
Substring Compression Problems

Graham Cormode∗ S. Muthukrishnan†

Abstract

We initiate a new class of string matching problems
called Substring Compression Problems. Given a string
S that may be preprocessed, the problem is to quickly
find the compressed representation or the compressed
size of any query substring of S (Substring Compression
Query or SCQ) or to find the length ` substring of
S whose compression is the least (Least Compressible
Substring or LCS problem).

Starting from the seminal paper of Lempel and Ziv
over 25 years ago, many different methods have emerged
for compressing entire strings. Determining substring
compressibility is a natural variant that is combinato-
rially and algorithmically challenging, yet surprisingly
has not been studied before. In addition, compressibil-
ity of strings is emerging as a tool to compare biological
sequences and analyze their information content. How-
ever, typically, the compressibility of the entire sequence
is not as informative as that of portions of the sequences.
Thus substring compressibility may be a more suitable
basis for sequence analysis.

We present the first known, nearly optimal algo-
rithms for substring compression problems—SCQ, LCS
and their generalizations—that are exact or provably
approximate. Our exact algorithms exploit the struc-
ture in strings via suffix trees and our approximate
algorithms rely on new relationships we find between
Lempel-Ziv compression and string parsings.

1 Introduction

In their seminal paper over 25 years ago, Ziv and Lem-
pel [ZL77] presented a “universal” method for compress-
ing any string S of characters, and proved information-
theoretic properties of their compression scheme (which
we will henceforth denote ZL77). Shortly thereafter,
Rodeh, Pratt and Even [RPE81] showed that ZL77 can
be implemented very efficiently, in fact, in time only
linear in the string length, |S|. This was a powerful ap-

∗graham@dimacs.rutgers.edu Center for Discrete Mathemat-

ics and Computer Science (DIMACS) Rutgers University, Piscat-
away NJ. Supported by NSF ITR 0220280 and NSF EIA 02-05116.

†muthu@cs.rutgers.edu Division of Computer and Informa-

tion Systems, Rutgers University, Piscataway NJ. Supported by
NSF EIA 0087022, NSF ITR 0220280 and NSF EIA 02-05116.

plication of the linear time algorithm for constructing a
suffix tree of S [Wei73]. ZL77 and its numerous variants
have had a significant impact in theory and practice,
and are now classical lore. Nevertheless, there are cer-
tain simple, natural variants of string compression that
do not seem to have been studied. For example, given
a string: how compressible are different substrings?;
which of its substrings are the most or the least com-
pressible?; how many substrings are highly compressible
or what is the total compressibility of all ` length sub-
strings? In this paper we initiate the study of such sub-
string compression problems. Compression is no longer
a tool for saving space alone; in recent analyses of bi-
ological sequences compression is used to compare se-
quences and study their information content. In such
cases, substring compressibility may be a more suitable
basis than entire sequence compressibility because even
though entire biological sequences do not compress well,
parts thereof do. Thus the substring compression prob-
lems, besides being natural variants of the fundamental
problem of string compression, will be useful for search-
ing the “information structure” in biological sequences.

1.1 Overview of Lempel-Ziv Algorithm
Let S denote the string of length |S| formed from
the concatenation of characters S[1], S[2] . . . S[|S|]. Let
S[i, j] denote the substring of S beginning at location
i of length j − i + 1. The algorithm ZL77 works
by parsing the string greedily from left to right. At
each step, the algorithm has parsed the string S[1, i],
and parses the longest substring S[i + 1, j] such that
S[i+1, j] occurs as a substring of S[1, i]. Formally, this
is the algorithm LZSS [SS82]. Our algorithms can all be
adapted to work on other variants of the ZL77 scheme
in a straightforward way, with different constants in
the approximation algorithms, so we focus on this basic
version.

By compressed size of string S, we will mean
the number of phrases found by the ZL77 algorithm
while compressing S. This is because we assume
that S is coded using constant number of words per
parsed phrase, and we count the number of words for
the compressed size. So, up to constant factors, the
compressed size of S is the number of phrases. We
denote this as LZ(S). For the empty string ε, we define

LZ(ε) = 0. For single characters a, LZ(a) = 1. For
all strings S such that |S| ≥ 2, 2 ≤ LZ(S) ≤ |S|.
The Lempel-Ziv encoding of S in the context of R,
written LZ(S|R), is computed by running the Lempel-
Ziv encoder on the concatenated string R||S, but only
outputting the encoding of the S part (we do not allow
phrases to cross the boundary between the two strings).
Hence, this is equivalent to LZ(R$||S)−LZ(R$), where
$ does not appear in R or S.

1.2 Problems
Formally, the problems are as follows. Consider a string
S of symbols from a binary alphabet1. We consider two
specific substring compression problems.

Problem 1: Substring Compression Query (SCQ). We
are allowed to preprocess string S. Each query is
(i, j) and we are required to output the compressed
representation of substring S[i, j] by ZL77. A variation
is the Substring Compression Size Query (SCSQ) where
we need to only output the compressed size C[i, j]
and not necessarily the compressed representation. We
will also consider the generalized SCQ (GSCQ) where
each query is (α, β, i, j) and we are required to output
the compressed representation of substring S[i, j] by
ZL77 with the context S[α, β] (that is, compression of
S[i, j] in S[α, β]||S[i, j]). We call S[α, β] the context
for the query. As before, in the General Substring
Compression Size Query (GSCSQ) we need to only
output the compressed size Cα,β [i, j] and not necessarily
the compressed representation.

The goal is to optimize the preprocessing space and
time, and yet make queries fast. For example, for SCQ,
we want better tradeoffs than the two trivial extremes:
(1) preprocess and store LZ[i, j] and C[i, j] for each
[i, j] which takes at least Ω(|S|2) preprocessing time
and space. This answers queries in optimal time, but is
prohibitive over long S’s. (2) Do no preprocessing and
run the best known ZL77 compression algorithm over
S[i, j] when queried. This takes Ω(|S|) query time which
is not as responsive as one would like, especially when
many queries are posed in succession and the queries
are long string segments.

(G)SCSQ and (G)SCQ are versatile tools for ex-
ploring the compressibility structure of a string. For
example, using this we can solve problems such as: find
the total compressibility of all `-length substrings (which
is a new measure of string compressiblity of interest pa-
rameterized by `); find the context S[α, β] that results
in most compression of all `-length substrings; find all

1We can generalize the results without additional complexity
for larger alphabets, even those whose size is polynomial in |S|.

substrings that have compressed size at least m; com-
pare any two susbtrings based on their relative com-
pressibility or compressibility with respect to an arbi-
trary context; find the context that best differentiates
any two given substrings based on their relative com-
pressibility with the context, etc. For batched problems
where we seek compressibility of several substrings si-
multaneously, we may be able to improve on using the
CSQs many times once for each substring. Our second
problem studies such a batched problem.

Problem 2. Least Compressible Substring Problem
(LCS). We are given S and a parameter `. Our goal
is to find the substring of length ` that is reduced the
least by compression out of all substrings of length `.2

Formally, the output is some i where C[i, i + ` − 1] =
maxj C[j, j + ` − 1]. As before, there is a generalized
version of this problem, GLCS, where the query specifies
an arbitrary context S[α, β]. The naive solution is to
compute the compressed size of all O(|S|) substrings of
length ` in time Ω(|S|`). A good solution must be more
efficient than both this naive solution and running the
O(|S|) SCSQs S[j, j + `− 1] for each j.

Throughout, we focus on the Lempel-Ziv compres-
sion technique because ZL77 is a well-studied and prac-
tically useful method which is employed widely. These
questions are also of interest for other compressors. For
example, Run Length Encoding (RLE) is a very sim-
ple compression technique that encodes repeated char-
acters with the character and number of repeats. Since
the encoding does not depend on the surroundings of
the substring, it is trivial to answer SCQ, SCSQ and
LCS queries optimally for RLE after linear preprocess-
ing. As another example, consider Huffman Encoding
which replaces each character with a code whose length
is a function of the relative frequency of that character.
The resulting compression is proportional to the zero’th
order entropy of the string. Using standard data struc-
tures, it is easy to compute the number of occurences
of each character within a query substring and hence
the size of the compressed representation in near opti-
mal bounds. In contrast, there are other popular com-
pression schemes for which the SCQ, SCSQ and LCS
problems are of interest and which we leave open. One
is Burrows-Wheeler Transform (BWT) which is not a
compression technique alone, but is a reversible reorder-
ing of the string which is then passed to a compressor,
such as RLE, MTF (Move To Front), Lempel-Ziv. It
is possible to develop some measures of compressed size
for the BWT and show that the BWT of any suffix of
a string can be related to the BWT of the string itself.

2 The most compressible substring problem is analogous.

From this the compressed size may be efficiently calcu-
lated for simple encoders such as RLE. Still, it is open
to thoroughly understand the BWT of a substring with
respect to that of the entire string. Other include the
Lempel-Ziv-Welch method (LZW); Prediction by Partial
Matching (PPM); solving the SCQ, SCSQ and LCS for
such compressors is left open. See [BCW90] for myraid
compression schemes.

1.3 Motivations
These problems are of interest from a variety of per-
spectives, primarily from recent work in biological se-
quence analysis. The direct application of standard
compression tools to biological sequences is a controver-
sial one. There have been many attempts to use stan-
dard compression techniques to archive and transmit
biological sequences efficiently [GT94, MSIO00]. Ex-
isting approaches often fail to improve significantly on
naive techniques such as representing DNA sequences
with two bits per character (for A,C, G and T). The
best compression results have been found by augu-
menting standard “Lempel-Ziv” style operations with
other operations that mimic mutations on sequences
such as reverse complement copy, and character dele-
tion [CKL00]; still, these do not necessarily result in
significant reductions in space. The conclusion was
that the information bearing sequences (the “coding
regions”) have high-information and are essentially in-
compressible [NMW99]. But, for example, of human
DNA, only 5% consists of coding regions. The remain-
der, initially dismissed as “junk DNA” is now believed
to have a variety of purposes, not all of which are
fully understood yet. These regions have been shown
to be more redundant and consequently can be com-
pressed much better [SYKT01]. Thus, finding regions
of DNA which do not compress well can be indicative
of structure and purpose, and could identify new loci to
study [RDDD97, RDDD94, RDD+97]. This motivated
our work in this paper of developing algorithms that
help explore the substring compressibility in a flexible
way.

In a different biological context, there is a need for
comparing related biological sequences to find areas of
similarity and to give a distance measure for clustering
or building phylogeny trees. The metrics for compari-
son are often defined based on Kolmogorov complexity,
motivated by Occam’s Razor (parsimony), or the prin-
ciple of Minimum Description Length. For example, in
the work of Li et al [LCL+03], the similarity metric is
defined in terms of the Kolmogorov complexity (K()) of
combinations of strings. In order to make such compar-
isons tractable, one must use an efficently computable
substitute for the Kolmogorov complexity, and compres-

sion tools are typically used for this purpose. This
approach has been extensively used for inter-sequence
comparison [BCL02, LCL+03, KLR04, RDDD94], but
not so for intra-sequence comparison, where the goal is
to compare substrings within a string or set of strings.
These computations require information about the com-
pressed size of the substrings and substrings with con-
text, which can be expressed as combinations of our
SCSQ and GSCSQ problems we introduce here.

From a theory perspective, problems relating to
string searching, compression and comparison have ap-
plications to a variety of areas in text editing, storage
and searching [Gus97]. The combinatorial analysis of
string compression algorithms has yielded many deep
and significant results. The problems that we propose
here appear quite natural combinatorial versions of the
basic question of how compressible a string is, but per-
haps surprisingly, we do not know of any nontrivial re-
sults for them. Our work is related to working on com-
pressed pattern matching i.e., finding a (compressed)
pattern within a compressed text [ABF96, FT95], but
our techniques are quite different.

1.4 Overview
Motivated by these applications, we abstract the sub-
string query problems and present the following, first
known algorithms.

• For the (G)SCQ problem, we present an ex-
act algorithm that with O(|S| log |S|) preprocess-
ing, answers any query (i, j) exactly in time
O(C[i, j] log |S| log log |S|). This is sublinear in
query size |S[i, j]| provided the substring is reason-
ably compressible. Also, this is nearly optimal since
the output size is Θ(C[i, j]).

• For the SCSQ problem, we present an approximate
algorithm that takes only O(1) query time. This
algorithm uses O(|S| log2 |S|) preprocessing and for
query S[i, j], outputs Ĉ[i, j] such that Ĉ[i, j] =
O(C[i, j] log |S| log∗ |S|) in constant time.

• For the (G)LCS problem, we give two approximate
solutions. First, we show a O(log |S| log∗ |S|) ap-
proximation which runs in time O(|S| log |S|). Sec-
ond, we give a new algorithm that gives a con-
stant factor approximation in time no more than
O(|S|`/ log `).

All these algorithms are obtained using natural
ideas. The exact algorithm for SCQ uses separator-
decomposition of a suffix tree to make search paths
shorter and then uses two dimensional range search-
ing to rapidly skip over the phrases the ZL77 algorithm
would produce; alternatively, this can be thought of as

binary searching with appropriate range searching ora-
cles. The first approximate algorithms for SCSQ rely on
parsing the string in a locally consistent way. We will
use the simplified parsing described in [CM02, S.V95]
and prove structural properties that relate the ZL77
compression size to the compression produced by this
parsing. An added advantage of this structural rela-
tionship is that our results are more general than quoted
above. For example, if we allow S to be dynamic un-
der insert, delete and modify operations of characters or
blocks, the results can still be generalized. For the LCS
problem, we make use of a combinatorial relationship
between the compression given by the ZL77 algorithm
and more powerful distance measures that can also per-
form standard “edit distance” style operations.

A pertinent question is whether the approx-
imate compression sizes our algorithms determine
will be useful in practice. 3 In general, whether
C[i, j] log |S| log log |S| is more efficient than S[i, j] or
whether an O(C[i, j] log |S| log∗ |S|) approximation es-
timate is longer than |S[i, j]| depends on the relation-
ship between S[i, j] and C[i, j]. For the compression
method we consider (with so-called “overlapping copies”
disallowed) the compressed size of random strings is
Ω(|S|/ log |S|), but for highly repetitive strings, it can
be exponentially smaller. For example, under this ver-
sion of ZL77 the string an has compressed size Ω(log n).
If S were a natural language text or other standard
ASCII file, C[i, j] is often a small constant factor of
S[i, j]; so, our bounds may not be compelling. Our
methods are more applicable when substrings of a string
are compressible to significantly different levels. This
can happen in biological sequences with a significant
proportion of repeats, or in sequences with local peri-
odicities [BCL02, CLMT02]. In such cases, the loga-
rithmic factors in our running times or approximation
ratios may not prove to be a bottleneck. So, from the-
ory and practice points of view, it is important to get
more efficient exact algorithms or better approximations
than the ones we have obtained, in particular with dif-
ferent compression schemes. We leave these questions
open for future work. We believe that both (G)SCQ and
(G)LCS with different compression schemes are natural,
nice data structural problems for the community.

The rest of the paper is arranged as follows. In
Section 2, we present our exact algorithm for the SCQ

3A similar question arose when algorithms were developed

matching patterns against compressed text without uncompress-

ing them [ABF96, FT95]. Since compression for natural text or
most ASCII files was in small constant factors, would even asymp-

totically optimal algorithms not have larger constant overheads?

Over time convincing applications and algorithms have been de-
veloped [GV00, FM00].

problem and in Section 3, we give our approximate
algorithms for SCSQ. We present our approximation
algorithms for the LCS problem in Section 4. In
Section 5 we present concluding remarks.

2 Exact Solutions

2.1 Primitives and Notation
For the exact algorithm, we need a few primitives. First,
given a string S, its suffix tree TS is the compressed
trie of all the suffixes of S (a trie is a natural decision
tree on a set of strings; a compressed trie is one in
which nodes of outdegree one—nodes that form paths
in the tree—are compressed into single edges). Each of
its edges is labeled by some substring of S. Further,
children of a node are sorted left to right in the
increasing lexicographic order of the substrings that
label the paths to them. For any node u in TS , we
let σu be the string obtained by concatenating the
labels on the edges from the root to u in that order.
There is one-to-one correspondence between the leaves
and the |S| suffixes of S. We will label the leaves
l1, . . . , l|S| from left to right. Because of the one-to-
one correspondence, each σli equals precisely one of the
suffixes, say j of S. We let this mapping be denoted
f , i.e., f(i) = j and f−1(j) = i. S[i, |S|] is the ith
suffix denoted Si. Then, σli = Sf(i). Notice that the
suffixes are ordered in the lexicographically increasing
order left to right l1, . . . , l|S|. The suffix tree can be
computed in time linear in |S| by a number of different
algorithms [Wei73, Gus97].

A useful primitive on suffix trees is given two leaves
li and lj , find their least common ancestor (LCA) node
in the tree. This in fact corresponds to finding the
Longest Common Prefix (LCP) between Sf(i) and Sf(j).
LCA queries can be answered in O(1) time after linear
preprocessing of the suffix tree [Gus97]. We also use
range searching algorithms. In our case, the input
is some set P of grid points in two dimensions (i, j),
1 ≤ i, j ≤ |P | for integers i and j. After preprocessing
the set P , we need to answer rectangle range queries,
i.e., are there points in the range [a, b] × [c, d] for
integers a, b, c, d?4 The best known algorithms for
this problem take time O(log log |P |) with O(|P | log |P |)
preprocessing [Aga97, ABR00].

2.2 Algorithms for (G)SCQ
We will start with a general data structural primitive
and show two algorithms for it; later we will use the
primitive to solve (G)SCQs.

4We will need a variant: find one such point if there exist any;
this has similar bounds.

Interval Longest Common Prefix Query
(ILCP). Given a string S for preprocessing, each
query is ILCP ([i, j], k) and needs to determine
the longest common prefix between Sk and any
of the prefixes Si, . . . , Sj . Let |ILCP | be the
length and ILCP the actual prefix. We have
|ILCP ([i, j], k)| = min` |LCP (S`, Sk)|. This problem
is equivalent to determining the deepest node of
LCA(lf−1(i), lf−1(k)), . . . , LCA(lf−1(j), lf−1(k)) If i = j,
the ILCP query is identical to the well-studied LCP
query.

For a fixed [i, j] given a priori, we can solve the
problem for various k in O(1) time by precomputing
all the answers as follows. Marked each leaf lf−1(`) for
i ≤ ` ≤ j and all the nodes on the root to each of
these leaves. This takes O(|S|) time. After that, we
do a bottom-up traversal of the suffix tree and list the
marked node for each leaf the first time we encounter an
ancestor that is marked. ILCP can be determined easily
from this list. The whole preprocessing takes O(|S|)
time.

When [i, j] is part of the query, the marking pro-
cedure takes Ω(|S|) time (the process of detecting the
closest marked ancestor has been studied extensively
and is fast [Gus97].) Instead, we have to take alternate
approaches using the structure of suffix trees.

Randomized Algorithm. We will provide a sketch
here. The algorithm relies on separator decomposition
of the suffix tree. In a tree, a node v in tree T is
called the separator if each of the connected components
induced by removing v from T is of size at most 2|T |/3.
It is well known that every tree contains a separator. A
complete separator decomposition tree D of T is defined
as follows. The root of D is the separator v of T . By
removing v from T , we get rooted trees with roots that
were the children of v as well as the subtree rooted
at the root of T that remains; each of these trees has
a separator and these separators become the children
of the root of D, and so on recursively. The tree D
can be constructed in time linear in |T | and its depth
is O(log |T |). Separator decomposition of a tree has
been used for distributed string matching [Nao91] and
dictionary matching [AFM92]. Here, we can use it for
the SCQ problem.

The main idea is as follows. Consider each separator
v we encounter in tracing down D with S[k, |S|]; there
are at most O(log |S|)) such nodes. Clearly σv is a prefix
of the suffix Sk. So, we would like to determine if σv is a
prefix of S` for i ≤ ` ≤ j. We can phrase this as a range
searching problem. Each internal node v has leaves that
are indexed by a range of values [lL(v), lL(v)+1, . . . , lR(v)].
Now observe that we need to equivalently determine if
L(v) ≤ f−1(`) ≤ R(v) for some `, i ≤ ` ≤ j. In order

to do this, we perform preprocessing to generate an
instance of the two dimensional range searching problem
on the grid as follows. For each leaf li, we generate a
point (i, f(i)). The set of all such points is the point set
P . Now, it suffices to determine if there exists a point in
the range [L(v), R(v)] × [i, j] in the pointset P . This is
precisely the range searching problem we stated earlier
and can be solved in O(log log |S|) time after suitable
preprocessing.

That completes the high level description of the
algorithm. However, implementing it has many de-
tails, chiefly, in Karp-Rabin randomized fingerprint-
ing [KR87] of the substrings of S so that we can quickly
determine the path down the separator tree D by com-
paring fingerprints of long substrings quickly, etc. We
conclude,

Lemma 2.1. There exists a randomized algorithm
that preprocesses the string S in O(|S| log |S|) time
after which ILCP queries can be answered in
O(log |S| log log |S|) time with high probability.

Deterministic Algorithm. Now we will present an
alternate method that gives a deterministic algorithm.
We will adopt the range searching approach above. But
we will focus on the ILCP query in its entirety working
with the suffix tree T and not deal with the separator
nodes or D. We will rewrite the ILCP query as a
series of queries until we reach the basic range searching
query. Observe that ICLP can be solved using both the
following queries:

1. Q: What is the longest common prefix between
S[k, |S|] and a lexicographically larger suffix among
S[i], S[i + 1], . . . , S[j]?

2. Q′: What is the longest common prefix be-
tween S[k, |S|] and a lexicographically smaller suf-
fix among S[i], S[i + 1], . . . , S[j]?

We will focus on Q′ since Q is similar. Observe that
all the suffixes of S that are lexicographically smaller
than S[k, |S|] appear as leaves la in suffix tree T where
a ≤ f−1(k). Hence, Q′ can be recast as:
Q′′: For a given i, j, k and suffix tree T , find the largest
index a such that a ≤ f−1(k) and f(a) ∈ [i, j].
We can now solve our subquery by a series of range
searching queries by doing binary search with various
guesses a∗ for the value a using:
Q′′′: Given a∗, i, j, suffix tree T and point set P
consisting of (i, f(i)) for each leaf li, is there any point
in two dimensional range [a∗, f−1(k)]× [i, j]?
We will do O(log |S|) such range searching queries
in order to find the a. Determining the LCA of la
and lf−1(k) gives the answer to the ILCP query. We
conclude,

(8,12)

a ba

aabababaa $

(4,1) (5,9) (6,7) (7,5)

$

bababaa
abababaa

(2,4) (3,11)(1,3)

a

a

ba

a ba

a baa$abababaa

(10,10) (11,8) (12,6)(9,2)

baa

$

ba

Figure 1: The suffix tree for the string S = abaaabababaa with each leaf labeled with (i, f(i)). Suppose we are computing
the compressed form of S[5, 12], and we have reached k = 9, meaning we want to compress abaa and have already
compressed abab. We are at node (5, 9), and we first search for the node (i, j) with (i < 5, 5 ≤ j ≤ 9) and i as great as
possible. There is no such node. We then search for the node (i, j) with (i > 5, 5 ≤ j ≤ 9) with i as small as possible. This
is satisfied by (6, 7), whose LCP with (5, 9) is length 3, corresponding to the string aba. This advances k to 9 + 3 = 12,
where the process is repeated.

Lemma 2.2. There exists a deterministic algorithm
that processes a string S in O(|S| log |S|) time af-
ter which any ILCP query can be answered in time
O(log |S| log log |S|).

Overall algorithm for SCQ. At the high level, the
algorithm works as follows. Given query S[i, j], we
will simulate the ZL77 algorithm. That is, say it has
“compressed” S[i, k − 1]. Then the subquery is, what
is the longest prefix of suffix S[k, |S|] that appears in
S[i, k − 1]? An example is given in Figure 1. This
subquery is asked C[i, j] times in the ZL77 algorithm.
Note that C[i, j] is a lower bound on the running
time of our algorithms if they have to produce a
compressed representation of the substring query. Each
such subquery can be answered using an ILCP, eg.,
ILCP ([i, k − 1], k) and we conclude:

Theorem 2.1. String S is preprocessed in
O(|S| log |S|) time and space O(|S|). Any SCQ
S[i, j] takes time
O(C[i, j] log |S| log log |S|) where C[i, j] is the com-
pressed size (the number of phrases in ZL77 algorithm)
of S[i, j].

Extensions to generalized versions. Note that the
same bounds follow immediately for the GSCQ problem
as well since our ILCP primitive is quite general. In
addition to the compressed prefix S[i, k], we also must
find the longest match in S[α, β], and pick the longer

of these two. So now we will ask ICLP ([α, β], k) and
ICLP ([i, k − 1], k) queries repeatedly to find the next
phrase. Other extensions, e.g. to multiple strings, also
follow.

3 Approximation Schemes Using ESP

In order to make an approximation of the compressibil-
ity of substrings of a given string, we use a string parsing
technique called Edit Sensitive Parsing (ESP) [CM02].
This has its roots in the deterministic coin tossing
(DCT) of Cole and Vishkin [CV86] and was devel-
oped through a sequence of papers thereafter from the
work of S. ahinalp [S. ah97, S.V96, MS.00]. Previous work
has shown how appropriate counts of substrings gen-
erated by this parsing approximates edit distances be-
tween pairs of strings. In [S.V95], the authors showed
that a string parsing based on DCT generates at most
O(k log k log∗ k) LZ-style phrases if the optimal (greedy)
parsing generates k. We extend this to show how, given
ESP parse tree of a string, we can quickly extract an
approximation of the compressed size of any substring
specified at query time, to the same approximation ra-
tio. Our contributions include a short proof of this fact,
relying on known properties of the parsing, and the use
of this to give the first approximate algorithms for LCS
(in near linear time) and SCQ problems (queries take
constant time).

The parse method takes a string, S, and generates
a parse tree whose leaves are the individual characters

of the string in order. Each internal node has outde-
gree 2 or 3, and hence the tree has height O(log |S|).
Concatenating all the leaves in the subtree induced by
a node forms a substring of S. We precompute the pars-
ing of the whole string (which takes time O(|S| log |S|)),
extract information about substrings using the subtree
they induce.

Definition 1. The ESP subtree corresponding to the
substring S[i, j] is the subtree of the ESP tree of S
containing the leaf nodes corresponding to S[i] to S[j],
and all of their ancestors. ST (S[i, j]) is the set of all
substrings corresponding to internal nodes in this tree.
An example ESP tree and subtree is shown in Figure 2.

Lemma 3.1. |ST (S[i,j])
O(log |S| log∗ |S|) ≤ C[i, j] ≤ 3|ST (S[i, j])|

Proof. The proof of the upper bound relies only on
the fact that the parsing generates a tree parsing of the
string with bounded degree (equal to three), and that
|ST (S[i, j])| counts the number of unique substrings
generated by this parsing. Since T has outdegree at
most three, then so must any subtree of it. The
proof is based on a charging argument: we build the
string S[i, j] using copy and insert character operations,
and charge each operation to an entry of ST (S[i, j]).
The construction begins at the root of the subtree,
and proceeds to walk the tree in a top-down, left-to-
right fashion. At an internal node whose substring we
have not charged to before, charge three units to the
substring, and give one unit each of the node’s children.
If the substring of the current node has been charged to
before, then it must have been built already, somewhere
to the left. This can be copied at unit cost, using
the credit passed to the node, and the node is not
searched further. At a leaf, the corresponding character
is inserted at unit cost, paid with the credit for that
node. Thus S[i, j] is built left-to-right, using copies from
the left and character insertions in at most 3|ST (S[i, j])|
operations. Since a greedy parsing of C[i, j] phrases, is
optimal [SS82] then C[i, j] ≤ 3|ST (S[i, j])|.

For the lower bound, we show that each copy and
character insert operation to build S[i, j] has only a
limited effect on the number of distinct nodes in the
ESP subtree of the substring. We omit full details; a
similar argument to that in [CM02] shows that each
operation adds at most O(log |S| log∗ |S|) nodes at each
level. Since only C[i, j] operations are needed to build
S[i, j], this bounds the number of added nodes.

Theorem 3.1. The LCS problem can be approximated
in time O(|S| log |S|). The answer is approximated up
to a factor of O(log |S| log∗ |S|).

a b a a a b a b a b a a

Figure 2: ESP tree for the string S = abaaabababaa.
The subtree for S[5, 12] is highlighted. ST (S[5, 12]) =
{bab, ab, aa, abab, abaa, abababaa}. So |ST (S[5, 12])| = 6;
C[5, 12] = 6 in this case also.

Proof. We apply Lemma 3.1 repeatedly, and iteratively
compute the estimate of C[i+1, i+`] from the estimate
of C[i, i + ` − 1]. There are at most O(|S|) distinct
strings in the parsing of S, each of which can be
identified in time O(1) using the Karp-Miller-Rosenberg
labeling of the string [KMR72] (pre-computed in time
O(|S| log |S|)). We create and maintain a vector, V , of
length O(|S|) which records the current multiplicity of
strings in ST (S[i, i+`−1]). To advance to S[i+1, i+`],
adjust information about the substrings on path from
the root of the tree to S[i], and on the path from the
root to S[i + `]. There are at most O(log |S|) such
strings, and so updating their counts in the vector
V takes time O(log |S|). If any count drops to zero,
decrease the count of |ST (S[i, i + ` − 1])| by one, and
if any count increase from zero, increment the count
appropriately. Following this adjustment, |ST ([i +
1, i + `])| is computed in time O(log |S|), which by
Lemma 3.1 is an O(log |S| log∗ |S|) factor approximation
of C[i + 1, i + `]. Computing this for the whole string
takes time O(|S| log |S|), which bounds the overall time
cost for this algorithm.

Theorem 3.2. The SCQ problem can be solved with
O(|S| log2 |S|) time preprocessing and O(|S| log |S|)
space. Each query is answered in O(1) time approxi-
mate to a factor of O(log |S| log∗ |S|).

Proof. Use the method in the above proof to compute
|ST (S[i, i + ` − 1]) for all i and values of ` = 2a for
a = 1 . . . blog |S|c. Store these estimates as L[i, a].
For query (i, j), find the unique ` = 2a such that
2a ≤ (j−i+1) < 2a+1 and output L[i, a]+L[j−2a+1, a].
Observe

|ST (S[i, j])| ≥ max(L[i, a], L[j − 2a + 1, a])
≥ (L[i, a] + L[j − 2a + 1, a])/2

|ST (S[i, j])|
≤ |ST (S[i, i + 2a − 1]|+ |ST (S[j − 2a + 1, j])|
= L[i, a] + L[j − 2a + 1, a].

Thus we find a constant factor approximation of
|ST (S[i, j])|, which in turn is a O(log |S| log∗ |S|) ap-
proximation of C[i, j], as claimed. The preprocess-
ing makes log |S| LCS queries, and stores O(|S| log |S|)
precomputed values in time O(|S| log2 |S|). Answering
queries requires computing a and summing two stored
values, which can be carried out in constant time in the
standard RAM model.

Extension to GLCS and GSCQ. The same ap-
proach extends to the generalized version of the prob-
lem where additional context is given. Cα,β [i, j] is ap-
proximated by |ST (S[i, j])\ST (S[α, β])|, up to the same
O(log |S| log∗ |S|) factor. Given S[α, β], one can apply
the same method to solve the GLCS problem, omit-
ting to count any nodes that are present in ST (S[α, β]).
The time to solve this problem is still bounded by
O(|S| log |S|). From this, the same preprocessing then
allows (i, j) to be specified at query time and Cα,β [i, j]
to be approximated in time O(1). However, this re-
quires Õ(|S[α, β]|) preprocessing time: it remains open
to allow (α, β, i, j) to be specified at query time and to
approximate GSCQ in sublinear time.

Tighter Bounds. These are not the tightest bounds
possible for this approach, in terms of the constants
inside the big-Oh notation, and asymptotically: it is
possible to improve factors of log |S| log∗ |S| to factors
of log ` log∗ ` in the approximation bounds, where ` is
the length of the substring in question, and further, to
log(`/k) log∗ `, where k is the compressed size of the
substring. We omit detailed proofs of these claims: they
follow fairly straightforwardly by analogy with previous
work [CM02] but do not greatly affect the “big picture”
of our results here.

4 Constant Factor Approximation for GLCS

To give a constant factor approximation to the LCS
problem, we use a relation between the ZL77 algorithm
and a more powerful measure of string compressibility,
where in addition to substring copies, we can addition-
ally insert and delete characters (thus this naturally ex-
tends to other compression methods, eg those motivated
by computational biology, which additionally include
such operations).

Theorem 4.1. (From [EMS.03, SS03]) Let d(R,S)
denote the “block edit distance” between strings R and
S. The distance is the minimum number of (a) Char-
acter insertions and deletions; (b) Block copies; and (c)
Block deletions needed to transform R into S. For some
constant c,5 d(R,S) ≤ LZ(S|R) ≤ c · d(R,S)

5 In [EMS.03], it is shown that c ≤ 12. [SS03] tries to reduce
this to 4, but the published version contains an error.

Lemma 4.1. 1
cCα,β [i, j] − k − 1 ≤ Cα,β [i + k, j + k] ≤

c · (Cα,β [i, j] + k + 1)

Proof. We apply Theorem 4.1 with the string R set
to be S[α, β] and write d(x) for d(S[α, β], x). Then
d(S[i, j]) ≤ Cα,β [i, j] ≤ c · d(S[i, j]). It is the case that
d(S[i, j]) ≤ d(S[i + k, r + k]) + k + 1, since S[i, j] can
be built by first building S[i + k, j + k], then inserting
S[i, i + k − 1] at the start with k character inserts
and deleting S[j + 1, j + k] from the end with one
delete operation: a total of k + 1 operations. Similarly,
d(S[i + k, j + k]) ≤ d(S[i, j]) + k + 1, by a symmetrical
argument. Using the above theorem,

Cα,β [i + k, j + k]) ≤ c · d(S[i + k, j + k])
≤ c · (d(S[i, j]) + k + 1)
≤ c · (Cα,β [i, j] + k + 1)

Cα,β [i + k, j + k]) ≥ d(S[i + k, j + k])
≥ d(S[i, j])− k − 1
≥ 1

cCα,β [i, j]− k − 1

If z = Cα,β [i, j], then for ∀k < z
2c , say, z is a

constant factor (2c2+c) approximation to Cα,β [i+k, j+
k]. To approximate GLCS, compute z = Cα,β [1, `], then
advance to S[1 + z/2c, ` + z/2c], and iterate. Output
the string that achieves the smallest value of z, which
is approximates GLCS by a constant factor. Since this
approximates GLCS, it trivially answers LCS queries
by setting S[α, β] = ε, the empty string. Let m
denote the compressed size of the most compressible
substring of length `. The algorithm advances at
least O(m) characters at each step, so the running
time is O(|S|`/m) = O(|S|`/ log `) for LCS queries,
since for our version of ZL77 (without overlaps), m is
Ω(log `) phrases. The naive algorithm which computes
the compressed cost of every substring of length ` is
asymptotically more expensive, with cost Ω(|S|`).

It might seem that Cα,β [i, j] should be very similar
to Cα,β [i+1, j +1], but in fact the compressed sizes can
differ by a constant factor, even with an empty context:

Example. Consider strings drawn from the alpha-
bet σ = {a0, a1, a2 . . . an}. Let Ri = a1a2 . . . ai

and Sn = Rna0R1a0R2a0 . . . a0Ria0Ri+1 . . . Rn. Then
LZ(a0Sn) = LZ(a0Rn) + n = 2n + 1. But LZ(Sna0) =
LZ(Rn) + 2n + 1 = 3n + 1. As n grows, the ratio of
these two costs tends to 3

2 . With some extra work, this
example can be converted to a constant size alphabet
to show that the constant factor difference applies there
also.

5 Concluding Remarks

Even though the basic string compression methods
emerged more than 20 years ago, natural variants of
substring compression had not been previously stud-
ied. In this paper, we have initiated the study of sub-
string compression problems (G)SCQ and (G)LCS, and
provided some exact and some approximate algorithms.
Besides improving our approximations and getting more
efficient exact algorithms, the problem can be studied
with compression oracles other than ZL77. In particu-
lar, one may consider the same problem assuming that
the recently-popular Burrows-Wheeler method [BW94]
or PPM [BCW90] were used for compressing strings.
The (G)SCQ and (G)LCS problems were formulated
to study within string structures, especially in the do-
main of biological sequence analysis. No implementa-
tion work has yet been carried out. It is possible that
significant performance improvements can be achieved
for these applications. It will also be interesting to see
the role of ESP-style parsings on real biological data
since they have many nice properties relating to ZL77
compression as described here, and to block edit dis-
tances as shown earlier [S.V95, MS.00, CM02].

Acknowledgements. We thank Christian Worm
Mortensen for pointers on range searching bounds.

References

[ABF96] A. Amir, G. Benson, and M. Farach. Let sleeping
files lie: Pattern matching in Z-compressed files. Jour-
nal of Computer and System Sciences, 52(2):299–307,
1996.

[ABR00] S. Alstrup, G. S. Brodal, and T. Rauhe. New
data structures for orthogonal range searching. In
Danielle C. Young, editor, Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science,
pages 198–207, 2000.

[AFM92] A. Amir, M. Farach, and Y. Matias. Efficient
randomized dictionary matching algorithms. In Pro-
ceedings of the 3rd Annual Symposium on Combinato-
rial Pattern Matching, number 664 in Lecture Notes in
Computer Science, pages 262–275, 1992.

[Aga97] P. Agarwal. Range searching. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry. CRC Press, 1997.

[BCL02] D. Benedetto, E. Caglioti, and V. Loreto. Lan-
guage trees and zipping. Physical Review Letters,
88(048702), 2002.

[BCW90] T. C. Bell, J. G. Cleary, and I. H. Witten. Text
Compression. Prentice Hall, 1990.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical Report
SRC-RR-124, Hewlett Packard Laboratories, 1994.

[CKL00] X. Chen, S. Kwong, and M. Li. A compression
algorithm for DNA sequences and its applications in
genome comparison. In Proceedings of the 4th Annual
International Conference on Computational Molecular
Biology (RECOMB-00), pages 107–107, 2000.

[CLMT02] X. Chen, M. Li, B. Ma, and J. Tromp. DNA-
Compress: Fast and effective DNA sequence compres-
sion. Bioinformatics, 18(12):1696–1698, 2002.

[CM02] G. Cormode and S. Muthukrishnan. The string edit
distance matching problem with moves. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 667–676, 2002.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing
and accelerating cascades: micro and macro techniques
for designing parallel algorithms. In Proceedings of the
18th Symposium on Theory of Computing, pages 206–
219, 1986.

[EMS.03] F. Ergun, S. Muthukrishnan, and S. C. S. ahinalp.
Comparing sequences with segment rearrangements.
In Proceedings of the 23rd Conference on Foundations
of Software Technology and Theoretical Computer Sci-
ence, 2003.

[FM00] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, pages 390–398, 2000.

[FT95] M. Farach and M. Thorup. String matching in
Lempel-Ziv compressed strings. In Proceedings of the
twenty-seventh annual ACM Symposium on Theory of
Computing, pages 703–712, 1995.

[GT94] S. Grumbach and F. Tahi. A new challenge for com-
pression algorithms: genetic sequences. Information
Processing and Management, 30(6):875–886, 1994.

[Gus97] D. Gusfield. Algorithms on Strings, Trees and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, 1997.

[GV00] R. Grossi and J. S. Vitter. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. In Proceedings ACM Symposium on
the Theory of Computing, pages 397–406, 2000.

[KLR04] E. Keogh, S. Leonardi, and C. A. Ratanama-
hatana. Towards parameter free data mining. In Pro-
ceedings of ACM SIGKDD, 2004.

[KMR72] R. M. Karp, R. E. Miller, and A. L. Rosenberg.
Rapid identification of repeated patterns in strings,
trees and arrays. In Proceedings of the 4th Symposium
on Theory of Computing, pages 125–136, 1972.

[KR87] R. M. Karp and M. O. Rabin. Efficient random-
ized pattern-matching algorithms. IBM Journal of Re-
search and Development, 31(2):249–260, 1987.

[LCL+03] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi. The
similarity metric. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
863–872, 2003.

[MS.00] S. Muthukrishnan and S. C. S. ahinalp. Approximate
nearest neighbors and sequence comparison with block
operations. In Proceedings of the 32nd Symposium on
Theory of Computing, pages 416–424, 2000.

[MSIO00] T. Matsumoto, K. Sadakane, H. Imai, and
T. Okazaki. Can general-purpose compression schemes
really compress DNA sequences? In Currents in Com-
putational Molecular Biology, pages 76–77, 2000.

[Nao91] M. Naor. String matching with preprocessing of
text and pattern. In Proceedings of the 18th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 510 of Lecture Notes in
Computer Science, pages 739–750, 1991.

[NMW99] C. G. Nevill-Manning and I. H. Witten. Protein
is incompressible. In Proc. IEEE Data Compression
Conference, pages 257–266, 1999.

[RDD+97] E. Rivals, O. Delgrange, J.-P. Delahaye,
M. Dauchet, M.-O. Delorme, A. Henaut, and E. Ol-
livier. Detection of significant patterns by compression
algorithms: the case of approximate tandem repeats in
DNA sequences. Comp. Appl. BioSci, 13(2):131–136,
1997.

[RDDD94] E. Rivals, O. Delgrange, M. Dauchet, and J-
P. Delahaye. Compression and sequence comparison.
In Proceedings of DIMACS Workshop on Sequence
Comparison, 1994.

[RDDD97] E. Rivals, M. Dauchet, J. Delahaye, and O. Del-
grange. Fast discerning repeats in DNA sequences with
a compression algorithm. In Proc. Genome Informatics
Workshop, pages 215–226, 1997.

[RPE81] M. Rodeh, V. R. Pratt, and S. Even. Linear
algorithm for data compression via string matching.
Journal of the ACM, 28(1):16–24, 1981.

[S. ah97] S. C. S. ahinalp. Locally consistent parsing for string
processing. PhD thesis, University of Maryland, 1997.

[SS82] J. A. Storer and T. G. Szymanski. Data compression
via textural substitution. Journal of the ACM, 29(4),
1982.

[SS03] D. Shapira and J. Storer. Large edit distance with
multiple block operations. In 10th International Sym-
posium on String Processing and Information Retrieval
(SPIRE), volume 2857 of Lecture Notes in Computer
Science, 2003.

[S.V95] S. C. S. ahinalp and U. Vishkin. Data compression
using locally consistent parsing. Technical report, Uni-
versity of Maryland Department of Computer Science,
1995.

[S.V96] S. C. S. ahinalp and U. Vishkin. Efficient approximate
and dynamic matching of patterns using a labeling
paradigm. In Proceedings of the 37th Symposium
on Foundations of Computer Science, pages 320–328,
1996.

[SYKT01] H. Sato, T. Yoshioka, A. Konagaya, and T. Toy-
oda. DNA data compression in the post genome era. In
Proceedings of Genome Informatics 12, pages 512–514,
2001.

[Wei73] P. Weiner. Linear pattern matching algorithm. In
Proceedings of the 14th Annual IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, IT-23:337–343, 1977.

	Introduction
	Overview of Lempel-Ziv Algorithm
	Problems
	Motivations
	Overview

	Exact Solutions
	Primitives and Notation
	Algorithms for (G)SCQ

	Approximation Schemes Using ESP
	Constant Factor Approximation for GLCS
	Concluding Remarks

