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Abstract

While traditional database systems optimize for perforcean
on one-shot query processing, emerging large-scale mienito
ing applications require continuous tracking of completaeda
analysis queries over collections of physically-disttéal
streams. Thus, effective solutions have to be simultarigous
space/time efficient (at each remote monitor site), commu-
nication efficient (across the underlying communicatiots ne
work), and provide continuous, guaranteed-quality approx
imate query answers. In this paper, we propose novel al-
gorithmic solutions for the problem of continuously track-
ing a broad class of complex aggregate queries in such a
distributed-streams setting. Our tracking schemes miainta
approximate query answers with provable error guarantees,
while simultaneously optimizing the storage space and pro-
cessing time at each remote site, as well as the commu-
nication cost across the network. In a nutshell, our algo-
rithms rely on tracking general-purpose randomized sketch
summaries of local streams at remote sites along with con-
cise prediction models of local site behavior in order to-pro
duce highly communication- and space/time-efficient solu-
tions. The end result is a powerful approximate query tragki
framework that readily incorporates several complex aisaly
queries (including distributed join and multi-join aggates,

and approximate wavelet representations), thus givingjriste
known low-overhead tracking solution for such queries i th
distributed-streams model. Experiments with real data val
idate our approach, revealing significant savings overenaiv
solutions as well as our analytical worst-case guarantees.

1 Introduction

Traditional data-management applications typically regju
database support for a variety @fie-shot queriesnclud-

ing lookups, sophisticated slice-and-dice operationta da
mining tasks, and so on. One-shot means the data pr
cessing is essentially done once, in response to the pos
query. This has led to a very successful industry of databas
engines optimized for supporting complex, one-shot SQ
gueries over large amounts of data. Recent years, ho
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ever, have witnessed the emergence of a new cldasgs-
scale event monitoringpplications that pose novel data-
management challenges. In one class of applications, mon-
itoring a large-scale system is a crucial aspect of system op
eration and maintenance. As an example, consider the Net-
work Operations Center (NOC) for the IP-backbone net-
work of a large ISP (such as Sprint or AT&T). Such NOCs
typically need to monitor hundreds or thousands of net-
work elements (e.g., routers, links) and events at blisteri
speeds, continuously tracking and correlating data from a
multitude of points in the network in order to quickly detect
and react to hot spots, floods, element failures, and attacks
A different class of applications is one in which monitor-
ing is the goal in itself. For instance, consider a wireless
network of sensors deployed for habitat and environmen-
tal monitoring or inventory tracking. The key objective for
such systems is to continuously monitor and correlate sen-
sor measurements for trend analysis, detecting moving ob-
jects, intrusions, or other adverse events.

A closer examination of such monitoring applications
allows us to abstract a number of common characteristics.
First, monitoring iscontinuousthat is, we need real-time
tracking of measurements or events, not merely one-shot
responses to sporadic queries. Second, monitoring is in-
herentlydistributed that is, the underlying infrastructure
comprises several remote sites (each with its own local
data source) that can exchange information through a com-
munication network. This also means that there typically
are importantcommunication constraintswing to either
network-capacity restrictions (e.g., in IP-network monit
ing, where the volumes of collected utilization and traffic
data can be huge [7]), or power and bandwidth restrictions

{e.g., in wireless sensor networks, where communication

erhead is the key factor in determining sensor battery
e [18]). Furthermore, each remote site may sdeigh-
speed strearof data and has its own local resource limita-
ions, such astorage-spacer processing-timeonstraints.

his is certainly true for IP routers (that cannot possibly
store the log of all observed packet traffic at high network
speeds), as well as wireless sensor nodes (that, even though
they may not observe large data volumes, typically have
very little memory onboard).

Another key aspect of large-scale event monitoring is
the need for effectively tracking queries thedmbine
and/or correlate information(e.g., IP traffic or sensor
measurements) observed across the collection of remote



sites. For instance, tracking the result size gbia (the  over multiple sources, whereas Das et al. [8] discuss mon-
“workhorse” correlation operator in the relational world) itoring of approximate set-expression cardinalities over
over the streams of fault/alarm data from two or more IPphysically-distributed element streams. Similarly, oeH r
routers (e.g., with a join condition based on their observeaent work [6] attacks the problem of approximately track-
timestamp values) can allow network administrators to efing one-dimensionadjuantile summaries of a global data
fectively detect correlated fault events at the routersl, an distribution spread over the remote sites. All these ear-
perhaps, also pinpoint theot-causesof specific faults lier papers focus solely on a narrow class of distributed-
in real time. As another example, consider the track-monitoring queries (e.g., one-dimensional quantiles), re
ing of a two- or three-dimensional histogram summary ofsulting in special-purpose solutions applicable only ® th
the traffic-volume distribution observed across the edgespecific form of queries at hand. Itis not at all clear if/how
routers of a large ISP network (along axes such as timethey can be extended to more general settings (such as,
source/destination IP address, etc.); clearly, such a higracking distributedoins or multi-dimensionadata sum-
togram could provide a valuable visualization tool for ef- maries).

fective circuit provisioning, detection of anomalies and o ,r contributions. In this paper, we tackle the problem
DosS attacks, and so on. Interestingly, when tracking stagf continuously tracking approximate, guaranteed-qualit
tistical properties of large-scale systems, answers tieat a 5nswers to aroad, general class of complex aggregate

precise to the last decimal are typically not needed; inqyeriesover a collection of distributed data streams. Our
steadapproximate query answefwith reasonable guaran- qntriputions are as follows.

tees on the approximation error) are often sufficient, since L - .
we are typically looking for indicators or patterns, rather ® Commun|(_:at|0n- and Space-Eff|C|ent Apprommgte
than precisely-defined events. This works in our favor, al-Query Tracking. We present the first known algorithms

lowing us to effectively tradeoff efficiency with approxima foF tracking a broad class of complex data-analysis queries
tion quality. over a distributed collection of streams to specified ac-

curacy, provably, at all times. In a nutshell, our track-
Prior Work.  Given the nature of large-scale monitor- ing algorithms achieve communication and space effi-
ing applications, their importance for security as well asciency through a combination of general-purpaasdom-
daily operations, and their general applicability, it is-su ized sketchefor summarizing local streams, and concise
prising that very little is known about solutions for many sketch-prediction modef®r capturing the update-stream
basic distributed-monitoring problems. The bulk of re- behavior at local sites. The use of prediction models, in
cent work on data-stream processing has focused on dearticular, allows our schemes to achieve a natural notion
veloping space-efficient, one-pass algorithms for performof stability, rendering communication unnecessary as long
ing a wide range otentralized, one-shot computatioms  as local data distributions remain stable (medictablg.
massive data streams; examples include computing quafhe end result is a powerful, general-purpose approximate
tiles [15], estimating distinct values [13], counting ftespt ~ query tracking framework that readily incorporates selvera
elements (i.e., “heavy hitters”) [4, 20], approximatinggea  complex data-analysis queries (including join and multi-
Haar-wavelet coefficients [14], and estimating join sizesjoin aggregates, and approximate wavelet/histogram repre
and stream norms [1, 2, 11]. As already mentioned, alkentations in one or more dimensions), thus giving the first
the above methods work in a centralized, one-shot settingrincipled, low-overhead tracking solution for such qasri
and, therefore, do not consider communication-efficiencyn the distributed-streams model. In fact, as our analy-
issues. More recent work has proposed methods that careis demonstrates, the worst-case communication cost for
fully optimize site communication costs for approximating simple cases of our protocols is comparable to that of a
different queries in a distributed setting, including quan one-shot computation, while their space requirement is not
tiles [16] and heavy hitters [19]; however, the underly- much higher than that of centralized, one-shot estimation
ing assumption is that the computation is triggered eithemethods for data streams.

periodically or in response to a one-shot request. SUc Time_Efficient Sketch-Tracking Algorithms, and Ex-
techniques are not immediately applicable ontinuous- yangjons to Other Streaming ModelsWhen dealing with
monitoring where the g_oal is to continuously proy|de real- massive, rapid-rate data streams (e.g., monitoring high ca
time, guaranteed-quality estimates over a distributed COlpacity network links), théime needed to process each up-
lection of streams. date (e.g., to maintain a sketch summary of the stream) be-
Closest in spirit to our work are the recent results of Ol-comes a critical concern. Traditional approaches that need
ston etal. [3, 21], Das et al. [8], and our recent work on dis-to “touch” every part of the sketch summary can quickly
tributed quantile tracking [6]. All these efforts considlee = become infeasible. The problem is further compounded in
tradeoff between accuracy and communication for moni-our tracking schemes that need to continuously track the
toring a limited class of continuous queries (at a coordinadivergence of the sketch from an evolving sketch predic-
tor site) over distributed streams (at remote sites). Mordion. We address this problem by proposing a novel struc-
specifically, Olston et al. [3, 21] consider tracking approx ture for randomized sketches that allows ugjt@rantee
imate topk values and simple aggregates (eAYERAGE  small (i.e., logarithmic) update and tracking tim@egard-
or MAX) over dynamically-changing numeric values spreadess of the size of the sketch), while offering the same (in



fact, slightly improved) space/accuracy tradeoffs. Ferth streams that incrementally render a collection of (upsto)
more, we discuss the extension of our distributed-trackinglistinctfrequency distribution vecto(gquivalently, multi-
schemes and results to different data-streaming modéls thaets) f, ;, ..., f, ; over data elements from correspond-
place more emphasis on recent updates to the stream (usiimg integer domaingU;] = {0, ..., U; — 1}, fori = 1,
eithersliding-windowor exponential-decagechanisms). ..., s; that is, f, ;[v] denotes the frequency of element

« Experimental Results Validating our Approach. We ¢ € [Ui] observed locally at remote sife As an example,
perform a thorough set of experiments with our schemed? the case of IP routers monitoring the numbef 6P con-
over real-life data to verify their benefits in practical sce N€ctions andJDP packets exchanged between source and
narios. The results clearly demonstrate that our algosthmdestination IP addresse#/,| = [U] denote the domain
can result in dramatic savings in communication — reducOf 64-bit (source, destination) IP-address pairs, #ig,
ing overall communication costs by a factor of more thanf2,; capture the frequency of specific (source, destination)
20 for an approximation error of only0%. The use of so- Pairs observed iiCP connections andDP packe}}s routed
phisticated, yet concise, sketch-prediction models isteey through routey. (We usef; ; to denote both thé" update
obtaining the best results. Furthermore, our numbers shogt’€am at sitg' as well as the underlying element multi-
that our novel schemes for fast local sketch updates anget/frequency distribution in what follows.) Each stream
tracking can allow each remote site to process many hurPdate at remote sitgis a triple of the form< 4, v, £1 >,

dreds of thousands of updates per second, matching evé&l#noting an insertion (#1”) or deletion (*-1") of element
the highest-speed data streams. v € [Uj] inthe f, ; frequency distribution (i.e., a change
of &1 in v’s net frequency inf; ;). All frequency distri-

bution vectorsf, ; in our distributed streaming architec-
ture change dynamically over time — when necessary, we
make this dependence explicit, usifig; (¢) to denote the

2 Preliminaries state of the vector at time(assuming a consistent notion
of “global time” in our distributed system). (The unquali-
fied notationf, ; typically refers to theurrentstate of the
frequency vector.)

Throughout, we have chosen to omit all proof argument
due to space constraints.

System Architecture.  We consider a distributed-
computing environment, comprising a collection/ofe-
mote sitesand a designatedoordinator site Streams
of data updates arrive continuously at remote sites, whilé’roblem Formulation. Foreach € {1,..., s}, we define

the coordinator site is responsible for generating approxithe global frequency distribution vectof; for thei*" up-
mate answers to (possibly, continuous) user queries poseéthte stream as the summation of the corresponding local,
over theunionsof remotely-observed streams (across allper-site vectors; that igf;; = Z?Zl f: ;- Note that, in gen-
sites). Following earlier work in the area [3, 6, 8, 21], our eral, the local sub-streams for a stregimmay only be ob-
distributed stream-processing model does not allow direcserved at subsebf thek remote sites —we use t es(f;)
communication between remote sites; instead, as illestrat to denote that subset, and write = |si t es(f;)| (hence

in Figure 1, a remote site exchanges messages only with; < k). Our focus is on the problem of effectively answer-
the coordinator, providing it with state information on its ing user queries over this collection of global frequency
(locally-observed) streams. Note that such a hierarchicadistributions f,, ..., f, at the coordinator site. Rather
processing model is, in fact, representative of a largesclasthan one-time gquery evaluation, we assume a continuous-
of applications, including network monitoring where a cen-querying environment which implies that the coordinator
tral Network Operations Center (NOC) is responsible forneeds taontinuously maintaior, track) the approximate
processing network traffic statistics (e.g., link bandwidt answers to user queries as the local update streggms
utilization, IP source-destination byte counts) colldcé  evolve at individual remote sites. More specifically, we fo-
switches, routers, and/or Element Management Systemaus on a broad class of user querigs= Q(f, ---, fs)
(EMSs) distributed across the network. over the global frequency vectors, including:

e Inner- and Tensor-Product Queries (i.e., Join and Multi-
User Query Qff i, .)——— Global Streams| . Join Aggregates)Given a pair of global frequency vectors
Approximate Answer f f f1. o over the same data domdii], theinner-product
for Q(fi, i, ...) U-1 .
J queryQ(fy1, fo) = f1- fo =20 F1lv] - falv] isthe
result size of an (equi)join query over the corresponding

~~
St R e stel streams (i.e.|f, < f,|). More generaltensor prod-

uct queries@(fi! fla fm7 ) = fz fl' fm over

multiple (domain-compatible) frequency vectofs, f;,

local update sireams local update stream fm, - - capture the result size of the corresponding multi-
_ join query f;, > f;, < £, --- (see, e.g., [11]); here the
Figure 1:Distributed Stream Processing Architecture. notion of a “frequency vector” is generalized to capture a

(possibly)multi-dimensionafrequency distribution (i.e., a
tenso). For instance, in the three-way join quefy- f-
Each remote sitg € {1,..., k} observes local update f; =", > fi[u]- falu,v] - f3[v], the f, vector cap-




tures the joint distribution of the two attributes of stregim  larger error tolerances for the approximate answers at the
participating in the join. Without loss of generality, waeo  coordinator imply smaller communication overheads to en-
tinue to view such multi-dimensional frequency tensors asure continuous approximate tracking.

vectors (e.g., assuming some standard linearization of thBandomized Stream Sketching. Techniques based on
tensor entries, such as row-major). In the relational worldgmgajl-space pseudo-randeketchsummaries of the data
join and multi-join queries are basically the “workhorse” haye proved to be very effective tools for dealing with mas-
operations for correlating two or more data sets. Thus, theyjye, rapid-rate data streams in a centralized setting [, 1
play a crucial role in any kind of data analysis over mul- 14 11]. The key idea in such sketching techniquesiis to rep-
tiple data collections. Our discussion here focuses PHMalesent a streaming frequency vecfausing a much smaller

iy on join and multi-join result sizes (i.eQOUNT aggre-  sietchvector (denoted bgk(f)) that can be easily main-
gates), since our approach and results extend to other agsined as the updates incrementally rendeffirage stream-
gregate functions in a relatively straightforward manmasr ( ing by. Typically, the entries of the sketch vectdt(f))
discussed in [11]). are appropriately-defingandom variablesvith some de-

e L,-Norm Queries (i.e., Self-Join SizeSheself-join size ~ Sirable properties that can provide probabilistic guaest
query for a (global) strearfi, is defined as the square of the for the quality of the data approximation.

Lo norm (| - ||) of the corresponding frequency vector; that ~ More specifically, consider the AGMS (or, “tug-of-
is, Q(f:) = ||fill? = £ - f: = >, (F:[v])2. The self-join war”) sketches proposed by Alon, Gibbons, Matias, and
size represents important demographic information about &2€gedy in their seminal papers [2,'1]the i*" entry in
data collection; for instance, its value is an indicatiothaf ~an AGMS sketctsk(f) is defined as the random variable
degree of skew in the data [2]. SV Flv] - &v), where{&[v] s v € [U]} is a family of
four-wise independent binary random variables uniformly
distributed in{—1, +1} (with mutually-independent fam-
ilies used across different entries of the sketch). The key
. . . b here is that, using appropriate pseudo-random hash func-
in the given range; that isR(f;,a,b) = >_,_, filv] tions, each such family can be efficiently constructed on-
A point queryis the. special case of a range query whenjine in small (i.e.,O(log U)) space [2]. Note that, by

a = b. Theheavy hittersare those points € U; satisfy-  cqngtryction, each entry sk(f) is essentially aandom-

ing R(f;,v,v) > ¢- R(f;,0,U; —1) (i-e., their frequency ;o4 jinear projectior(i.e., an inner product) of the vec-
exceeds ab-fra}ctlon of the overall number of stream ele- ;. (using the corresponding family), that can be eas-
ments) for a giver < 1[4, 5]. ily maintained over the input update stream: Start with
e Histogram and Wavelet Representations. histogram  each countesk(f)[{] = 0 and, for eachi, simply set
query H(f;, B) or wavelet queryiV (f,, B) over a fre-  sk(f)[i] = sk(f)[i]+ &v] (sk(f)[i] = sk(f)[i]— &[v])
quency distributionf, asks for aB-bucket histogram rep- whenever an insertion (resp., deletion).ois observed in
resentation, or a@-term (Haar) wavelet representation of the stream. Another critical property is tlgearity of such

the f, vector, respectively. The goal is to minimize the er- sketch structures: Given two “parallel” sketches (buik us
ror of the resulting approximate representation, typycall ing the samet families) sk(f,) andsk(f,) and scalars
defined as theL, norm of the difference between the «, (3, thensk(af,+03f,) = ask(f)+Bsk(f,) (i.e., the
H(f,;, B) or W(f,, B) approximation and either the true sketch of a linear combination of streams is simply the lin-
distribution f;, or thebest-possibles-term representation ear combination of their individual sketches). The follow-
of f, [14, 22]. ing theorem summarizes some of the basic estimation prop-
erties of AGMS sketches (for centralized streams) that we
gemploy in our study. (Throughout, the notatiere (y+ z)

is equivalenttdz — y| < z.)

e Range Queries, Point Queries, and Heavy Hittews.
range querywith parameterga, b] over a frequency dis-
tribution f, is the sum of the values of the distribution

The distributed nature of the local streams comprisin
the global frequency distributionsf,;} raises difficult al-
gorithmic challenges for our approximate query tracking
problems. Naive schemes that accurately track query arfheorem 2.1 ([1, 2]). Let sk(f,) and sk(f,) denote
swers by forcing remote sites to ship every remote streamwo parallel sketches comprisir(g(eé log(1/4)) counters,
update to the coordinator are clearly impractical, sincepyilt over the streamsf, and f,, wheree, 1 — § de-
they not only impose an inordinate burden on the underlynote the desired bounds on error and probabilistic confi-
ing communication infrastructure (especially, for higlter  dence, respectively. Then, with probability at least 4,
data streams and large numbers of remote sites), but a|€ﬁsk(f1) —sk(fo)|l? € (1 xe)||f, — fol|? andsk(f,) -
drastically limit the battery life of power-constrained re sk fa) € (Ff1- Fa £ €llf1llllf2]]). The processing time

mote devices (such as wireless sensor nodes) [10, 18]. fequired to maintain each sketch@(e% log(1/4)) per up-
main part of our approach is to adopt the paradigm of congate.

tinuous tracking ofpproximategquery answers at the coor- o _
dinator site with strong guarantees on the quality of the apThus, the self-join of the difference of the sketch vec-
proximation. This allows our schemes to effectively trade- LOur techniques and results can also be extended to othem

off communication efficiency and query-approximation ac-stream sketching methods, such as @mint-Min sketchegs]; due to
curacy in a precise, quantitative manner; in other wordsspace constraints, details are omitted.




tors gives a high-probabilitye relative-error estimate served locally, then a site may send a coneisge-update

of the self-join of the difference of the actual streamsmessage in order to update the coordinator with more re-
(so, naturally,||sk(f)]|> € (1 £ ¢)||f1]/*); similarly,  centinformation about its local update stream, and then re-
the inner product of the sketch vectors gives a high-sumes monitoring its local updates (Figure 1). Such state-
probability estimate of the join of the two streams to update messages typically comprise a small sketch sum-

within an additive error of||f,||||f-||. ? To provide

e relative-error guarantees for the binary join qudty -
f2, Theorem 2.1 can be applied with error bouid=
(ellf1MIFf21D/(f1 - f2), giving a total sketching space re-
quirement o@(% log(1/4)) counters [1].

The results in Theorem 2.1 can be extended in a natu-
ral manner to the case of multi-join aggregate queries [11]

Given anm-way join (i.e., tensor-product) quer@(f,
vois F) = f1 - fo--- f,ny @nd corresponding paral-
lel AGMS sketch vectorsk(f,), ..., sk(f,,) of size
O(Z log(1/6)) (built based on the specific join predi-

cates in the query [11]), the inner product of the sketche

1" ;sk(f;) can be shown to be within an additive error of
e(2m~1 — 1)211, || ;|| of the true multi-join result size.
The full development can be found in [11].

3 Our Query-Tracking Solution

mary of the offending local stream(s) (along with, possi-
bly, additional summary information), to allow the coor-
dinator to continuously maintain accurate approximate an-
swers to user queries. Our tracking scheme depends on
two parameters andd, where:e captures the error of the
local sketch summaries communicated to the coordinator;
and, § captures (an upper bound on) the deviation of the
local-streamlL, norms at each remote site involved in the
guery since the last communication with the coordinator.
The overall error guarantee provided at the coordinator is
given by a functiory(e, 8), depending on the specific form

é)f the query being tracked. It is important to note, how-

ever, that the local constraints at each remote site are es-
sentially identical (i.e., simply trackingz-norm deviations

for individual streams)regardlessof the specific (global)
guery being tracked; as our results demonstrate, the combi-
nation of small sketch summaries and local constraints on
the streaml., norms at individual sites is sufficient to pro-

The goal of our tracking algorithms is to ensure strong er~ide high-probability error guarantees fobeoad class of
ror guarantees for approximate answers to queries over tfilieriesover the global streamgf; : i = 1, ..., s}. To

collection of global stream$f, : ¢ = 1, ..., s} at the
coordinator, while minimizing the amount of communi-

the best of our knowledge, this work is the first to provide
such ageneral-purposdistributed-tracking mechanism for

cation with the remote sites. We can also identify otheraPproximate query answers.

important design desiderata that our solution shouldestriv

for: (1) Minimal global information exchanges- schemes
in which the coordinator distributes information on the

Intuitively, largerf values allow for larger local devi-
ations since the last communication and, so, imply fewer
communications to the coordinator. But, for a given er-

global streams to remote sites would typically need to re-for tolerance, the size of theapproximate sketches sent

broadcast up-to-date global information to sites (eitheer p

during each communication is larger (singg, 6) is in-

riodically or during some “global resolution” stage [3, 8]) creasing in both parameters). We provide some analysis
to ensure correctness; instead, our solutions are designégt allows us to optimally divide the allowed query-error

to explicitly avoid such expensive “global synchronizatio
steps; (2)Summary-based information exchanrgerather
than shipping complete update streaff)s to the coordi-

tolerance in simple cases, and provide empirical guidsline
for more complex scenarios based on our experimental ob-
servations.

nator, remotes sites only communicate concise summary A local sketch summargk (f; ;(t)) communicated to

information (e.g., sketches) on their locally-observed up
dates; and, (3ptability— intuitively, the stability property

the coordinator gives anc-@pproximate) picture of the

snapshot of thef; ; stream at time.® To achievestability,

means that, provided the behavior of the local streams at reét crucial component of our solutions are conc&etch-

mote sites remains reasonably stablegcdictablg, there

prediction modelshat may be communicated from remote

is no need for communication between the remote sites angit€s to the coordinator (along with the local stream sum-

the coordinator.

maries) in an attempt to accurately capture the anticipated

tirely by each individual remote sitgcontinuously moni-
toring only theL, norms of itslocal update streamgf, .
1 =1,...,s}. When a certain amount of change is ob-

2We note that the above “inner product” operator over sketaiors
is slightly more complex, involving both averaging and nagdselection
operations over the sketch-vector components [1, 2]. — &lymeach
sketch vector can be viewed as a two-dimensionat m array, where
n = O(E%), m = O(log(1/6)), and the “inner product” in the sketch-
vector space for both the join and self-join case is defined as
n

n (> sk(f )il sk(f2)li il

[N ) i—1

each sitgj and the coordinator to share a prediction of how
the streany’; ; evolves over time. The coordinator employs
this prediction to answer user queries, while the remote sit
checks that the prediction is close (witfilounds) to the
actual observed distributiofi, ;. As long the prediction
accurately captures the local update behavior at the remote
site, no communication is needed. Taking advantage of the
linearity properties of sketch summaries allows us to rep-

3To simplify the exposition, we assume that communicatioith the
coordinator are instantaneous. In the case of non-triekys in the un-
derlying communication network, techniques based on staeping and
message serialization can be employed to ensure correcteem [21].



resent the predicted distribution using a congisedicted In our tracking scheme, to minimize the overall commu-
sketch thus, our predictions are also based solely on connication overhead, remote sites can also potentially ship a
cise summary information that can be efficiently exchangeaoncisesketch-prediction moddbr their local updates to
between remote site and coordinator when the model if, (in addition to their local-stream sketches) to the co-
changed. A high-level schematic of our distributed tragkin ordinator. The key idea behind a sketch-prediction model
scheme is depicted in Figure 2. The key insight from ouris that, in conjunction with the communicated local-stream
results is that, as long as local constraints are satisfied, t sketch, it allows the coordinator to construcpeedicted
predicted sketches at the coordinator are basically equivask?(f; ;(¢)) for the up-to-date state of the local-stream
lent tog(e, 0)-approximate sketch summariekthe global  sketchsk(f; ;(¢)) atany future time instarit based on the

data streams. locally-observed update behavior at the remote site. The
coordinator then employs these collectionspoédicted
sketchessk?(f; ;) to continuously track an approximate
M Prediction used b answer to the distributed-join query. (We discuss différen
T " coordinator for options for sketch-prediction models in Section 3.2). Fix a
Predicted . duery answering site j € sites(f;) (Wherei € {1,2}). After shipping
Distribution Predicted \ its local sketchsk(f, ;) and (possibly) a corresponding
Sketch Prediction error sketch-prediction model to the coordinator, sjiteontin-

/‘ tracked by sites uously monitors theL, norm of the deviation of its local,

. / \ f up-to-date sketchk(f; .(t)) from the corresponding pre-

— E——— dicted sketchsk?(f, ;(t)) employed for estimation at the
rue Sketcl y

True Distribution coordinator. The site checks the following condition at ev-
ery time instant:

Figure 2:Schematic of Sketch-Prediction-Based Tracking. lIsk(f: (1) —skP(f,;(1))]] < 0

Vi

hat is, a communication to the coordinator is triggereg onl

In the remainder of this section, we discuss the details o%f the relative Lo-norm deviation of the local, up-to-date

our distributed query-tracking schemes, and our pmposegketchsk(fi /(t)) from the corresponding predicted sketch
sketch-prediction models for capturing remote-site behav s 7 Ik — Isi Th d
ior. In addition, we introduce a simple, yet very effective, Xce€dsyz- (recall, k; = [si tes(f;)[). The pseudo-

improvement of the basic AGMS sketching technique thaode for processing stream updates and tracking local con-
plays a crucial role in allowing remote sites to track theirStraints at remote sites, as well as providing approximate
local constraints over massive, rapid-rate streanguigr- ~ answers at the coordinator is depicted in Figure 3. The

[Isk(f5 ;DI (%)

anteed small timeer update. following theorem demonstrates that, as long as the local
Lo-norm deviation constraints are met at all participating
3.1 The Basic Tracking Scheme sites for the distributegf, - f, join, then we can provide

strong error guarantees for the approximate query answer

We present our tracking scheme focusing primarily On(based on the predicted sketches) at the coordinator.

inner-product and generalized, tensor-product (i.e. timul
join) queries, since our results for the other query classeSheorem 3.1. Assume local-stream sketches of size
discussed in Section 2 follow as corollaries of the inner-O(; log(1/4)), and lets; = Yiesites(s,) SKP(fi;) (i €
product case (Section 3.4). We focus on a singleer- 11 21y Also, assume that, for each remote sjtee

product (i.e., join) quen@(fy, f,) = f1 - fo overour jtes(f,) (i € {1,2}), the condition (*) is satisfied. Then,
distributed-tracking architecture. Consider a remote sit \y;ip probability at leastl — 2(k; + k2)8

| participating in the distributed evaluation , SN
e o o o nd that. 51792 € 1 Fark (4 (1 P+ 07 = D)IIF 152
each such site maintains AGMS sketches on its locally

observed sub-streamg, ; and/or f, ;. (we often omit |5 other words, using local sketches of size
the "AGMS” qualification in what follows). If each par- O(EL2 1Og(k1fw;kz)), satisfying the localL,-norm devi-
ticipating site sends the coordinator itp-to-datelocal-  ation constraints at each participating remote site essure
stream sketchesk (f, ;(t)) and/orsk(f, ;(t)), then, by  that the approximate answer for the join sigg- £, com-
sketch linearity, the coordinator can simply compute thepyted using only the predicted sketches at the coordinator
up-to-date sketches of the global streastsf;(¢)) = s within an absolute error ofgq (e, 8)||f,]]| f»|| of the
>_;sk(f;;(t)) (i =1,2), and provide an approximate an- exact answer. Note that these error guarantees are very
swer to the join query at timewith the error guarantees  similar to those obtained for the much simpler, centralized
specified in Theorem 35. case (Theorem 2.1), with the only difference being the

. . _ 2
4This also assumes an initial “coordination” step where eachote approximation-error bound OgQ (6’ 9) = F (1 + E)

2 ~ ianon i iB
site obtains the size parameters for its local sketcheshermbiresponding (1 + )" —1) ~ € + 20 (ignoring quadratic terms in,
hash functions (same across all sites) from the coordinator 6 which are typically very small since,§ <« 1). The




sites. Such models are part of the information exchanged

Procedure SiteUpdate(y,i,v, +1,¢,9, 0, k; . .
P Uyi, v N ) between the remote sites and the coordinator so that both

Input: Site indexj, stream index, inserted/deleted value e [U];

sketch error, confidence, and local-deviation parametet®; parties are “in-sync” with respect to predicted query ressul
“distribution factor”k; for stream. and local-constraint monitoring. If our prediction models
1. UpdateSketclsk (f; ;), < i,v,+£1>) //update currentand result in predicted sketche&?(f, ;) that are sufficiently
2. UpdatePredictedSketefKP(fLJ(t))) lipredicted sketches ~ close to the true state of the local sketches at gitien
3. if [[sk(f, ;) —skP(f,;(t)]] > THSK( i.;)| then no communication is required between sitend the coor-
4 Compute sketch- predlcnon modsl edModel (£, ) dinator. Thus, it is critical to keep sketch-predlc'qon mod
5. Send(i,j,sk(f, ), predMdel (f, )} to coordinator els concise and, yet, powerful enough to effectively cap-
turestability properties in our distributed-tracking environ-
Procedure EstimateJoin(i d(£,),i d(f.,)) ment® In each case, our prediction models consider how
Input: Global-stream identifierisd (f,),i d(f5). the local distributionf, ; changes (as a function of time)
Output: Approximate answer to join-size quefy - f.. between the time of the last communication to the coordi-
1. fori:=1to2do natort,., and the current time; then, we show how to
2. Setsk?(f;(1)):=0 translate this model to a model for predicting the change
3. for eaghﬂ € S'_t_es(pfz‘) do ) in the sketchof f, ; over time (Figure 2). As we will see,
‘51' returm Ssip((?(g))).-_sskkp((fi(( )))) +sk?(f:,;(t) the linearity propemes of sketches play a crucial role in
: 1 2 the design of space-, time-, and communication-efficient

Figure 3: Procedures for (a) Sketch Maintenance and TrackingSketch-prediction models.

at Remote Sitg € si tes(f,) (i € {1,2}), and (b) Join-Size  Static Model. Our simplest prediction model is ttatatic
Estimation at the Coordinatort denotes current time) mode] which essentially assumes that the local-stream dis-
tribution f, ; remains static over time; in other words, our

following corollary gives the adaptation of our tracking prediction for the distributiory; ; at the current time in-
result for the special case ofself-join queryQ(f,) =  stantt (denoted byf? ;(¢)) does not change over the time
||f1||2 = Zu(fl[v])g' intervalt — tprev: or fﬁj(t) = fi,j(tprev)- This |mpI|es
Corolary 32 Assume acabsueam sktches of szl 05 BEUCn SV () SHnlr o o
O(% log(1/4)), and lets; = KP(fy ). If ; . .

(5 log(1/9)). and et Ljesites(s,) SK(F1,5) shipped from sitg; thatis,sk?(f, ;(t)) = sk?(f? .(t)) =
each remote sitg € si t es(f;) satisfies the condition (*), N g .
then with probability at least — 2k;6, [|s1]|? € [1 £ (e+ sk(f; ;(tprev))- Such a prediction model is trivial to im-
(14 )2 ((1+60)2 = )|IF1]12 = (1 £ (e+ 20))]| 411 plement essentially requiring no additional information

be exchanged between the coordinator and remote sites

Extension to Multi-Joins. The analysis and results for (besides the sites’ local sketches).

our distributed-tracking scheme can also be extended to theinear-Growth Model. Due to its simplistic nature, the
case of distributednulti-join (i.e., tensor-product) queries. static model can only achieve stability in very “easy” and
More formally, consider am:-way distributed joinQ(f, somewhat unrealistic scenarios, namely when all frequency
covs fm) = F1 - f2--- f,, and corresponding parallel counts in thef; ; remain reasonably stable. This is clearly
sketchessk(f; ;) built locally at participating siteg € not the case, for instance, when local frequency counts are
U™, sites(f;) (based on the specific join predicates in growing as more updates arrive at remote sites. In such
Q, as detailed in [11]). As shown in the following theo- cases, a reasonable “strawman” model is to assume that
rem, simply monitoring thd..-norm deviations of local- the future of the local distribution will resemble a scaled-
stream sketches is sufficient to guarantee error bounds farp version of its past; that is, assume tifat; (¢) has the

the predicted-sketch estimates at the coordinator that aame shape ag; ;(t,-») With proportionately more ele-
very similar to the corresponding bounds for the simple,ments. Our secondinear-growth models based on this
centralized case (see Section 2). assumption, setting“ﬁj(t) = %fi,j (tprev). i-€., USING

prev

Theorem 3.3. Assume parallel local-stream sketches of@ linéar scaling off; ;(¢,r.,) to predict the current state

sizeO(% log(1/6)), and lets; = 3 coites(s) sk?(f, ;) of the distribution. (Scallng by time makes sense, e.g., in

(i = 15 m). If each remoté7 sitej cei tes(f‘ ) a synchronous-updatesvironment, where updates to re-

satisfies the condition (*), then with probability at least mote sites arrive .reg.ular!y at each time tick) BY sketch

1 — 25 ko, the predicted-sketch estimalg” s, at linearity, this easily implies that the corresponding pre-
- i=1 154

i i i — P —
the coordinator lies in the rang8?, f,+ (e+ (1 + ¢)™ dlfted sketch is S'mprkp(fw(.t)) = sk(fi;() =
(1 + o)™ )) (2m—1 — )QHmle | ~ I, fot tmwsk(fi7j(tprev)),ahnearscallng of the most recent lo-

(e +mb) (2 = DI [ £

5A similar notion of prediction models was introduced for #pecific
o problem of tracking one-dimensional quantiles in [6]; @&, we focus on
3.2 Sketch-Prediction Models tracking general-purpose randomized sketch summarieatafdistribu-

. . . " tions. Such notions of models are very different from thosid0]: there,

We give different options for the sketch- prEd'Ct'on mod- models are used in a sensor network to optimize the cost dfiagiry

els employed to describe local update behaviors at remotghe-shot queries by polling specific sensors.



cal sketch offv; ; shipped to the coordinator (and no ad- information exchanged between the sites and the coordina-
ditional information need be exchanged between sites antbr, and the corresponding predicted sketches).
the coordinator).

Velocity/Acceleration Model. Although intuitive, our | '\g(::t?l | |n;o. | F;rs?}Cte?tSke;():h |
linear-growth model suffers from at least two important Cnear-Growih 0 n Ski(} P(T;” )
shortcomings. First, it predicts the future behavior of the i tprev ij\'prev
stream as a linear scaling of the entire history of the disf ~ Velocity/ | sk(vi;) | Sk(fi;(tprev)) + Atsk(vi;)
tribution, whereas, in many real-life scenarios, only the r L_Acceleration +(At)’sk(ai,;)

cent history of the stream may be relevant for such predicA

tions. Second, it imposes a linear, uniform rate of chang%f our inner-product tracking scheme as a function of the

over the entire frequencydls_tnbutlon vector, and, thag,—c overall approximation error at the coordinator under some
not capture or adapt to shifts and differing rates in the

distribution of updates over the vector. Our finagloc- simplifying assumptions.

ity/acceleration modedddresses these shortcomings by ex-Theorem 3.4. Assume our static prediction model for an
plicitly attempting to build a richer prediction model that inner-product quenQ(f,, f,) = f1 - fo (With ¢, 4, 6,
uses more parameters to better fit changing data distriband ; as defined earlier), and let = gg (e, 0) ~ € + 26
tions; more specifically, letting\t = ¢ — ¢,,...,, our veloc-  denote the error tolerance at the coordinator. Then, for
ity/acceleration model predicts the current state ofthe  appropriate settings of parametersand 6 (specifically,
distribution asf? () = f, ;(tprev) + Atv; j+ (At)a;;, € = 22, 0 = ¥), the worst-case communication cost for
where the vectors; ; anda; ; denote avelocityandac-  a remote sitgj processingV; local updates to streanf; ;
celeration component (respectively) for the evolution of . O(@log(ﬁ)logN-) '

the f, . stream. Again, by sketch linearity, this implies v? 0 I

the predicted sketcBk?(f; ;(t)) = sk(f;;(tprev)) +  That is, assuming that the “distribution factors] of
Atsk(v; ;) + (At)?sk(a; ;). Thus, to build a predicted streams in the join query are reasonably small, the worst-
sketch at the coordinator under a velocity/acceleratiortase communication cost even for our simplest prediction
model, we need a velocity sketetk(v; ;) and an accel- model is comparable to that ofeme-shosketch-based ap-
eration sketctsk(a; ;). A concrete scheme for comput- proximate query computation with the same error bounds
ing these two sketches at sifés to maintain a sketch on (Theorem 2.1). (Note, of course, that each counter in the
a window of thelW” most recent updates tf, ;; scaling  sketches for sitg is of size O(log N,).) This analysis
this sketch by the time difference between the newest angxtends in a natural manner to the case of multi-join ag-
oldest updates stored in the window gives an appropriatgregates. Providing similar analytical results for our enor
velocity sketch to be shipped to the coordinator, whereagomplex linear-growth and velocity/acceleration modsls i
the acceleration sketch can be estimated as the differenggore complex; instead, we experimentally evaluate differ-
between the recent and previous velocity sketches scaleght strategies for settingand  to minimize worst-case
by the time difference. In detail, when remote sjtéle-  communication over real-life streams in Section 5.

tects a violation of its local.o-norm constraint forf, . at

time ¢, it computes a new velocity sketatk(v; ;) based 3.3 Time-Efficient Tracking: The Fast-AGMS Sketch

on _the window of thaV most recent updates 16, ;, aqd A drawback of AGMS randomized sketches (Section 2) is
estimates a new acceleration sket(a;,;) as the d'f'. that every streaming update must “touch” every compo-
ference be.tweesk(vl-_,j) and th? corresponding velocity nent of the sketch vector (to update the corresponding ran-
sket.c_h at t'mepre”_’ scaled _bym- Note that, the only _domized linear projection). Since sketch-summary sizes
additional model information that needs to be communi-cany vary from tens to hundreds of Kilobytes, especially
cated to the coordinator from siteis the new velocity \hen tight error guarantees are required, e.g., for join or
sketchsk(v; ;) (since the coordinator already has a copymyiti-join aggregates [1, 11], touching every counter in
of the previous velocity sketch and so can independentlyych sketches is simply infeasible when dealing with large
compute the acceleration sketch). Thus, while our richegata rates (e.g., monitoring a high-capacity network link)
velocity/acceleration model can give a better fit for dy-Thjs problem is compounded in our distributed-tracking
namic distributions, it also effectively doubles the ambun gcenario where, for each streaming update, a remote site
of information exchanged (compared to our simpler predicneeds to track the difference between a sketch of the up-
tion models). Furthermore, the effectiveness of our velocyates and an evolving predicted sketch.
ity/acceleration predictions can depend on the size of the oyr proposed Fast-AGMS sketch structure solves
update windowV'. While itis possible to sé” adaptively  this problem by guaranteeingogarithmic-time (i.e.,
for different stream distributions, this problem lies bago O(log(1/5))) sketch update and tracking costs, while of-
the scope of this paper; instead, we evaluate different sefaring essentially the same (in fact, slightly improved)
tings forlV experimentally over real-life data (Section 5). space/accuracy tradeoff as basic AGMS sketches. Our dis-
The following table summarizes the key points for eachcussion is brief since the structure bears similaritiesxto e
of our three sketch-prediction models (namely, the modelsting techniques proposed in the context of different {cen

nalysis. We analyze thevorst-casecommunication cost



tralized) streaming problems (e.g., [4, 12]), althouglafis  norms) — this complexity can easily become prohibitive
plication over the bacic AGMS technique for join/multi- when dealing with rapid-rate update streams and tight
join aggregates is novel and requires a different analysis. error-bound requirements. Fortunately, as the following
A Fast-AGMS sketch for a streaghover[U] (also de- theorem demonstrates, we can reduce the sketch-tracking
noted bysk(f)) comprised x d counters (i.e., linear pro- overhed in onlyO(log(1/6)) per update by computing
jections) arranged id hash tables, each withhash buck- the tracking condition in amcrementalfashion over the
ets. Each hash table= 1, ..., d is associated with (1) a input stream. Our tracking algorithm makes crucial use
pairwise-independent hash functiép() that maps incom- of the Fast-AGMS sketch structure, as well as concise
ing stream elements uniformly over thbash buckets (i.e., (O(log(1/4))-size) precomputed data structures to enable
hy : [U] — [b]); and, (2) a family{¢;[v] : v € [U]} of incremental sketch tracking. We focus primarily on our
four-wise independenf—1, +1} random variables (as in most general velocity/acceleration model, since both the
basic AGMS). To updatsk(f) in response to an inser- static and linear-growth models can be thought of as in-
tion/deletion of element, we use they; () hash functions stances of the velocity/acceleration model with certain pa
to determine the appropriate buckets in the sketch, settinpameters fixed.
Sk(f)[hl(v)al] :Sk(.f)[hl(v)al] igl[v]’ for eachl = 1, . .
... d. Note that the required time per update is ofly), ~ Theorem 3.6. Assuming Fast-AGMS sketches of size
since each update touchesly one buckeper hash table. O(z log(1/9)), the computation of the sketch tracking
Now, given two parallel Fast-AGMS sketchels(f,) and ~ condition (*) at site; can be implemented i (log(1/4))
sk(£,) (using the same hash functions anfamilies), we  time per update, where the predicted sketkh(f; ;(t)) is
estimate the inner produgt - f,, by the sketch “inner prod- computed in the velocity/acceleration model.

uct”: If our tracking scheme detects thafl dound has been vi-

. - . . olated, we must recompute the parameters of the sketch-
sk(£,)-sk(72) 7?51#1&3 {;Sk(fl)[l’ J-sk(F)00 13- prediction model and send sketch information to the
In other words, rather than averaging over independent lincoordinator. Such communications necessarily require
ear projections built over the entif&] domain, our Fast- O( log(1/4)) time, but occur relatively rarely.

AGMS sketch averages ovgartitions of [U] generated .

randomly (through they () hash functions). As the fol- 3.4 Handling Other Query Classes

lowing theorem shows, this results in essentially idehticaWe outline how our results apply to the other query classes
space/accuracy tradeoffs as basic AGMS sketching, whilintroduced in Section 2. The basic intuition is that such
requiring onlyO(d) = O(log(1/0)) processing time per queries can be viewed as special inner products of the dis-
update. tribution (e.g., with wavelet-basis vectors [14]), for whi

sketches can provide guaranteed-quality estimates. The
;LTchgstr-?Agl?/l'SLitkﬂ'z(:(r{ég ?)?ds'frl;;frﬁ% gﬁgo}e t\cvvci’thp%g_l' predicted sketch of ; at the coordinator can be treated as a
rametersh = O(%) and d — O(log(1/5))2, where ¢ g(¢, 0)-approximate sketch of ;, which accounts for both

1 — 5 denote the desired bounds on error and probabilis->KEtching errordg and remote-site deviationg)(

tic confidence, respectively. Then, with probability astea ® Range Queries, Point Queries, and Heavy Hitters.
L= 0, [[sk(fy) = sk(£2)|I” € (L£e)||fy = f|[” and  gVen range quenfz(f,,a,b) can be reposed as an in-
sk(f1) - sk(f2) € (F1 - F2 = el f1]ll|£2I]). The process- ner product with a vectoey, ) where e y[v] = 1 if
ing time required to maintain each sketch(glog(1/6)) @ < v < b, and0 otherwise. This implies the following
per update. theorem.

Note that tighter error tolerances only increase the size Theorem 3.7. Assume local-stream sketches of size
of each hash table, but not the number of hash talbles O(z log(1/9)) and lets; = 3. g esr,) SK?(f; ;). If
(which depends only on the required confidence). Finallyfor each remote sitg € si t es(f;) satisfies the condition
for givene andd, our Fast-AGMS sketch actually requires (*), then with probability at least — k;d, $; - sk(e[q) €
less spacé¢han that of basic AGMS; this is because basicR(fi, a,b) e+ (1+e)2((1+60)2—1))(b—a+1)||f;]-
AGMS requires a total 0D( log(1/4)) hash functions
(one for eache family), whereas our Fast-AGMS sketch ~ An immediate corollary is that point queries can be an-
only needs a pair of hash functions per hash table for a toswered with~ (e + 20)||f,|| error. Heavy-hitter queries
tal of only O(log(1/6)) hash functions. can be answered by asking &l} point queries, and re-
In our solution, each update to the loggl; at sitej  tumning thosev whose estimate exceedsi(f, a,b) (with
requires checking the local sketch-tracking condition onguarantees similar to the centralized, one-shot case [4]).
the L, norm of the divergence of the site’s true sketche Histogram and Wavelet RepresentationsGilbert et
from the corresponding predicted sketch. Implementingal. [14] demonstrate how to useapproximate sketches to
such a sketch-tracking scheme directly over local sketchefind B-term Haar-wavelet transforms that carry at ldast
of size O(% log(1/6)) would imply a time complexity of the energy of besB-term representation if this repre-
of O(4 log(1/8)) per update (to recompute the required sentation has large coefficients. In our setting, the skattch

-----



the coordinator is essentially(¢, #)-approximate sketch; Alternate Sketch-Prediction Models. We outlined three
thus, our analysis in conjunction with Theorem 3 of [14], distinct approaches to sketch prediction, each building pr
imply that our schemes can track a- g(¢, #) approxima-  gressively richer models to attempt to capture the behav-
tion to the bestB-term wavelet representation at the co- ior of local stream distributions over time. Our most so-
ordinator. Similarly, Thaper et al. [22] show how to use phisticated model explicitly tries to model both first-orde
e-approximate sketches to find an approximate histogranii.e., “velocity”) and second-order (i.e., “acceleratipef-
representation with error at most+ Be times the error of  fects in the local update-stream rates while increasing the
the bestB-bucket multi-dimensional histogram. Combin- amount of sketching information communicated to the co-
ing our results with Theorem 3 of [22], we have a schemeordinator by a factor of only two. One can envisage other
for tracking al 4+ Bg(e, #) approximation to the bedB- models of evolving local distributions, and translatingsh
bucket multi-dimensional histogram. into predicted sketches by applying the linearity progsrti
of the sketch transformation. Other variations are alse pos
. sible. Thus far, our models operate on whole sketches at
4 Extensions a time; it is possible, however, to design “finer-grained”
We consider modifications to accommodate answeringnodels that consider different parts of the distributiop-se
gueries based only on recent updates, and incorporatingrately. For instance, individual data elements with high
different query models. counts in thef, ; distribution carry the highest impact on
o ) _ o the norm of the distribution. Thus, we can separate such
Sliding Windows and Exponential Decay.In the sliding  “heayy-hitter” elements from the rest of the distributiorla
window case, the current distributigfy is limited to only  model their movements separately (e.g., tracking an accel-
those updates occurring within the last time units, for  eration model), while using a sketch only for tracking the
some fixed value of,,. We modify the tracking condition:  remainder of the distribution. Once a local constraint is
the remote sites build a sketch of the most re¢gntime  yjolated, then it may be possible to restore the constraint
is vy|th|n 0 error of the interval norm. The role of.the CO- jtems, instead of shipping an entire sketch — clearly, this
ordinator remains the same: to answer a query, it uses th@ay drastically reduce the amount of communication re-
predicted sketch, as above. In the case that the site is ngjired. At a high level, this approach is similar to the idea
space-constrqmed, th_e remote site can buffer the updates “skimming sketches” of Ganguly et al. [12], but for the
that occurred in the window. When the oldest update  purpose of decreasing communication rather than increas-
the buffer is more that,, time units old, it can be treated ing accuracy. We will explore such sketch-skimming ap-

as an update: i, v, —1 > to f,. The effect of the original proaches in the full version of this work.
update ofv is subtracted from the sketch, and so the sketch

only summarizes those updates within the windowt.of .
Using the above efficient tracking method, the asymptotic5 Experimental Study
cost is not altered in the amortized sense, since each updaiel Testbed and Methodology

is added and later subtracted once, giving an amortized cog, implemented a test system that simulated running our
of O(log(1/4)) per update. _ ~ protocols in C.5 Experiments were run on a single ma-
The exponential decay model is a popular alternative tQhine, simulating the actions of each bfsites and the
the sliding window model (see, e.g., [14]). Briefly, the cur- coordinator. For each experimental simulation, all remote
rent distributionf;(t) is computed a¥f;(t) = A" f,(t')  sites used the same class of prediction model with the same
for a positive decay constant < 1 — for example, tracking parameters 6.
A = 0.950r0.99. Updates are processed as before, S0 e report the results of experiments run on data sets
an updatev meansf;(t)[v] < f;(t)[v] + 1. Asinthe  grawn from the Internet Traffic Archive [17], representing
sliding window case, the action at the coordinator is UN-HTTP requests sent to servers hosting the World Cup 1998
changed: given a suitable model of how the (exponentiallyyyep Site. Servers were hosted in four geographic loca-
decayed) distribution changes, the coordinator uses #e pPrtions. Therefore, we modeled this system with four remote
dicted sketch to answer queries. At the remote site, thgjtes, one handling requests to each location. We tracked
tracking condition is again checked. Since the decay opefne relations defined by this sequence of requests, using the
ation is a linear transform of the input, the sketch of the de«gpjectiD” attribute as the attribute of interest. This see
cayed distribution can be computed by decaying the sketchy good approximation of many typical data sets, taking on a
sk(f;(t)) = A'="'sk(f;(t")) Applying this directly would  |arge number of possible values with a non-uniform distri-
mean the tracking operation takes tifig+; log(1/6)), but  bution. We obtained similar results to those reported here
by devoting some extra space to the problem, we can traclighen using different data sets and settings.
the condition in timeD(log(1/4)) again. In summary, Throughout, we measure taemmunication cosas the
ratio between the total communication used by a protocol

Theorem 4.1. The sketch tracking condition (*) can be (ijn pytes) divided by the total cost to send every update in
tracked in timeO(log(1/4)) per update in both the sliding

window and the exponential decay streaming models. 6Throughout, we set the probability of failuré= 1%.
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Figure 4:Experiments on real data: (a) Tradeoff between the parasteemde. (b) Effect of varying the window size used to estimate
the “velocity” sketch. (¢) Communication cost as numberpdates increase.

full (in bytes). For example, if our protocol sent 3 sketches sensitive to the setting di’: too small or too large, and
each of which was 10KB in size, to summarize a set ofthe overall communication cost is noticeably worse than
50,000 updates, each of which can be represented as a 32thie best value. The static model gets close to the worst
integer, then we compute the communication cost as 15%¢ost, while the linear growth model does quite well, but
Our goal is to drive this cost as low as possible. Whenstill about a third more than the best velocity/acceleratio
measuring the accuracy of our methods, we compute amodel. For this data set, irrespective of tite, #) value the
estimated resulést, and (for testing) compute the exact best setting ofV is in the range 10000-100000. Therefore,
answer¢rue. The error is then given bg%:stl, which  for the remainder of our experiments, we focus on the ve-
gives a fraction, 0% being perfect accuracy. locity/acceleration model withl” = 20000.

Communication cost. We look at how the communica-
tion cost evolves with time in Figure 4 (c), using the ve-
Setting Parameters and TradeoffsFirst, we investigated |ocity/acceleration model. This experiment was performed
the tradeoff between parameterandé in order to guar-  on a larger data set from a week of HTTP requests to the
antee a given global error bound, and the setting of the paworld Cup data sets, totaling over 50 million updates. We
rameterV for the velocity/acceleration model. We took see that the cost is initially high, as the remote site adapts
one day of HTTP requests from the World Cup data setto the stream, but as the number of updates increases, then
which yielded a total of 14 million requests. Figure 4 (a) the requirement for communications drops. For the higher
shows the effect of varyingandd subject toe + 20 = ¢, error bounds, there are long periods of stability.
for ¢ = 10%, 4%, and 2% error rate. In each case, we ) ]
verified that the total error was indeed less than The ~ Accuracy of Approximate Query Answers. Our first set
communication cost is minimized far roughly equal to of experiments focused on the communication cost of our
0.55:. Our analysis in Section 3.2 showed that for a worstProposed protocols. We now consider the accuracy they
case distribution under the static modeshould be around Provide for answering queries at the coordinator, and the
0.66%. In practice, it seems that a slightly different balancetime cost at the remote sites. In Figure 5 (a), we plot the
gives the lowest cost, although the trade-off curve is veryefTor in answering queries at the coordinator based on pro-
flat-bottomed, and settingbetween).3y and0.7+ gives ~ C€sSing the one_day of data from the World Cup data set.
similar bounds. We have shown the curves for the velocHiere, we have fixed, and plotted the observed accuracy
ity/acceleration model withV = 20000; curves for the for computing the size of a self-join asvaries when we
different models and different settings Bf look similar.  have processed all updates. We show with a heavy line the
For the remainder of our experiments, weset 0.5y and ~ Worst case error bound+- 26 = g(e, 0).
6 = 0.25¢, giving g(e, 0) ~ 1. In Figure 5 (b), we attempt to separate the sketch error
In Figure 4 (b), we show the effect of varying the win- from the tracking error, by computing the approximation
dow size W for the velocity/acceleration model on the we would get if the remote site sent the sketch of its current
communication cost for three values 9f= ¢ + 26. In  distribution to the coordinator when the self-join queryswa
order to show all three models on the same graph, we haveosed. In this figure, we have subtracted this error from the
shown the static model cost as the leftmost point (plot-total error to give an indication of how much error is due to
ted with a cross), since this can be thought of as the vetracking ag) varies. The negative values seen in the results
locity/acceleration model with no history used to predictfor the velocity/acceleration model indicate that the agrsw
velocity. Similarly, we plot the cost of the linear growth given by using this prediction model at the coordinator is
model as the rightmost point on each curve (marked withactually more accurate than if the coordinator requested
an asterisk), since this can be thought of as using the wholeach site to send it a sketch at query time. This shows an
history to predict velocity. We see that for the best settingunexpected benefit. Our worst-case bounds must assume
of the window size the velocity/acceleration model outper-that the errors from sketching and tracking are additive, bu
forms both the other models by at least a third, but it isin some cases, these errors can partizlycel out For the

5.2 Experimental Results
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Figure 5: Experiments on quality of the results: (a) Overall estimatijuality when fixingd and varyinge. (b) Estimation quality
due to tracking delay after error from sketch is subtracasd, varies. (c) Timing cost, comparing fast tracking methodperdforming

sketch estimation every step, for static and acceleratiotets.

static case, we more clearly see the trend for the trackinggme, and communication.

error to decrease #sdecreases to zero.

Timing Results. Lastly, we consider the time cost of our References

tracking methods. We compared the implementation of ourl[il
methods using Fast-AGMS sketches and our fast sketch-
tracking scheme against the same prediction models imple-
mented with a naive tracking method with time complex- [3]
ity linear in the sketch size (Figure 5 (¢)). The commu-
nication cost and accuracy of these two versions was the ¥
same in all cases. For smallthe fast velocity/acceleration [5]
method becomes more expensive because, while update op-
erations are still fast, recomputing the sketches whektrac
ing bounds are broken begins to contribute more signif-
icantly to the overall cost. For > 3%, the cost was [7]
roughly 36 seconds for the static model, and 50 seconds
for the more complex velocity/acceleration model to pro- 8]
cess all 14 million updates. This is an average overheadI
of 3 microseconds per update on our experimental setup (d°]
2.4GHz Pentium desktop computer).

Experimental Conclusions. Our experiments show that
significant communication savings are possible: with a;tn]
approximation factor of 10%, the communication cost ca

be less than 3% of the cost of sending the information di-
rectly to the coordinator. The time overhead is minimal, al12]
few microseconds to update the necessary tracking strucﬁ3]
tures, which typically consume a few kilobytes per sketch,
plus space to store a recent history of updates. The vei4]
locity/acceleration model gives the best performance, pro
vided enough information about the streams is known 1G5
choose a good setting of the window paraméterfailing

this, the linear growth model provides adequate results, an[16]
requires no additional parameters to be set.

[10]

[17]
(18]
6 Conclusions

We have presented novel algorithms for tracking comple>f19]
gueries over multiple streams in a general distributed set-
ting. Our schemes are optimized for tracking high-speed
streams, and result in very low processing and communi
cation costs, and significant savings over naive updatings;
schemes. Our key results show that any query that can be
answered using sketches in the centralized model can Bé?
tracked efficiently in the distributed model, with low space
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