
V\V1. The first key observation is that every ρa,τ ′ [j], ρa,τ [j], ρb,τ ′ [j], ρb,τ [j] used in the components
of V1 are random (due to f ) and used only once. Similar to the discussion in Appendix A.1 for DVS,
these serve as keys for one-time pad encryption and, thus, no function can be computed byA on ka,
kb, ra,τ ′ [j], ra,τ [j], rb,τ ′ [j], rb,τ [j] from V1 with non-negligible probability.

The second observation is that, based on the above discussion, values ra,τ ′ [j], ra,τ [j], rb,τ ′ [j],
rb,τ ′ [j] appear random in view V1 of A. Moreover, observe that they are used only once in the
components of V2. Hence, they can also be regarded as one-time pad keys for the components in
V2. This means that no function can be computed byA on ka, kb (and, hence, also on K = ka⊗kb)
from V2 with non-negligible probability. We conclude that A computes K : V∗ for any given V∗

from V with probability negl(s).
Similar to the case of DVS,A can only guess pair (res∗τ , π

∗
τ ). Consider the following multivariate

polynomial in finite field Zp
P (X1, . . . , Xna·nb+1) = ka,1 · kb,1 ·X1 + . . .

+ ka,na · kb,nb ·Xna·nb −Xna·nb+1

+

n∑
j=1

(ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

Notice that A guesses (res∗τ , π
∗
τ ) correctly if and only if res∗τ = [v∗1 , v

∗
2 , . . . , v

∗
na·nb ] such that

P (v∗1 , v
∗
2 , . . . , v

∗
na·nb , π

∗
τ ) = 0. Nevertheless, due to Lemma 1 in [28], for any (non-zero) multivari-

ate polynomial P in Zp of degree d (again, in our case d = 1) and randomly chosen v∗1 , v∗2 , . . .,

v∗na·nb , π
∗
τ , the probability that P (v∗1 , v

∗
2 , . . . , v

∗
na·nb , π

∗
τ ) = 0 is d/p d=1

= 1/p = negl(s).
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We derive that DMP is secure w.r.t. ExpA in the ideal model. Therefore, we also conclude that
DMP is secure in the real model, under the assumption that F is a PRF.

A.3. Proof of Theorem 4.6 (DDP)
Let ka = [k, k2, . . . , kn] and kb = [kn, kn−1, . . . , k], where k is a random value in Z∗p. The adver-
sary A interacts with the oracle as outlined in ExpA in Section 3.2, and obtains a single signature
per every (i, τ ′) pair for any stream of its choice, such that τ ′ 6= τ . Let a∗τ ′ (respectively b∗τ ′ ) be the
dynamic vector produced by machine Ma (Mb) at τ ′ for an arbitrary stream selected by the adver-
sary. Note that A can query the oracle for poly(s) different epochs τ ′. Taking into account also pub
generated in KeyGen, A obtains the set:

V = {a∗τ ′ , (ka · a∗τ ′ + ra,τ ′), (ka · a∗τ ′ · rb,τ ′ + ρa,τ ′)}τ ′ 6=τ
∪ {b∗τ ′ , (kb · b∗τ ′ + rb,τ ′), (kb · b∗τ ′ · ra,τ ′ + ρb,τ ′)}τ ′ 6=τ
∪ {(aτ ,ka · aτ + ra,τ ), (ka · aτ · rb,τ + ρa,τ )}
∪ {bτ , (kb · bτ + rb,τ ), (kb · bτ · ra,τ + ρb,τ )}
∪ {gkj}j∈[2n]\{n+1}

where aτ (respectively bτ ) is the real dynamic vector produced by machine Ma (Mb) at epoch τ .
All the r and ρ values are constructed as in Sign, but again via function f instead of F . The set V is
the view of the adversary in the attack.

Suppose that the adversary presents (res∗τ , π
∗
τ ) in the end of the attack, such that res∗τ is different

from the actual result resτ = aτ · bτ . Then, notice that A succeeds in the attack if

π∗τ = gk
n+1·res∗

τ′+(ra,τ ·rb,τ−ρa,τ−ρb,τ )

so that Verify outputs Yes. Observe that this is equivalent to finding a pair (v∗, kn+1 · v∗) from V ,
and then computing res∗τ = resτ + v∗ and π∗τ = πτ · gk

n+1·v∗ (note that v∗ must be non-zero).
We divide V into two subsets: V1 that includes {gkj}j∈[2n]\{n+1}, and subset V2 = V \ V1.

Following a similar argumentation as in the case of DMP in Appendix A.2, due to its equivalence to
a one-time pad, the adversary cannot extract any information about ka and kb (and, hence, also for
kn+1) from V2 with non-negligible probability. Moreover, due to the n-DHE assumption (Section
2.1), A can compute gk

n+1

from V1 only with negl(s) probability. We conclude that A finds a pair
(v∗, kn+1 · v∗) from the entire V with probability negl(s).

Thus, similar to the case of DVS and DMP, A can only guess a pair (res∗τ , π
∗
τ ). Consider the

following multivariate polynomial in the finite field Zp
P (X1, X2) = kn+1 ·X1 −X2 + (ra,τ · rb,τ − ρa,τ − ρb,τ )

Let π∗τ = gx
∗
τ . For random π∗τ , x∗τ is also random. A guesses (res∗τ , π

∗
τ ) correctly if and only if

P (res∗τ , x
∗
τ ) = 0. Due to Lemma 1 in [28], for any (non-zero) multivariate polynomial P in Zp of

degree d (in our case d = 1) and randomly chosen res∗τ , x∗τ , the probability that P (res∗τ , x
∗
τ ) = 0 is

d/p
d=1
= 1/p = negl(s).

We derive that DDP is secure w.r.t. ExpA in the ideal model, under the n-DHE assumption.
Therefore, we also conclude that DDP is secure in the real model, under the n-DHE assumption
and the assumption that F is a PRF.
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