
Fast Mining of Massive Tabular Data via
Approximate Distance Computations

Graham Cormode
Dept of Computer Science
University of Warwick, UK

grahamc@dcs.warwick.ac.uk

Piotr Indyk
Computer Science Lab

MIT, Cambridge MA, USA
indyk@theory.lcs.mit.edu

Nick Koudas S. Muthukrishnan
AT&T Research

Florham Park NJ, USA
koudas,muthu@research.att.com

Abstract

Tabular data abound in many data stores: traditional re-
lational databases store tables, and new applications also
generate massive tabular datasets. For example, consider
the geographic distribution of cell phone traffic at different
base stations across the country or the evolution of traffic
at Internet routers over time . Detecting similarity patterns
in such data sets (e.g., which geographic regions have sim-
ilar cell phone usage distribution, which IP subnet traffic
distributions over time intervals are similar, etc) is of great
importance. Identification of such patterns poses many con-
ceptual challenges (what is a suitable similarity distance
function for two “regions”) as well as technical challenges
(how to perform similarity computations efficiently as mas-
sive tables get accumulated over time) that we address.

We present methods for determining similar regions in
massive tabular data. Our methods are for computing the
“distance” between any two subregions of a tabular data:
they are approximate, but highly accurate as we prove math-
ematically, and they are fast, running in time nearly linear
in the table size. Our methods are general since these dis-
tance computations can be applied to any mining or similar-
ity algorithms that useLp norms. A novelty of our distance
computation procedures is that they work for anyLp norms
— not only the traditionalp = 2 or p = 1, but for allp ≤ 2;
the choice ofp, sayfractionalp, provides an interesting al-
ternative similarity behavior!

We use our algorithms in a detailed experimental study
of the clustering patterns in real tabular data obtained from
one of AT&T’s data stores and show that our methods are
substantially faster than straightforward methods while re-
maining highly accurate, and able to detect interesting pat-
terns by varying the value ofp.

1. Introduction

Tabular data abound in data stores. Traditional relations
in database systems are tables. New applications also gen-
erate massive tabular datasets — consider the application of

cellular telephone networks. These networks have base sta-
tions (aka cell towers) geographically distributed over the
country, with each base station being responsible for han-
dling the calls to and from a specific geographic region.
This data may be represented by a table indexed by the lat-
itude and longitude of the base station and storing the call
volume for a period of time such as an hour.

As another application, consider the representation of the
Internet traffic between IP hosts over time. For example,
one may visualize a table indexed by destination IP host and
discretized time representing the number of bytes of data
forwarded at a router to the particular destination for each
time period (since the current generation of IP routers route
traffic based on destination IP address only, this is valuable
information about network congestion and performance that
IP routers routinely store and dump).

In these network data management scenarios and others,
massive tables are generated routinely (see [5, 3, 9] for other
examples). While some of the data may be warehoused in
traditional relational databases, this is seldom true in case
of emerging applications. Here, tabular data is stored and
processed in proprietary formats such as compressed flat
files [6]. Thus tabular data is emerging as a data format
of independent interest and support within large scale ap-
plications [4, 5, 9, 10].

Of great interest in tabular data management is the task
of miningthem for interesting patterns. For example, in the
examples above, the “knowledge” from tabular data anal-
ysis drives key network-management tasks such as traffic
engineering and flexible capacity planning [8]. In the cellu-
lar calls case, one may be interested in finding geographic
regions where the call distribution is similar, for example,
can one analyze the call volume patterns to separate dense
urban areas, suburban areas, commuter regions, and so on?

Thus many creative mining questions arise with tabular
data. Our informal goal of mining tabular data can be in-
stantiated in one of many standard ways: as clustering, as
association rule mining or in other ways. These tasks in-
volve comparing large (possibly arbitrary) portions of the
table with each other (possibly many times). Two funda-
mental challenges emerge in addressing these tasks.

First,what is a suitable notion of similarity between two
regions? This is a conceptual question. Two natural dis-
tance functions are commonly used to measure the distance
between two vectors or matrices (table portions). TheL1,
or Manhattan, metric is the sum of the absolute differences
between corresponding entries; theL2, or Euclidean, met-
ric is (the square root of) the sum of squares of differences.
These distances are traditionally used in image recognition,
information retrieval and data mining. Depending on appli-
cations, one may consider dilation, scaling and other opera-
tions on vectors before computing theL1 orL2 norms.

Second,how to compute these similarity distances effi-
ciently?Given two portions of the table,L1 orL2 distances
can be computed in time linear in their size and one can
not do better. So this question has to be refined further. In
mining tasks such as clustering, table portions will be “com-
pared” against many others, possibly multiple times. If we
consider the problem of computing all such distances, one
needs to compute a large number of them (up toO(n4) table
portions for an×n table) and computing each is expensive
(O(n2) time each in the worst case). A clustering algorithm
may need any subset of these computations done and com-
puting all such distances either on demand or in one shot for
all possible subtables is expensive in time and/or space.

The problem of efficient similarity computation between
table portions is a particularly irksome challenge since tabu-
lar data is massive, generated at the rate of several terabytes
a month in most applications [5, 4, 3, 9]. Tabular data be-
comes very large very quickly, since it grows with the prod-
uct of its defining characteristics: an extra base station will
take thousands of readings a day, and an extra day’s data
adds hundreds of thousands of readings. As these databases
grow larger, not only does the size of data stored increase,
but also the size of the interesting table portions increases.
With data storage capacities easily in the terabyte range, any
subregions of interest to be “compared” (eg cell call data for
the Los Angeles versus San Francisco areas) can themselves
be megabytes or even gigabytes in size. This means that
previous assumptions that is commonly made in mining —
that comparing two objects is a basic unit of computation —
no longer hold. Instead, the metric by which algorithms are
judged is no longer just the number of comparisons used,
but rather the number of comparisons multiplied by the cost
of a comparison.

In this paper, we address both the conceptual and tech-
nical challenges above in mining massive tabular data. Our
contributions are as follows.

1. We studyLp norms forp which differ from the classi-
calp = 1 or p = 2; in particular, we study non-integral
values ofp, 0 < p ≤ 2. Similarity of vectors or ma-
trices based on such non-integralp reveal novelties in
mining as our experimental studies show.

2. We present time and space efficient methods for
quickly estimating theLp distance between any two
table portions. These are very fast to precompute and
to process: they are constant in size irrespective of the

size of the subtables, and provide guaranteed very ac-
curate approximations. Forp values of our interest,
this involves developing “sketch” functions for com-
puting theLp distances using the notion of stable dis-
tributions from probability theory.

3. We experimentally study an interesting tabular data set
from an AT&T data store. It is a time series evolu-
tion of the call volumes from collection stations sorted
geographically in some linear fashion. We focus on
a basic mining task, namely, clustering the portions
of the tabular data. We apply known clustering algo-
rithms but employ our distance computation methods
and show empirically thatLp for non-integral values
of p between0 and2 yields interesting similarity met-
ric and that the resulting clustering algorithms are sub-
stantially faster than the straightforward methods.

Clustering is a good example of a mining task affected by
growing table sizes. A typical clustering algorithm “com-
pares” each “object” with others many times over, where
each comparison involves examining the distance of one
object to each of a number of others. Many good algo-
rithms have been described in the literature already such
ask-means [14], CLARANS [16], BIRCH [21, 10], DB-
SCAN [7] and CURE [11]. These focus on limiting the
number of comparisons. As we described earlier, when ob-
jects are large, the cost of comparisons (not just the number
of comparisons) affects performance significantly. Orthog-
onal to the efforts mentioned above, we have focused on
reducing the cost of each comparison. Since what is impor-
tant in clustering is often not the exact distances between
objects, but rather which of a set of objects another object is
closest to, and known clustering algorithms are in their na-
ture approximate and use randomness, we are able to show
that using randomness and approximation in distance esti-
mation does not sacrifice clustering quality by any appre-
ciable amount.

2. Related Work

Tabular data has previously been the focus for telecom-
munications data management problems — see, for exam-
ple, [4]. Mining tables has been studied previously in the
database community, chiefly as association rule mining on
multiple numerical attributes [19, 15, 18]. While time se-
ries mining has been studied extensively for both single and
multiple time series data, we are not aware of prior work on
the tabular time series data mining we study here, nor the
application of approximate distance computations to clus-
tering that we study here. Vectors and matrices are rou-
tinely compared based on theirLp distances forp = 1, 2
or∞, and more unusually other integralLp distances [20].
Only recently has the similarity behaviour ofLp distances
with non-integralp been examined for0 < p ≤ 2, as we do
here and independently in [1].

Our work involves dimensionality reduction techniques,
which has been well explored in databases [2]. Previous di-

mensionality reduction techniques have used the first few
components of the Discrete Fourier Transform, or other
linear transformations (Discrete Cosine or Wavelet Trans-
forms). This is because theL2 distance between a pair of
DFTs is the same as theL2 distance between the original
data. However, the step of approximating the distance by
using only the first components is a heuristic, based on the
observation that for many sequences most of the energy of
the signal is concentrated in these components. Although
these techniques often work well for the Euclidean (L2) dis-
tance, they do not work for otherLp distances, including the
importantL1 distance. This is because there is no equiva-
lent result relating theL1 distance of transformed sequences
to that of the original sequences.

Furthermore, this approach does not provide mecha-
nisms for combining sketches the way we can do for effi-
cient distance computation. As a result, in a previous pa-
per [13], we adopted dimensionality reduction using pro-
jections when dealing with time series data. In this paper,
we extend those results to tabular data. More importantly,
we extend the generally applicable dimensionality reduc-
tion techniques to the interesting direction of arbitraryLp
norms (from justL2 in that paper) for non-integralp which
will be of interest in many other applications of approximate
distance computations.

3. Sketches: Definition and Computation

As mentioned earlier, our methods depend on determin-
ing “sketches” of objects. Sketches will be very small in
size; two objects can be compared based on their sketches
accurately and quickly. For different distances, there will be
other sketch functions; they are defined by their very strong
guarantees of quality. In this section we define the sketch-
ing functions forLp norms.

3.1. Preliminaries

We shall make use of one dimensional vectors and two
dimensional matrices. A one dimensional vector is written
as~x, and has some numbern of entries. The tabular data
that we shall be manipulating can be thought of as a vector
of vectors of the same length, or equivalently, as a two di-
mensional matrix. To distinguish these matrices from one
dimensional vectors, we shall write these in upper case as
~X. The ith component of a vector,~xi is a scalar; theith
component of a matrix,~Xi is a vector; and ~Xi,j is the scalar
that is thejth component of theith component of~X.

TheLp distance between two vectors,~x and~y, both of
lengthn is (

∑n
i=1 |~xi − ~yi|p)1/p. TheLp distance between

~x and~y is written ||~x − ~y||p. We extend this notation to
tabular data, and so

|| ~X − ~Y ||p = (
∑
i

∑
j | ~Xi,j − ~Yi,j |p)1/p

The dot product of two vectors,~x and~y is
∑
i ~xi~yi, and is

written ~x · ~y. Similarly, between two equal size matrices

the dot product,~X · ~Y is
∑
i,j

~Xi,j
~Yi,j . For anyd-length

vector~x let median(~x) denote the median of the sequence
~x1, . . . , ~xd.

3.2. Sketch Definition

A stable distributionis a statistical distribution,X with
a parameterα in the range(0, 2]. It has the property that if
X1, X2, . . . Xn are distributed identically toX thena1X1+
a2X2+. . .+anXn is distributed as||(a1, a2, . . . , an)||α X.
Several well-known distributions are known to be stable.
The Gaussian distribution is stable withα = 2; the Cauchy
distribution is stable withα = 1; and the Ĺevy distribu-
tion is stable withα = 1

2 . For all other permitted values
of α, stable distributions can be simulated by using appro-
priate transformations from uniform distributions. Further
details on stable distributions and computing values taken
from stable distributions can be found in [17].

Sketch for L1 distance. The key property of sketches is
the strong accuracy guarantee that they provide: if the exact
distance is̀ , then our approximatioǹ̂is within anε fraction
of ` with probability1 − δ. That is,Pr[|` − ˆ̀| > ε`] ≤ δ.
Let us first focus onL1. We shall implement techniques
outlined in [12]. Given a vector~x, we define a sketch vec-
tor of ~x, ~s 1(~x). This vector is of sizek = c log 1/δ

ε2 , for
some constantc, to be established later. We pickk random
vectors~r[1] . . . ~r[k] where each~r[i] = (~r[i]1, . . . , ~r[i]n) is
made by drawing each component from the Cauchy distri-
bution. TheL1 sketch is defined by~s 1

i (~x) = ~x · ~r[i] —
that is, as the dot product of~x with each of thek random
vectors~r[i].

Theorem 1 With probability 1 − δ, (1 − ε)||~x − ~y||1 ≤
median(|~s 1(x)− ~s 1(y)|) ≤ (1 + ε)||~x− ~y||1

Proof: The proof of this hinges on the fact that each el-
ementr[i] of ~s 1(x) are drawn from a stable distribution,
and so~r[i] · ~x − ~r[i] · ~y = ~r[i] · (~x − ~y) has same distribu-
tion as||~x − ~y||1X, whereX has Cauchy distribution. Let
L = |~r[i](~x − ~y)|. It was shown in [12] that the median of
L is equal to||~x − ~y||1 (recall that ifM is the median of a
random variableL then it must satisfyPr[L ≥ M] = 1

2 .)
We next apply standard results from statistical sampling: if
we find the median ofO(1/ε2) independent repetitions of
this process, then we guarantee that the approximation is
within a factor of1 ± ε of the true answer with some con-
stant probability. We can then extend this by carrying out
a furtherO(log 1/δ) repetitions, and taking the median of
these: this process amplifies the constant probability of suc-
cess to1 − δ. Thus, the repetition of the sampling ensures
that the claimed probability bounds are met. �

Sketch forLp for any 0 ≤ p < 2. Next let us focus on non-
integral values ofp in Lp. If we replace the variables from
the Cauchy distribution with a stable variable for whichα =
p then a similar result follows for theLp distance between
vectors. In particular, we have the new theorem

Theorem 2 For anyp ∈ (0, 2] there exists a scaling factor
B(p) so for all vectors~x, ~y, with probability1− δ we have
(1−ε)||~x−~y||p ≤ B(p) median(| ~sp(x)− ~sp(y)|) ≤ (1+ε)||~x−~y||p

The need for a scaling factor follows from the fact that
the median ofp-stable distributions is only1 whenp = 1 or
p = 2. We do not need to findB(p), since for clustering
purposes, it is only the relative distance from a given point
that is needed (which point is closest). The theory has so
far spoken in terms of vectors. However, it is conceptually
simple to shift this theory from one-dimensional vectors to
two-dimensional matrices, thanks to the nature of theLp
norms: we can think of any matrix as being represented by
a vector that is linearized in some consistent way.

3.3. Computing Sketches

For a given vector or matrix, its sketch is a short real-
valued vector as defined previously. According to the theory
outlined above, each entry in the sketch is the dot-product
of the object (vector or matrix) with a number of randomly
created objects (as specified above, using values from stable
distributions), necessarily of the same size. We are inter-
ested in computing sketches forall subtables of some large
set of tabular data. We describe this in two steps:

• We construct the sketch for all subtables of a fixed di-
mension (size) very fast using Fast Fourier Transform.

• We choose a small, canonical set of dimensions and
construct sketches for all subtables of that dimension.
The pool of all such sketches is used to quickly com-
pute the sketch of a subtable of any arbitrary dimen-
sion.

Computing sketches for all subtables of a fixed size.We
first focus on computing sketches with afixedsubtable size,
and computing the sketch for all subtables of that size. The
definitions above immediately translate into algorithms. A
pre-processing phase can compute the necessaryk differ-
ent ~R[i] matrices from an appropriate stable distribution.
Where we have tabular data, any subtable of fixed size de-
fines a matrix that we would like to make a sketch of. Each
sketch can then be computed by finding the dot product of
each of the random matrices with all sub-rectangles of the
tabular data. In our scenario, when we are dealing with tab-
ular data, we could consider each sub-rectangle of fixed size
in turn, and compute the sketches individually. Suppose
that the size of the input data isN and the subrectangle has
sizeM , then the total cost of this approach isO(kMN)
computations. This is because for each of theN locations
in the data table we must multiplyk different random ma-
trices with a subtable of sizeM . This can be improved,
since the basic computation is simply the convolution of
two matrices, which can be made more quickly using two-
dimensional Fast Fourier Transforms (FFT).

Theorem 3 All sketches of fixed size sub-rectangles of the
data can be made efficiently using the Fast Fourier Trans-
formation taking timeO(kN logM).

a a

c

[i, j + d - b]

[i, j] [i + c - a, j]

b

d

b

Figure 1. Compound sketches can be formed
from four sketches that represent the area re-
quired.

This follows because we have to compute the dot product
of each of the random matrices with every sub-rectangle of
the data. This can be done more efficiently in the Fourier
Doman using convolutions.

Canonical sizes and combining sketches.Next we con-
sider computing sketches for many different sizes. Once we
have all sketches for sub-rectangles of a particular size, we
can combine these to make a sketch for a rectangle up to
twice the size in either dimension. Suppose that four inde-
pendent sets of sketches,~s p,~t p, ~u p, ~v p, have been com-
puted for sub-rectangles of dimensionsa × b. Provided
a ≤ c ≤ 2a andb ≤ d ≤ 2b, a sketch can be made for
the sub-rectangle of sizec× d. Let the data be a large table,
Z, so the sketch,~sp(Z[i, j]) will cover the sub-rectangle
fromZ[i, j] toZ[i+ a, j + b].

Definition 4 A compound sketch,~s′
p

can be formed as fol-
lows: ~s′

p

i (Z[i, j]) = ~s p(Z[i, j]) + ~t p(Z[i + c − a, j] +
~u p(Z[i, j + d− b]) + ~v p(Z[i+ c− a, j + d− b])

In effect, the new sketch is formed by tiling the required
sub-rectangle with sketches of overlapping rectangles. This
is shown in Figure 1. From this definition, we state the the-
orem that shows that this compound sketch still has the de-
sirable properties of a sketch.

Theorem 5 For two compound sketches created as above,
with probability 1 − δ′, we have|| ~X − ~Y ||p(1 − ε) ≤
B(p) median(|~s′p(~X)− ~s′p(~Y)|) ≤ 4(1 + ε)|| ~X − ~Y ||p

Because of this theorem, then by summing four sketches
component-wise we can make reasonable sketches from
those for smaller overlapping subtables. Therefore we
choose acanonicalcollection of sizes: we fix dyadic sizes
2i × 2j for variousi and j and compute sketches for all
matrices of size2i × 2j using Theorem 3. Following that
we can compute the sketches for anyc × d sized subtable
using these sketches and using Theorem 5. Therefore, we
conclude

Theorem 6 Given any tabular data of sizeN = n × n, in
timeO(kN log3N) we can compute all theO(log2N) sets

of sketches corresponding to the canonical sizes. Following
that, the sketch for any subtable can be computed in time
O(k). For Lp distances of our interest,k = O(log(1/δ)

ε2),
and each sketch is an4 + ε approximation with probability
at least1− δ.

4. Experimental Results

We prototyped our algorithms and in this section we re-
port the results of a detailed experimental evaluation.

4.1. Accuracy Measures

Let the sketchedLp distance between two matrices~X

and ~Y be denoted by ˜|| ~X − ~Y ||p. We use the following
measures to assess sketching accuracy:

Definition 7 Thecumulative correctnessof a set ofk sepa-
rate experiments between a set of matrices~Xi and ~Yi is

∑k
i=1

˜|| ~Xi− ~Yi||p∑k
i=1 || ~Xi− ~Yi||p

This measure gives an idea of, in the long run, how ac-
curate the sketches are.

Definition 8 Theaverage correctnessof a set ofk experi-

ments is1− 1
k

∑k
i=1

∣∣∣ 1−
˜|| ~Xi− ~Yi||p

|| ~Xi− ~Yi||p

∣∣∣
The above two measures are good for when we are test-

ing the sketches as estimators of the actual distance. In our
clustering application however, what is more important is
the correctness of pairwise comparisons: testing whether
some object~x is closer to~y or to~z.

Definition 9 Thepairwise comparison correctnessof k ex-
periments between three sets of matrices,Xi, Yi, Zi is 1

∑k
i=1 xor(|| ~Xi− ~Yi||p<|| ~Xi− ~Zi||p, ˜|| ~Xi− ~Yi||p> ˜|| ~Xi− ~Zi||p)

k

To assess the quality of a clustering obtained using ex-
act methods against one obtained using sketches, we want
to find ways of comparing the twok-clusterings. A com-
monly used construct in comparing clusterings is theconfu-
sion matrix. Each object will be associated with two clus-
ters: one for the exact comparison case, and one for the ap-
proximate case. Ak × k matrix records how many objects
are placed in each possible classification.

Definition 10 The confusion matrix agreementbetween
two k-clusterings requires the use of a confusion ma-
trix on the clusterings that records the number of tiles in
each clustering that are allocated to the same cluster. If

1Here,xor(T, T) = xor(F, F) = 0 andxor(T, F) = xor(F, T) =
1. So thexor function as used here will only count the cases where sketch-
ing got the correct answer.

confusion(i, j) is a function that reports how many times
an item is classified as being in clusteri in one clustering
and in clusterj in another clustering, then the agreement is
simply: ∑k

i=1 confusion(i,i)∑k
i=1

∑k
j=1 confusion(i,j)

However, it is quite possible that two clusterings with
very different allocation of tiles to clusters could still be a
good quality clustering. To remedy this, for any clustering,
we can compute the total distance of each element in the
clustering from the center of its cluster. Any clustering al-
gorithm should attempt to minimize this amount. We can
then evaluate this distance for the clustering obtained using
sketches as a percentage of the clustering obtained by exact
distance computations. Letspreadexact(i) be the spread
of theith cluster following a clustering with exact compar-
isons, andspreadsketch(i) be similarly defined when ap-
proximate comparisons are used.

Definition 11 The quality of sketched clusteringwith k

clusters is defined as
∑k
i=1 spreadsketch(i)∑k
i=1 spreadexact(i)

4.2. Datasets

We used real AT&T datasets in our experiments. From
these we projected a tabular array of values reflecting the
call volume in the AT&T network. The data sets gives
the number of calls collected in intervals of 10 minutes
over the day (x-axis) from approximately 20,000 collection
stations allocated over the United States spatially ordered
based on a mapping of zip code (y-axis). This effectively
creates a tabular dataset of approximately 34MB for each
day. We stitched consecutive days to obtain data sets of var-
ious sizes.

For a separate set of experiments, we constructed syn-
thetic tabular data (128MB) to test the value of varying
the distance parameterp in searching for a known clus-
tering. We divided this dataset into six areas represent-
ing 1

4 ,
1
4 ,

1
4 ,

1
8 ,

1
16 and 1

16 of the data respectively. Each of
these pieces was then filled in to mimic six distinct patterns:
the values were chosen from random uniform distributions
with distinct means in the range 10,000 – 30,000. We then
changed about 1% of these values at random to be relatively
large or small values that were still plausible (so should not
be removed by a pre-filtering stage). Hence, under any sen-
sible clustering scheme, all tiles in areas created from the
same distribution should be grouped together in the cluster-
ing.

4.3. Assessing Quality and Efficiency of Sketching

These experiments were run on an UltraSparc 400MHz
processor with 1.5Gbytes of memory. To assess the perfor-
mance of sketch construction, we conducted the following
experiment. For a tabular call volume data set correspond-
ing to a single day (approximately 34MB), we measured the

256
k

64k

16k

4k

1k

256

80 82.5 85 87.5 90 92.5 95 97.5100

Accuracy of L2 Sketching

Cumulative
Correctness

Average
Corectness

Pairwise
Correctness

S
iz

e
of

 o
bj

ec
t
in

 b
yt

es

%

256 1k 4k 16k 64k 256k

1

10

100

1000

10000

Time for L1 distance

Computation
with sketches

Preprocessing
for sketches

Exact
computation
of L1

Size of object in bytes

T
im

e
in

 s
ec

on
ds

256k

64k

16k

4k

1k

256

80 82.5 85 87.5 90 92.5 95 97.5100

Accuracy of L1 Sketching

Cumulative
Correctness

Average
Corectness

Pairwise
Correctness

S
iz

e
of

 o
bj

ec
t
in

 b
yt

es

%

256 1k 4k 16k 64k 256k

1

10

100

1000

10000

Time for L2 Distance

Computation
with sketches

Preprocessing
for sketches

Exact
computation
of L2

Size of object in bytes

T
im

e
in

 s
ec

on
ds

Figure 2. Assessing the distance between 20, 000 randomly chosen pairs

time to create sketches of various sizes, for bothL1 andL2

norms. We considered objects (tiles) from size only 256
bytes up to 256k. The tests evaluated the time to assess the
distance between 20,000 random pairs of tiles in the data
space. Figure 2 presents the results.

The exact method requires the whole tile to be exam-
ined, so the cost of this grows linearly with the size of the
tile. The sketch size is independent of the tile size. When
we create the sketches in advance, we consider all possible
subtables of the data in square tiles (of size8 × 8, 16 × 16
and so on up to256× 256). The processing cost is largely
independent of the tile size, depending mainly on the data
size. Since we use the same sized data set each time, the
pre-processing time varies little. The time to assess theLp
distance using sketches is much faster than the exact method
when sketches are precomputed in almost every case.

We computed Average Correctness and Cumulative Cor-
rectness (Definitions 8 and 7); in most cases these was
within a few percent of the actual value, for relatively small
sized sketches (recall that the accuracy of sketching can be
improved by using larger sized sketches). Figure 2 presents
the results. Note that the times are shown on a logarith-
mic scale, since the cost for exact evaluation becomes much
higher for larger tile sizes. On the average, the cumulative
distance found by sketching agrees with very high accuracy
with the actual answer. Observe that the quality of the pair-
wise comparisons decrease slightly underL1 distance for
large tile sizes. We claim that this is explained by our data
set: for large enough tiles, theL1 distance between any pair
is quite similar. Hence, with the variation introduced by our
approximation, it becomes harder to get these comparisons

correct. However, in this situation, we claim that such errors
will not affect the quality of any derived clustering detri-
mentally, because following such a comparison, it does not
make much difference which cluster the tile is allocated to,
since the tile is approximately the same distance from both.
We shall see that this claim is vindicated when we exam-
ine the quality of the clusterings derived using approximate
distance comparisons.

Finally, since in clustering it is not the absolute value that
matters, but the results of comparisons, we ran tests by pick-
ing a pair of random points in data space and a third point.
We determined which of the pair was closest to the test point
using both sketching and exact methods, and recorded how
frequently the result of the comparison was erroneous. This
is the pairwise comparison correctness of Definition 9. Un-
der all measures of accuracy, the results of Figure 2 show
that sketching preserves distance computations very effec-
tively.

4.4. Clustering Using Sketches

The second set of experiments aims at evaluating the util-
ity of sketching when applied to clustering withk-means,
a popular data mining algorithm. In this experiment, we
stitch 18 days of data together, constructing a data set of
over 600MB of raw data. With our experiments we wish to
evaluate the performance of sketching under the following
possible scenarios: (1) Sketches have been precomputed,
so no time is devoted for sketch computation, just for run-
ning the clustering algorithm on sketches (2) Sketches are
not available and so they have to be computed “on demand”

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

0

500

1000

1500

2000

2500

3000

Time for 20−means

Sketches
Precomputed

Sketching on
Demand

Exact
computation

Value of p

T
im

e
in

 s
ec

on
ds

2.00

1.75

1.50

1.25

1.00

0.75

0.5

0.25

50 60 70 80 90 100 110

Quality of 20 means clustering

Confusion
Matrix
agreement

Quality of
sketched
clustering

V
al

ue
 o

f
p

%

(a) timing results for differentLp distances (b) quality results for differentLp distances

Figure 3. Results for clustering the data using k-means (k=20), with data divided into tiles of size 9K.

(3) Sketching is not used; instead the exact distance is com-
puted. In each case, we divided the data up into tiles of a
meaningful size, such as a day, or a few hours, and ran the
k-means clustering algorithm on these tiles. To ensure that
the methods were comparable, the only difference between
the three types of experiments was the routines to calculate
the distance between tiles: everything else was held con-
stant.

Varying the value of p. Figure 3 presents the results for a
tile of size 9K. This tile represents a day’s data for groups of
16 neighboring stations. We experimented with a variety of
settings forp: the traditional 2.0 and 1.0, and fractional val-
ues in between. The first set of results show that sketching is
dramatically faster than using exact distance computations,
while giving a clustering that is as good as that found using
exact computation. To assess clustering quality we used two
approaches. First, by creating a confusion matrix between
the clustering using sketches and the clustering with exact
computations. The percentage of tiles that are classified as
being in the same cluster by both methods indicates how
close sketching gets to the benchmark method, i.e., the con-
fusion matrix agreement of Definition 10. An alternative
measure of the quality of two clusterings comes by compar-
ing the spread of each cluster; the better the clustering, the
smaller this spread will be. The spread is the sum of the
divergence of each cluster from the centroid of that clus-
ter. This gives the objective way to test the quality of the
clusterings described in Definition 11.

When sketches are precomputed the time to perform the
clustering is many times faster, in some cases, an order of
magnitude faster, than using exact distance computations.
This is because the tiles being compared in this test are 9K
in size, whereas the sketches are less than 1K, and so can
be processed faster. By Theorem 2 the size of sketches is
independent of the data size, so we know that this difference
will grow more pronounced as the size of the objects being
compared increases.

Perhaps less expected is the result that even when
sketches are not available in advance, computing a sketch
when it is first needed, and storing this for future compar-
isons is worthwhile. In fact we obtain major time savings:

the speed-up is of the order of 3 to 5 times. Although cre-
ating a sketch can be costly (it requires the data tile to be
convolved repeatedly with randomized matrices), in the ap-
plication of clustering, one data tile will be compared with
others many times. So the cost of making the sketch is re-
couped over the course of the clustering since each sub-
sequent comparison has a much lower cost than the cor-
responding exact computation. Observing Figure 3, it is
evident that there exists little variation in the cost of the al-
gorithms using sketches, whereas the timings for the exact
computations are much more variable, but consistently sig-
nificantly more costly than with approximate comparisons.
In each case, creating sketches adds the same cost (about
130s of compute time) since the number of sketches that
are required, and the cost of creating each sketch is indepen-
dent of the data values and the value ofp. Note that since
a slightly different method is used forp = 2 compared to
p < 2 (see Section 3) — this means thatL2 distance is faster
to estimate with sketches in this case, since the approximate
distance is found by computing theL2 distance between the
sketches, rather than by running a median algorithm, which
is slower.

Another positive result regards the accuracy of the
sketching approach. By analyzing the confusion matrix be-
tween computations using sketches and computations using
exact distances, we see that for several of our experiments
there is a high degree of correlation, indicating that tiles
were allocated into the same cluster. We observe that the
agreement is less good for higher values ofp — for L2 dis-
tance, it reduces to around 60%. But although the clustering
we get is quite different from that obtained with the exact
distance, the quality of the clustering in all cases is as good
as the one found by exact methods. In fact, in many cases
using sketches produces a clustering that is better than that
with exact comparisons (where the quality rating is greater
than 100%). This at first surprising result is explained as
follows: even when we compute exact distances, thek-
means algorithm does not guarantee finding the best clus-
tering. Evaluating distances using sketches introduces small
distortions in the distance computation that cause a differ-
ent clustering to be reached (some objects will be placed in

4 8 12 16 20 24 48

0

250

500

750

1000

1250

1500

Clustering with k−means

Sketches
precomputed

Sketch on
demand

Exact
distances

Number of clusters

T
im

e
in

 s
ec

on
ds

0.00 0.50 1.00 1.50 2.00

0

20

40

60

80

100

Accuracy with Known Clustering

p

%

(a) (b)

Figure 4. (a) Clustering with different numbers of means (b) Varying p to find a known clustering

a different cluster). This clustering can be a small improve-
ment over the one obtained by exact computations.

Varying the number of clusters. Figure 4 (a) shows
a series of experiments on the same set of data withk-
means, ask is increased. The difference between having
pre-computed sketches, and sketching on demand, remains
mostly constant, at around 140s. The cost of using exact
computations is significantly more expensive in all but one
case2, and without sketches the time cost appears to rise lin-
early withk. This is achieved using relatively large sketches
with 256 entries. This time benefit could be made even more
pronounced by reducing the size of the sketches at the ex-
pense of a loss in accuracy.

In summary, the use of approximate comparisons does
not significantly affect the quality of the clustering found.
Indeed, we have shown cases where the quality of the clus-
tering is improved. Thek-means algorithm is already inex-
act: it depends on a heuristic to generate the clustering, and
uses randomness to generate the initialk-means that are re-
fined over the course of the program. We have shown that
adding approximate distance comparisons to this clustering
algorithm makes it run significantly faster, without notice-
ably affecting the quality of the output. This provides ev-
idence that clustering algorithms or other procedures mak-
ing use ofLp distance computations can be significantly
sped up by using approximate computations with sketches,
and that this will yield results that are just as good as those
made with exact computations.

4.5. Clustering Using VariousLp Norms

With our last experiments we wish to evaluate the util-
ity of using variousLp norms in clustering for data mining
tasks. We examine the output of the clustering procedure
to determine the effects of varying the parameterp in the
distance computations. We approach this in two ways: first,
by examining how varyingp can find a known clustering
in synthetic data; and second, by presenting a case study
analyzing a single day’s worth of data.

2This occurs when the number of comparisons made in the course of
clustering is not enough to “buy back” the cost of making the sketch.

Synthetic Data. Recall that our synthetic data set is made
by dividing the data into six pieces, and filling each with a
distinct pattern, then adding “errors” of high and low read-
ings. We divided this data set into square tiles of size 64k,
and ran clustering using sketching on them for many val-
ues ofp in the range[0, 2]. Since we know which cluster
each tile should belong to, we can accurately measure how
well the clustering does in the presence of the artificial er-
rors and the approximation caused by using sketches. We
measure the percentage of the 2000 tiles allocated to their
correct cluster (as per Definition 10). Figure 4 (b) shows the
results as we varyp.

We first observe that traditional measures,L1 andL2 es-
pecially perform very badly on this dataset. But if we set
p between 0.25 and 0.8, then we get the answer with 100%
accuracy. The explanation for this is that the largerp is,
the more emphasis it puts on “outlier” values: so if a sin-
gle value is unusually high, then this will contribute a huge
amount to theL2 distance — it adds the square of the dif-
ference. With distances this high, it is impossible to decide
which of the clusters a tile best belongs to, and the cluster-
ing obtained is very poor (if we allocated every tile to the
same cluster, then this data set under this measure would
score 25%). On the other hand, asp gets smaller, then the
Lp distance gives a lower penalty to outliers, as we would
wish in this case. If we keep decreasingp closer to zero,
then the measure approaches the Hamming distance, that is,
counting how many values are different. Since here almost
all values are different, the quality of the clustering is also
poor whenp is too small. However, we suggest thatp = 0.5
gives a good compromise here: the results are not overly
affected by the presence of outliers, and even with the ap-
proximation of sketching, we manage to find the intended
clustering with 100% accuracy.

Real Data.For the case study, the geographic data was lin-
earized, and grouped into sets of 75 neighboring stations to
faciliate visual presentation. A subsection of the results of
the clustering is shown in Figure 5 . Each point represents
a tile of the data, an hour in height. Each of the clusters is
represented by a different shade of grey. The largest clus-
ter is represented with a blank space, since this effectively

00:00

04:00

08:00

12:00

16:00

20:00

00:00

04:00

08:00

12:00

16:00

20:00

Detail of one day's data clustered under p=2.0, p=0.25

p=2.0

p=0.25

The top figure shows whenp = 2.0; the lower whenp = 0.25. Each shade of grey denotes a different cluster (the largest
cluster is denoted by a blank space to aid visibility). For higherp, more detail can be seen; for lowerp, the most important
sections are brought to the fore.

Figure 5. Detail of a clustering for a single day

represents a low volume of calls, and it is only the higher
call volumes that show interesting patterns.

Visual analysis of this clustering immediately yields in-
formation about the calling patterns. Firstly, it is gener-
ally true that access patterns in any area are almost iden-
tical from 9am till 9pm. We can see very pronounced sim-
ilarities throughout this time — long, vertical lines of the
same color indicating that an area retains the same attributes
throughout the day. Call volume is negligible before 9am,
but drops off gradually towards midnight. It is also clear
how different values ofp bring out different features of the
data in this data set. Forp = 2, perhaps the most com-
mon distance metric, a large fraction is allocated to non-
trivial clusters. These clearly correspond to centers of pop-
ulation (New York, Los Angeles etc.) represented by clus-
ters of darker colors. On either side of the center of these
areas (ie, the greater metropolitan areas), patterns are less
strong, and access is only emphasized during peak hours.
We see how the clusters represented by darker colors are of-
ten flanked by those of lighter colors, corresponding to this
phenomenon. Forp = 1, there is less detail, but equally, the
results are less cluttered. Most of the clusters are indistin-
guishable from the background, leaving only a few places
which can be seen to differ under theL1 measure. It is
significant that these also show strong vertical similarity of
these clusters, suggesting that these areas show particular
points of interest. When studying the full data set, we no-
ticed that while some areas figure throughout the day, some
sections on one side of the data are only active from 9am till

6pm; at the other extreme of the data diagram there are re-
gions that are active from 6am to 3pm. This is explained by
business hours and the three hour time difference between
East and West coasts . This difference is not so clearly visi-
ble on the more populated clustering withp = 2. As we fur-
ther decreasep to 0.25, only a few regions are distinct from
the default cluster. These are clearly areas worthy of closer
inspection to determine what special features they exhibit.
It therefore seems thatp can be used as a useful parameter
of the clustering algorithm: setp higher to show full details
of the data set, or reducep to bring out unusual clusters in
the data.

This example demonstrates how clusterings of the tab-
ular data set can highlight important features. It has been
confirmed by our knowledge of this data sets; in novel data
sets, we would expect to be able to find the important fea-
tures of the data, without the foreknowledge of what these
might be. It also demonstrates the importance of different
values ofp, in contrast with previous attention focusing on
the traditional distance measuresL1 andL2. The whole
continuum ofLp distances can give different and useful in-
formation about the data.

5. Conclusion

Mining tabular data calls for computing distances be-
tween different subtables. This presents two challenges:
First, what is a suitable distance function that captures the
similarity between two subtables? We proposeLp norms

not only for the classicalp = 1, 2, but also for non-integral
p, 0 < p ≤ 2, which presents a novel, fully tunable, sim-
ilarity notion between matrices and between vectors. By
settingp lower than 1, we are able to reduce the effect that
a few outlier values can have on the distance comparisons.
Second, how to compute distances between multiple pairs
of subtables most efficiently? This is crucial since tabu-
lar data are often massive in our motivating applications
and computing each distance would be time consuming.
We present sketching methods for computingLp distances;
while there are well known dimensionality reduction tech-
niques forp = 2, we present sketching functions based on
stable probability distributions for otherp. While other
transform based methods (like Discrete Cosine Transforms
or Haar Wavelet Coefficients) may be used to approximate
the distances between subtables, they fail in two ways: first,
they do not estimateLp distances forp 6= 2 adequately,
and second, they are not amenable to the composition of
sketches we perform here, which is crucial for the efficiency
of our algorithms. As we have shown, our sketch computa-
tions are provably accurate in estimating theLp distances.

We use these algorithms to estimate distances between
subtables in thek-means clustering algorithm. We consid-
ered more than half a gigabyte of real data. We were able
to show experimentally that our algorithms are substantially
faster than straightforward methods, and they are accurate
in the clustering context. Furthermore, we get visual and
experimental confirmation thatLp distance presents an in-
teresting notion of similarity for non-integral values ofp.

Our work initiates the study of tabular data mining in
which similarity between subtables can be approximated
rapidly using our sketching methods. Many mining issues
in tabular data remain to be explored. We also find it in-
triguing that usingLp distances with non-integral values of
p presents interesting clustering behavior, both visually and
experimentally. It appears thatp is a fully adjustable pa-
rameter that can be used as a slider to vary the nature of the
clustering.

References

[1] C. Aggarwal, A. Hinneburg, and D. Keim. On the surpris-
ing behavior of distance metrics in high dimensional space.
In 8th International Conference on Database Theory, pages
420–434, 2001.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient sim-
ilarity search in sequence databases. InProceedings of the
4th International Conference of Foundations of Data Orga-
nization and Algorithms, volume 730, pages 69–84. Lecture
Notes in Computer Science, Springer, 1993.

[3] S. Babu, M. Garofalakis, and R. Rastogi. Spartan: A model-
based semantic compression system for massive data tables.
In Proceedings of ACM SIGMOD, pages 283–294, 2001.

[4] D. Belanger, K. Church, and A. Hume. Virtual data ware-
housing, data publishing, and call details. InProceedings
of Databases in Telecommunications, volume 1819, pages
106–117. Lecture Notes in Computer Science, Springer,
1999.

[5] A. L. Buchsbaum, D. F. Caldwell, K. W. Church, G. S.
Fowler, and S. Muthukrishnan. Engineering the compres-
sion of massive tables: an experimental approach. InPro-
ceedings of the 11th Annual Symposium on Discrete Algo-
rithms, pages 175–184, 2000.

[6] Daytona. AT&T research, Daytona Database
Management System. Details athttp://
www.research.att.com/projects/daytona/ .

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. InProceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, page 226, 1996.

[8] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford. Netscope: Traffic engineering for IP networks.
IEEE Network Magazine, pages 11–19, 2000.

[9] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold,
J. Rexford, and F. True. Deriving traffic demands for oper-
ational IP networks: Methodology and experience. InPro-
ceedings of SIGCOMM, pages 257–270, 2000.

[10] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: Min-
ing and monitoring evolving data. InProceedings of ICDE,
pages 439–448, 2000.

[11] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clus-
tering algorithm for large databases. InProceedings of ACM
SIGMOD, pages 73–84, 1998.

[12] P. Indyk. Stable distributions, psuedorandom generators,
embeddings and data stream computation. In40th Sympo-
sium on Foundations of Computer Science, 2000.

[13] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying
representative trends in massive time series data sets using
sketches. In26th International Conference on Very Large
Databases, pages 363–372, 2000.

[14] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data.
Prentice-Hall, 1988.

[15] M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided min-
ing of multi-dimensional association rules using data cubes.
In Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining, page 207, 1997.

[16] R. T. Ng and J. Han. Efficient and effective clustering meth-
ods for spatial data mining. In20th International Conference
on Very Large Databases, pages 144–155. Morgan Kauf-
mann, 1994.

[17] J. Nolan. Stable distributions. Available from
http://academic2.american.edu/ ∼jpnolan/
stable/chap1.ps .

[18] R. Rastogi and K. Shim. Mining optimized support rules
for numeric attributes. InProceedings of the International
Conference on Data Engineering, pages 126–135, 1999.

[19] R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. InProceedings of ACM SIG-
MOD, pages 1–12, 1996.

[20] B. Yi and C. Faloutsos. Fast time sequence indexing for
arbitraryLp norms. In26th International Conference on
Very Large Databases, 2000.

[21] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an ef-
ficient data clustering method for very large databases. In
Proceedings of ACM SIGMOD, pages 103–114, 1996.

