
Time-Decaying Sketches for Sensor Data Aggregation∗

Graham Cormode
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932

graham@research.att.com

Srikanta Tirthapura
Dept. of ECE

Iowa State University
Ames, IA 50011

snt@iastate.edu

Bojian Xu
Dept. of ECE

Iowa State University
Ames, IA 50011

bojianxu@iastate.edu

ABSTRACT
We present a new sketch for summarizing network data. The
sketch has the following properties which make it useful in
communication-efficient aggregation in distributed stream-
ing scenarios, such as sensor networks: the sketch is duplicate-
insensitive, i.e. re-insertions of the same data will not affect
the sketch, and hence the estimates of aggregates. Unlike
previous duplicate-insensitive sketches for sensor data aggre-
gation [26, 12], it is also time-decaying, so that the weight
of a data item in the sketch can decrease with time accord-
ing to a user-specified decay function. The sketch can give
provably approximate guarantees for various aggregates of
data, including the sum, median, quantiles, and frequent el-
ements. The size of the sketch and the time taken to update
it are both polylogarithmic in the size of the relevant data.
Further, multiple sketches computed over distributed data
can be combined without losing the accuracy guarantees.
To our knowledge, this is the first sketch that combines all
the above properties.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; H.2.8
[Database Applications]: Data Mining; H.3.4 [Systems
and Software]: Distributed Systems

General Terms
Algorithms, performance, design, reliability, theory

Keywords
Sensor network, data aggregation, data stream processing,
time decay, sliding windows, asynchronous streams, distributed
streams, duplicate insensitive sketch

∗The work of Tirthapura and Xu was supported in part by
NSF grant CNS-0520102 and by ICUBE, Iowa State Uni-
versity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

1. INTRODUCTION
The growing interest in sensor networks has led to a va-

riety of novel problems in distributed computing. Although
sensors are increasing in computing ability and number, they
remain constrained by the cost of communication: with
limited batteries, communication is the primary drain on
power and so the working life of a sensor network can be
extended by algorithms which limit communication [23]. In
particular, this means that although sensors may observe
large quantities of information over time, they should re-
turn only small summaries of their observations. Ideally,
we should be able to use a single compact summary that is
flexible enough to provide estimates for a variety of aggre-
gates, rather than using different summaries for estimating
different aggregates.

The sensor network setting leads to several other desider-
ata. Because of the radio network topology, it is common
to take advantage of the ‘local broadcast’ behavior, where
a single transmission can be received by all the neighboring
nodes. Here, in communicating back to the base station,
each sensor opportunistically listens for information from
other sensors, merges received information together with its
own data to make a single summary, and announces the
result. This multi-path routing has many desirable prop-
erties: appropriate merging ensures each sensor sends the
same amount, a single summary, and the impacts of loss are
much reduced, since information is duplicated many times
(without any additional communication cost) [26, 12]. How-
ever, this duplication of data requires that the quality of our
summaries remains guaranteed, no matter whether a partic-
ular observation is contained within a single summary, or is
captured by many different summaries. In the best case the
summary is duplicate-insensitive and asynchronous, mean-
ing that the resulting summary is identical, irrespective of
how many times, or in what order, the data is seen and the
summaries are merged.

Lastly, we observe that in any evolving setting, recent data
is more reliable than older data. We should therefore weight
newer observations more heavily than older ones. This can
be formalized in a variety of ways: we may only consider
observations that fall within a sliding window of recent time
(say, the last hour), and ignore (assign zero weight to) any
that are older; or, more generally, use some arbitrary func-
tion f() that assigns a weight to each observation as a func-
tion of its age [15, 11]. A data summary should allow such
decay functions to be applied, and give us guarantees rela-
tive to the exact answer.

Putting all these considerations together leads to quite

an extensive requirements list. We seek a compact, gen-
eral purpose summary, which can apply arbitrary time decay
functions, while remaining duplicate insensitive and handle
asynchronous arrivals. Further, it should be easy to update
with new observations, merge together multiple summaries,
and query the summary to give guaranteed quality answers
to a variety of analysis. Prior work has considered various
summaries which satisfy certain subsets of these require-
ments, but no single summary has been able to satisfy all of
them. Here, we show that it is possible to fulfill all the above
requirements sketch based on a a hash-based sampling pro-
cedure that allows a sampling procedure that allows a vari-
ety of aggregates to be computed efficiently under arbitrary
decay functions in a duplicate insensitive fashion over asyn-
chronous arrivals. In the next section, we describe more
precisely the setting and requirements for our data struc-
tures.

1.1 Problem Formulation
Consider a data stream of observations seen by a single

sensor R = 〈e1, e2, . . . , en〉. Each observation ei, 1 ≤ i ≤ n
is a tuple (vi, wi, ti, idi), where the entries are defined as
follows:

• vi is a positive integer value, perhaps a temperature
observation by the sensor.

• wi is a weight associated with the observation, perhaps
a number reflecting the confidence in it.

• ti is the integer timestamp, tagged at the time ei was
created.

• idi is a unique observation id for ei.

This abstraction captures a wide variety of cases that can
be encoded in this form. It is deliberately general; users can
choose to assign values to these fields to suit their needs.
For example, if the desired aggregate is the median temper-
ature reading across all (distinct) observations, this can be
achieved by setting all weights to wi = 1 and the values vi

to be actual temperatures observed. The unique observa-
tion id idi can be formed as the concatenation of the unique
sensor id and time of observation (assuming there is only
one reading per instant). We shall give other examples in
the next section.

It is possible that the same observation appears multiple
times in the stream, with the same id, value and timestamp
preserved across multiple appearances — such repeated oc-
currences must not be considered while evaluating aggre-
gates over the stream. Note that our model allows different
elements of the stream to have different ids, but the same
values and/or timestamps — in such a case, they will be
considered separately in computing the aggregates.

We consider asynchronous streams, where the elements
do not necessarily arrive in order of timestamps. Handling
asynchrony is especially important because of multi-path
routing, as well as the need to handle the union of sketches.
Note that ei+1 is received after ei, and en is the most re-
cently received item. In the asynchronous case, it is possible
that i > j, so that ei is received later than ej , but ti < tj .
Most prior research on summarizing data streams contain-
ing timestamps (with the exception of [28, 8]) has focused
on the case of synchronous streams, where the elements of
the stream are assumed to arrive in the order of timestamps.

Definition 1.1. A function f(x) is a decay function if:
(1) for every x, f(x) ≥ 0 and (2) f(x) is non-increasing
with x, i.e. x1 ≥ x2 =⇒ f(x1) ≤ f(x2).

The result of the decay function is applied on the weight
of a data item. More precisely, the “decayed weight” of item
(v, w, t, id) at time c ≥ t is w · f(c − t). An example decay
function is the sliding window model [15, 18, 28], where f(x)
is defined as follows. For some window size W , if x ≤ W ,
then f(x) = 1; otherwise, f(x) = 0. Other popular decay
functions include exponential decay f(x) = exp(−ax) for a
constant a, and polynomial decay, f(x) = x−a. An integral
decay function is one where the decayed weight w · f(c − t)
is always an integer. Note that sliding window is trivially
such a function; other functions can be made integral by
appropriate rounding or scaling.

1.2 Aggregates
Let f(·) denote a decay function, and c denote the time

at which a query is posed. Let the set of distinct observa-
tions in R be denoted by D. We now describe the aggregate
functions considered:

1. The decayed sum at time c is defined as

V =
X

(v,w,t,id)∈D

wf(c − t),

i.e. the sum of the decayed weights of all distinct ele-
ments in the stream. For example, suppose every sen-
sor published one temperature reading every minute,
and we are interested in estimating the mean temper-
ature over all readings published in the last 90 min-
utes. This can be estimated as the ratio of the sum of
observed temperatures in the last 90 minutes, to the
number of observations in the last 90 minutes. For es-
timating the sum of temperatures, we consider a data
stream where the weight wi is equal to the observed
temperature, and the sum is estimated using a sliding
window decay function of 90 minutes duration. For
the number of observations, we consider a data stream
where for each temperature observation, there is an el-
ement where the weight equals to 1, and the decayed
sum is estimated over a sliding window of 90 minutes
duration.

2. Informally, the decayed φ-quantile at time c is a value
ν such that the total decayed weight of all elements
in D whose value is less than or equal to ν is a φ
fraction of the total decayed weight. For example, in
the setting where sensors publish temperatures, each
observation may have a “confidence level” associated
with it, which is assigned by the sensor. The user may
be interested in the weighted median of the temper-
ature observations, where the weight is initially the
“confidence level” and decays with time. This can be
achieved by setting the value v equal to the observed
temperature, the initial weight w equal to the confi-
dence level, φ = 0.5, and using an appropriate time
decay function.

Since computation of exact quantiles (even in the un-
weighted case) in one pass provably takes space linear
in the size of the set [24], we consider approximate
quantiles. Our definition below is suited for the case

when the values are integers, and where there could
be multiple elements with the same value in D. Let
the relative rank of a value u in D at time c be de-

fined as
P

{(v,w,t,id)∈D|v≤u} wf(c−t)
P

(v,w,t,id)∈D wf(c−t)
. For a user defined

0 < ε < φ, the ε-approximate decayed φ-quantile is a
value ν such that the relative rank of ν is at least φ−ε
and the relative rank of ν − 1 is less than φ+ ε.

3. Frequent items. Let the (weighted) relative frequency
of occurrence of value u at time c be defined as

ψ(u) =

P

{(v,w,t,id)∈D|v=u}wf(c − t)
P

(v,w,t,id)∈D
wf(c − t)

.

The frequent items are those values ν such that ψ(ν) >
φ for some threshold φ, say φ = 2%. The exact ver-
sion of the frequent elements problems requires the
frequency of all items to be tracked precisely, which
is provably expensive to do in small space [4]. Thus
we consider the ε-approximate frequent elements prob-
lem, which requires us to return all values ν such that
ψ(ν) > φ and no value ν ′ such that ψ(ν′) < φ− ε.

4. A selectivity estimation query is, given a predicate P (v, w)
which returns either 0 or 1, to evaluate Q defined as:

Q =

P

(v,w,t,id)∈D
wP (v, w)f(c− t)

P

(v,w,t,id)∈D
wf(c − t)

.

Informally, the selectivity of a predicate P (v, w) is the
ratio of the total (decayed) weight of all stream ele-
ments that satisfy predicate P to the total decayed
weight of all elements. Note that 0 ≤ Q ≤ 1. The
ε-approximate selectivity estimation problem is to re-
turn a value Q̂ such that |Q̂−Q| ≤ ε.

An exact computation of the duplicate insensitive decayed
sum over a general integral decay function is impossible in
small space, even in a non-distributed setting. If we can
exactly compute a duplicate sensitive sum, we can insert an
element e, and test whether the sum changes. The answer
determines whether e has been observed already. Since it is
possible to reconstruct all the (distinct) elements observed
in the stream so far, such a sketch needs space linear in the
size of the input, in the worst case. This linear space lower
bound holds even for a sketch which can give exact answers
with a δ error probability for δ < 1/2 [3], and for a sketch
that can give a deterministic approximation [3, 21]; such
lower bounds for deterministic approximations also hold for
quantiles and frequent elements in the duplicate insensitive
model. Thus we look for randomized approximations of all
these aggregates; as a result, all of our guarantees are of the
form “With probability at least 1 − δ, the estimate is an
ε-approximation to the desired aggregate”.

The main contribution of this paper is a general purpose
sketch that can estimate all the above aggregates in a gen-
eral model of sensor data aggregation—with duplicates, asyn-
chronous arrivals, general decay functions, and distributed
computation. The space taken by our sketch is logarithmic
in the size of the input data, logarithmic in 1/δ where δ is
the error probability, and quadratic in 1/ε, where ε is the
relative error. There are lower bounds [19] showing that this
quadratic dependence on 1/ε is necessary for duplicate in-
sensitive computations, showing that our upper bounds are
close to optimal.

Outline of the Paper.
After describing related work in Section 2, we consider the

construction of a sketch for the case of integral decay func-
tions in Section 3. Although such functions seem initially
limiting, they turn out to be the key to solving all possible
decay functions efficiently. We observe that the sliding win-
dow case can be solved by our algorithm, and more strongly,
that the same data structure can answer queries over any
sliding window with any window size over the stream. In
Section 4, we show a reduction from an arbitrary decay func-
tion to the combination of multiple sliding window queries,
and demonstrate how this reduction can be performed ef-
ficiently; combining these pieces shows the main result of
our paper, that arbitrary decay functions can be applied to
asynchronous data streams to compute aggregates such as
decayed sums, quantiles, frequent elements (or “heavy hit-
ters”), and other related aggregates. A single data structure
suffices, and it turns out that even the decay function does
not have to be fixed, but can be chosen at evaluation time.
We make some concluding observations in Section 5.

2. RELATED WORK
There is a large body of work on data aggregation algo-

rithms in the areas of data stream processing [25] and sensor
networks [20, 2, 10]. In this section, we survey algorithms
that achieve some of our goals: duplicate insensitivity, time-
decaying computations, and asynchronous arrivals in a dis-
tributed context — we know of no prior work which achieves
all of these simultaneously.

The Flajolet-Martin (FM) sketch [16] is a simple tech-
nique to approximately count the number of distinct items
observed, and hence is duplicate insensitive. Building on
this, Nath, Gibbons, Seshan and Anderson [26] proposed
a set of rules to verify whether the sketch is duplicate-
insensitive, and gave examples of such sketches. They showed
two techniques: FM sketches to compute the COUNT of dis-
tinct observations in the sensor network, and a variation of
min-wise hashing [7] to draw a uniform, unweighted sample
of observed items. Also leveraging on the FM sketch [16],
Considine, Li, Kollios and Byers [12] proposed a technique to
accelerate multiple updates, and hence yield a duplicate in-
sensitive sketch for the COUNT and SUM aggregates. How-
ever, these sketches do not provide a way for the weight of
data to decay with time. Once an element is inserted into
the sketch, it will stay there forever, with the same weight as
when it was inserted into the sketch; it is not possible to use
these sketches to compute aggregates on recent observations.
Further, their sketches are based on the assumption of hash
functions returning values that are completely independent,
while our algorithms work with the pairwise independent
hash functions. The results of Cormode and Muthukrish-
nan [13] show duplicate insensitive computations of quan-
tiles, heavy hitters, and frequency moments. They do not
consider the time dimension either.

Datar, Gionis, Indyk and Motwani [15] considered how to
approximate the count over a sliding window of elements in
a data stream under a synchronous arrival model. They pre-
sented an algorithm based on a novel data structure called
exponential histogram for basic counting, and also the reduc-
tions from other aggregates, such as sum and `p norms, to
use this data structure. Gibbons and Tirthapura [18] gave
an algorithm for basic counting based on a data structure
called wave with improved worst-case performance. These

algorithms rely explicitly on synchronous arrivals: they par-
tition the input into buckets of precise sizes (typically, pow-
ers of two). So it is not clear how to extend to asyn-
chronous arrivals, which would fall into an already “full”
bucket. Arasu and Manku [4] presented algorithms to ap-
proximate frequency counts and quantiles over a sliding win-
dow. The bounds for frequency counts were recently im-
proved by Lee and Ting [22]. Babcock, Datar, Motwani and
O’Callaghan [6] presented algorithms for maintaining the
variance and k-medians of elements within a sliding win-
dow. All of these algorithms rely critically on structural
properties of the aggregate being approximated, and use
similar “bucketing” approaches to the above methods for
counts, meaning that asynchronous arrivals cannot be ac-
commodated. Equally, in all these works, the question of
duplicate-insensitivity is not considered.

Going beyond the question of sliding windows, Cohen and
Strauss [11] formalized the problem of maintaining time-
decaying aggregates, and gave strong motivating examples
where other decay functions are needed. They demonstrated
that any general time-decay function based SUM can be re-
duced to the sliding window decay based SUM. In this paper,
we extend this reduction and show how our data structure
supports it efficiently; we also extend the reduction to gen-
eral aggregates such as frequency counts and quantiles, while
guaranteeing duplicate-insensitivity and handling asynchronous
arrivals. This arises since we study duplicate-insensitive
computations (not a consideration in [11]): performing an
approximate duplicate-insensitive count (even without time
decay) requires randomization in order to achieve sublinear
space [3].

Babcock, Datar and Motwani [5] gave simple algorithms
for drawing a uniform sample from a sliding window. To
draw a sample of expected size s they keep a data structure
of size O(s log n), where n is the number of items which
fall in the window. Recently, Aggarwal [1] proposed an al-
gorithm to maintain a set of sampled elements so that the
probability of the rth most recent element being included
in the set is (approximately) proportional to exp(−ar) for a
chosen parameter a. An open problem from [1] is to be able
to draw samples with an arbitrary decay function, in par-
ticular, ones where the timestamps can be arbitrary, rather
than implicit from the order of arrival. We partially resolve
this question: for an integral decay function, our algorithm
maintains a sample such that the probability of retaining
any item in the sample is proportional to its current de-
cayed weight and, with high probability, this sample is large
enough to accurately estimate useful statistics.

Gibbons and Tirthapura [17] introduced a model of dis-
tributed computation over data streams. Each of many dis-
tributed parties only observes a local stream and maintains
a space-efficient sketch locally. The sketches can be merged
by a central site to estimate an aggregate over the union
of the streams: in [17], they considered the estimation of
the size of the union of distributed streams, or equivalently,
the number of distinct elements in the streams. This al-
gorithm was generalized by Pavan and Tirthapura [27] to
compute the duplicate-insensitive sum as well as other ag-
gregates such as max-dominance norm. Tirthapura, Xu and
Busch [28] proposed the concept of asynchronous streams
and gave a randomized algorithm to approximate the sum
and median over a sliding window. Here, we extend this line
of work to handle both general decay and duplicate arrivals.

3. AGGREGATES OVER AN
INTEGRAL DECAY FUNCTION

In this section, we consider a sketch for duplicate insen-
sitive decayed aggregation over a time decay function f(),
such that the decayed weight w ·f(c−t) is always an integer.
We first describe the intuition behind our sketch.

3.1 High-level description
Recall that R denotes the observed stream and D denotes

the set of distinct elements in R. Though our sketch can
provide estimates of many aggregates, for the intuition, we
suppose that the task was to answer a query for the decayed
sum of elements in D at time κ, i.e.

V =
X

(v,w,t,id)∈D

wf(κ − t).

Let wmax denote f(0) times the maximum weight of any
element and idmax the maximum value of id. Consider the
following hypothetical process, which happens at query time
κ. This process description is for intuition only, and is not
executed by the algorithm. For each distinct stream element
e = (v, w, t, id), a range of integers is defined as

rκ
e = [wmax · id, wmax · id+ wf(κ − t)− 1].

Note that the size of the range is exactly wf(κ − t). Fur-
ther, if the same element e appears again in the stream, an
identical range is defined, and for elements with distinct val-
ues of id, the defined ranges are disjoint. Thus we have the
following observation.

Observation 3.1.

X

e=(v,w,t,id)∈D

wf(κ− t) =

˛

˛

˛

˛

˛

[

e∈R

rκ
e

˛

˛

˛

˛

˛

The integers in rκ
e are placed in random samples T0, T1, . . . , TM

as follows, where M is of the order of log(wmax · idmax),
which will be precisely defined later. Each integer in rκ

e

is placed in sample T0. For i = 0 . . .M − 1, each integer
in Ti is placed in Ti+1 with probability approximately 1/2
(the probability is not exactly 1/2 due to the nature of the
sampling functions, which will be made precise later). The
probability that an integer is placed in Ti is pi ≈ 1/2i. Then
the decayed sum V can be estimated using Ti as the number
of integers selected into Ti, multiplied by 1/pi. Note that
the expected value of an estimate using Ti is V for every i,
and by choosing a “small enough” i, we can get an estimate
for V that is close to its expectation with high probability.

We now discuss how our algorithm simulates the behav-
ior of the above process under severe space constraints and
under online arrival of stream elements. Overcounting due
to duplicates is avoided through sampling based on a hash
function h, which will be precisely defined later. If an ele-
ment e appears again in the stream, then the same set of
integers rκ

e is defined (as described above), and the hash
function leads to exactly the same decision as before about
whether or not to place each integer in Ti. Thus, if an el-
ement appears multiple times it is either selected into the
sample every time (in which case duplicates are detected
and discarded) or it is never selected into the sample.

Another issue is that for an element e = (v, w, t, id), the
length of the defined range rκ

e is wf(κ − t), which can be
very large. Separately sampling each of the integers in rκ

e

would require evaluating the hash function wf(κ− t) times
for each sample, which can be very expensive time-wise, and
exponential in the size of the input. So, we make use of the
time-efficient Range-Sampling technique, introduced in [27]
to sample the whole range rκ

e quickly in time O(log |rκ
e |),

through taking advantage of the structure present in the
pairwise independent hash function h. Further, all integers
in rκ

e that have been sampled into Ti are stored together
(implicitly) by simply storing an element e in Ti whenever
at least one integer in rκ

e is selected into Ti.
Even with the above Range Sampling technique it is im-

possible for the algorithm to compute and store the sam-
ples Ti in exactly the manner described above. First of
all, the query time κ, and hence the weight of an obser-
vation, wf(κ − t), is unknown at the time the element ar-
rives in the stream. To overcome this problem, we note
that the weight at time c is wf(c − t), which is a strictly
non-increasing function of c. It is possible to identify an
“expiry time” for e at level i, expiry(e, i) such that as long
as c < expiry(e, i) the range rc

e has at least one integer se-
lected into Ti, and for c ≥ expiry(e, i), rc

e has no integers
selected into Ti. This way, we can tag e with its expiry time
when it arrives, and retain it in Ti only as long as the current
time is less than expiry(e, i). For any future query arriving
at time κ ≥ expiry(e, i), an estimate for the sum using Ti

will never use e.
Next, for smaller values of i, Ti may be too large, and

hence take too much space. Here the algorithm stores only
the subset Si of at most τ elements of Ti with the largest
expiry times, and discards the rest (τ is a parameter that
depends on the desired accuracy). Note that the τ largest
elements of any stream can be easily maintained incremen-
tally in one pass through the stream with O(τ) space. Let
the samples actually maintained by the algorithm be de-
noted S0, S1, . . . , SM .

Now we show an example of computing the time decayed
sum in Figure 1. Since the “value” field v is not used, we sim-
plify the element as (w, t, id). The input stream e1, e2, . . . , e8
is shown at the top of the figure. We assume a time decay
function where the decayed weight of element (wi, ti, idi) at
time t is ωt

i = b w
t−ti
c. Recall that the expiry time of ei

at level j, denoted by expiry(ei, j), is the earliest time t at
which no integers in rt

ei
are selected into level j. The figure

only showes the expiry time at level 0. Suppose the current
time c = 15.

The current state of the sketch is shown in the figure. At
the current time, e1 and e3 have expired at level 0, which
implies they also have expired at all other levels. e7 and
e8 do not appear in the sketch, because they are duplicates
of e4 and e5 respectively. Among the remaining elements
e2, e4, e5, e6, only the τ = 3 elements with the largest ex-
piry times are retained in S0; thus e4 is discarded from
S0. From the set {e2, e4, e5, e6}, a subset {e4, e5, e6} is (ran-
domly) selected into S1 based on the hash values of integers
in r15ei

(this implies expiry(e4, 1) > 15, expiry(e5, 1) > 15,
expiry(e6, 1) > 15 and expiry(e2, 1) ≤ 15), and since there
is enough room, all these are stored in S1. Only e5 is selected
into S2 and no element is selected into level 3.

When a query is posed for the sum at time 15, the algo-
rithm finds the smallest number ` such that the sample S`

has not discarded any element whose expiry time is greater
than 15. For example, in Figure 1, ` = 1. Note that at this
level, S` = T`, and so S` can be used to answer the query

Figure 1: An example stream with 8 elements, and
its sketch {S0, S1, S2, S3} for the decayed sum. The
current time is 15. The decayed weight of ei at time
t is denoted by ωt

i . Recall that the expiry time of
ei at level j is denoted by expiry(ei, j). The element
e4 in the dashed box indicates that it was discarded
from S0 due to an overflow.

for V . The intuition of choosing such a smallest ` is that the
expected sample size at level ` is the largest among all the
samples that can be used to answer the query, and the larger
the sample size is, the more accurate the estimate will be.
Further, it can be shown with high probability, the estimate
for V using S` is within the desired relative error.

3.2 Formal Description
We now describe how to maintain the different samples

S0, S1, . . . , SM . Let h be a pairwise independent hash func-
tion chosen from a 2-universal family of hash functions as fol-
lows (following Carter and Wegman [9]). Let Υ = wmax(idmax+
1). The domain of h is [1 . . .Υ]. Choose a prime number p
such that 10Υ < p < 20Υ, and two numbers a and b uni-
formly at random from {0, . . . , p − 1}. Then hash function
h : {1, . . . ,Υ} → {0, . . . , p−1} is defined as h(x) = (a ·x+b)
mod p. The function RangeSample(r, i), defined precisely in
[27], takes as its input a range r ⊆ [1,Υ] and a sampling level
i ∈ [0,M], and (quickly) returns the number of points x ∈ r
such that h(x) ∈ {0, . . . , b2−ipc − 1}.

Computation of expiry(e, i).
For any element e = (v, w, t, id) and level 0 ≤ i ≤M , the

function expiry(e, i) returns the time t̄ such that for c < t̄,
RangeSample(rc

e, i) > 0, and for c ≥ t̄, RangeSample(rc
e, i) =

0. Note that

rc
e = [wmax · id, wmax · id+ w · f(c − t)− 1].

Since f(c− t) is a non-increasing function of c, the range rc
e

shrinks monotonically as c increases. Since RangeSample(rc
e, i)

is exactly the number of points from rc
e that are selected into

Ti by the hash function, it is also a non-increasing function
of c. If limt→∞ f(t) = fmin > 0, and RangeSample(r∞e , i) >
0, then we define expiry(e, i) = ∞, i.e. e never expires
from level i. Similarly, if RangeSample(r0e , i) = 0, then
expiry(e, i) is defined to be 0, and e never belongs to level i.
Else, we can compute t̄ using a binary search on the range
of possible times [t, t + tmax] where tmax is the smallest t′

such that f(t′) = fmin.

Initialization:

1. Randomly choose a hash function h as described in
Section 3.2

2. For 0 ≤ i ≤M , Si ← ∅, ti ← −1.
// ti is the maximum expiry time among all the ele-
ments discarded so far at level i

When a new item e = (v, w, t, id) arrives:
For 0 ≤ i ≤M

1. If (e ∈ Si), then return; // e is a duplicate.

2. If (expiry(e, i) > max{c, ti})

(a) Si ← Si ∪ {e}

(b) If |Si| > τ then // overflow

i. ti ← mine∈Si
expiry(e, i)

ii. Si ← Si\{e| expiry(e, i) = ti}

To merge two sketches S, S′:
For 0 ≤ i ≤M

1. Si ← Si ∪ S
′
i

2. ti ← max{ti, t
′
i}

3. While |Si| > τ do

(a) ti ← mine∈Si
expiry(e, i)

(b) Si ← Si\{e| expiry(e, i) = ti}

Figure 2: General Sketch Algorithm over an Integral
Decay Function

If e never expires, we determine this with a single call to
the function RangeSample, else we makeO(log t̄) = O(log tmax)
evaluations of RangeSample. The time complexity of the
computation of expiry(e, i) is therefore O(log tmax logwmax),
since O(logwmax) bounds the time cost of RangeSample.
The sketch S for an integral decay function is the set of
pairs (Si, ti), for i = 0 . . .M , where Si is the sample, and ti
is the largest expiry time of any element discarded from Si

so far.

Lemma 3.1. The sample Si is order insensitive; it is un-
affected by permuting the order of arrival of the stream ele-
ments. The sample is also duplicate insensitive; if the same
element e is observed multiple times, the resulting sample is
the same as if it had been observed only once.

Proof. Order insensitivity is easy to see since Si is the
set of τ elements in Ti with the largest expiry times, and
this is independent of the order in which elements arrive. To
prove duplicate insensitivity, we observe that if the same ele-
ment e = (v, w, t, id) is observed twice, the function expiry(e, i)
yields the same outcome, and hence Ti is unchanged, from
which Si is correctly derived.

Lemma 3.2. Suppose two samples Si and S′
i were con-

structed using the same hash function h on two different
streams R and R′ respectively. Then Si and S′

i can be merged
to give a sample of R ∪R′.

Proof Sketch. To merge samples Si and S′
i from two

(potentially overlapping) streams R and R′, we observe that
the required ith level sample of R ∪ R′ is a subset of the
τ elements with the largest expiry times in Ti ∪ T

′
i, after

discarding duplicates. This can easily be computed from Si

and S′
i. The formal algorithm is given in Figure 2.

Since it is easy to merge together the sketches from dis-
tributed observers, for simplicity the subsequent discussion
is framed from the perspective of a single stream. We note
that the sketch resulting from merging S and S′ gives the
same correctness and accuracy with respect to R∪R′ as did
S and S′ with respect to R and R′ respectively.

Lemma 3.3 (Space and Time Complexity). The space
complexity of the sketch for integral decay is O(Mτ) units,
where each unit is an input observation (v, w, t, id). The ex-
pected time for each update is O(logw(log τ+log tmax logwmax)).
Merging two sketches takes time O(Mτ).

Proof Sketch. The space complexity follows from the
fact that the sketch consists of M + 1 samples, and each
sample contains at most τ stream elements. For the time
complexity, the sample Si can be stored in a priority queue
ordered by expiry times. To insert a new element e into Si,
it is necessary to compute the expiry time of e as expiry(e, i)
once. This takes time O(logwmax log tmax). Note that for
each element e, we can compute its expiry time at level
i exactly once and store the result for later use. An in-
sertion into Si may cause an overflow, which will neces-
sitate the discarding of elements with the smallest expiry
times. In the worst case, all elements in Si may have the
same expiry time, and may need to be discarded, leading
to a cost of O(τ + logwmax log tmax) for Si, and a worst
case time of O(M(τ + logwmax log tmax)) in total. But
the amortized cost of an insertion is much smaller and is
O(M(log τ + logwmax log tmax)), since the total number of
elements discarded due to overflow is no more than the total
number of insertions, and the cost of discarding an element
due to overflow can be charged to the cost of a correspond-
ing insertion. The expected number of levels into which
the element e = (v, w, t, id) is inserted is not M , but only
O(logw), since the expected value of RangeSample(rc

e, i) =
pi|r

c
e| ≈ w/2i. Thus the expected amortized time of inser-

tion is O(logw(log τ + log tmax logwmax)).
Two sketches can be merged in time O(Mτ) since two pri-

ority queues (implemented as max-heaps) of O(τ) elements
each can be merged and the smallest elements discarded in
O(τ) time.

3.3 Computing Decayed Aggregates Using the
Sketch

We now describe how to compute a variety of decayed
aggregates using the sketch S. For i = 0 . . .M , let pi =
bp2−ic

p
denote the sampling probability at level i.

Decayed Sum.
We begin with the decayed sum:

V =
X

(v,w,t,id)∈D

wf(c− t).

For computing the decayed sum, let the maximum size of a
sample be τ = 60/ε2, and the maximum number of levels be
M = dlogwmax + log idmaxe.

Theorem 3.1. The algorithm in Figure 3 yields an es-
timator V̂ of V such that Pr[|V̂ − V | < εV] > 2

3
. The

time taken to answer a query for the sum is O(logM +
1
ε2

logwmax). The expected time for each update is

O(logw(log 1
ε
+log tmax logwmax)). The space complexity is

O(1
ε2

(logwmax + log idmax)).

When queried for the decayed sum at time c:

1. ` = min{i|0 ≤ i ≤M, ti ≤ c}

2. If ` does not exist, then the algorithm fails, return.

3. If ` exists, then return 1
p`

P

e∈S`
RangeSample(rc

e, `)

Figure 3: Duplicate Insensitive Sum over a Sliding
Window

Proof. We show the correctness of our algorithm for the
sum through a reduction to the range-efficient algorithm for
counting distinct elements from [27] (we refer to this algo-
rithm as the PT algorithm, for the initials of the authors
of [27]). Suppose a query for the sum was posed at time c.
Consider the stream I = {rc

e|e ∈ R}, which is defined on
the weights of the different stream elements when the query
is posed. From Observation 3.1, we have | ∪r∈I r| = V .

Consider the processing of the stream I by the PT algo-
rithm. The algorithm samples the ranges in I into different
levels using hash function h. When asked for an estimate of
the size of ∪r∈Ir, the PT algorithm uses the smallest level,
say `′, such that the |{e ∈ D|RangeSample(rc

e, `
′) > 0}| ≤ τ ,

and returns an estimate Y = 1
p`′

P

e∈D
RangeSample(rc

e, `
′).

From Theorem 1 in [27], Y satisfies the condition Pr[|Y −
V | < εV] > 2/3 if we choose the sample size τ = 60/ε2, and
number of levels M such that M > log Vmax where Vmax is
an upper bound on V . Since wmaxidmax is an upper bound
on V (each distinct id can contribute at most wmax to the
decayed sum), our choice of M satisfies the above condition.

Consider the sample S` used by the algorithm in Figure 3
to answer a query for the sum. Suppose ` exists, then `
is the smallest integer such that t` ≤ c. For every i < `,
we have ti > c, implying that Si has discarded at least
one element e such that RangeSample(rc

e, i) > 0. Thus for
level i < `, it must be true that |{e|RangeSample(rc

e, i) >
0}| > τ , and similarly for level `, it must be true that
|{e|RangeSample(rc

e, `) > 0}| ≤ τ . Thus, if level ` exists,
then ` = `′, and the estimate returned by our algorithm
is exactly Y , and the theorem is proved. If ` does not ex-
ist, then it must be true that for every level i, 0 ≤ i ≤ M ,
|{e ∈ D|RangeSample(rc

e, i) > 0}| > τ , and thus the PT
algorithm also fails to find an estimate.

For the time complexity of a query, observe that finding
the right level ` can be done in O(logM) time by organizing
the tis in a search structure, and once ` has been found,
the function RangeSample() has to be called on the O(τ)
elements in S`, which takes a further O(logwmax) time per
call to RangeSample().

The expected time for each update and the space com-
plexity directly follows from Lemma 3.3.

We note that typically one wants a guarantee that the
failure probability is δ � 1

3
. To give such a guarantee, we

can keep Θ(log 1/δ) independent copies of the sketch (based
on different hash functions), and take the median of the es-
timates. A standard Chernoff bounds argument shows that
the median estimate is accurate within εV with probability
at least 1− δ.

Selectivity Estimation.
Recall the definition of selectivity estimation from the

Introduction. In order to estimate selectivity, we use our

When queried for the selectivity of P at time c:

1. ` = min{i|0 ≤ i ≤M, ti ≤ c}

2. If ` does not exist, then the algorithm fails, return.

3. If ` exists, then return
P

e=(v,w,t,id)∈S`
RangeSample(rc

e,`)·P (v,w)
P

e∈S`
RangeSample(rc

e,`)

Figure 4: Selectivity Estimation over an Integral De-
cay Function

sketch to find a sample S` such that S` is the lowest num-
bered sample that has not discarded any element whose
expiry time exceeds c, and evaluate the selectivity of P
over elements in S`. We argue that this accurately esti-
mates the selectivity over the whole stream. The formal
algorithm is given in Figure 4. For selectivity estimation,
setting τ = 492/ε2 and the maximum number of levels be
M = dlogwmax + log idmaxe, we get:

Theorem 3.2. The Algorithm in Figure 4 yields an es-
timate Q̂ of Q such that Pr[|Q̂ − Q| < ε] > 2/3. The
time taken to answer a query for the selectivity of P is
O(logM + 1

ε2
logwmax). The expected time for each update

is O(logw(log 1
ε
+log tmax logwmax)). The space complexity

is O(1
ε2

(logwmax + log idmax)).

Due to space constraints, we omit the proof here, and refer
the reader to the technical report [14]. As in the case of the
decayed sum computation, we can amplify the probability
of success to (1 − δ) by taking the median of Θ(log 1/δ)
repetitions of the data structure (based on different hash
functions).

Theorem 3.3. We can answer the ε-approximate φ-quantiles
and frequent items problems using the same sketch data struc-
ture, in time O(logM + 1

ε2
log(wmax

ε2
)). The expected time

for each update is O(logw(log 1
ε

+ log tmax logwmax)). The

space complexity is O(1
ε2

(logwmax + log idmax)).

Proof Sketch. The expected time for each update and
the space complexity directly follows from Lemma 3.3. Now
we show how to reduce a sequence of problems to instances
of selectivity estimation.

• A rank estimation query for a value ν asks to estimate
the (weighted) fraction of elements whose value v is at
most ν. This is encoded by a predicate Pν such that
P≤ν(v, w) = 1 if v ≤ ν, else 0. Clearly, this can be
solved using the above analysis with additive error at
most ε.

• The median is the item whose rank is 0.5. To find the
median, we can binary search for the smallest ν such
that the rank of ν is 0.5 or higher, using the selectivity
of the Pν predicate. We pose at most log vmax queries
in our binary search, and by the union bound, they all
succeed with probability at least (1− δ) log vmax.

• Quantiles generalize the median to find items whose
ranks are multiples of φ, e.g. the quantiles, which are
elements at ranks 0.2, 0.4, 0.6 and 0.8. Again, by
binary searching for each one in turn, we can find them
with additive error ε.

• The frequent items problem can also be solved using
selectivity queries. Value ν is a frequent item iff the
selectivity of the predicate “P=ν(v, w) = 1 if v = ν”
is φ or more. The algorithm for frequent elements can
check the selectivity of every value occurring within
sample S`, and check if any of them has a selectivity
above the desired threshold.

We note that a faster way to compute the median and
quantiles is to compute the required quantiles of an appro-
priate weighted sample S` where ` is defined (as before) as
the smallest integer such that t` ≤ c. The result of this com-
putation is the same as that found by the method above, but
is faster to compute. Thus, after computing the sample level
and RangeSample values, we can sort the sample by value
and so compute frequent items and quantiles, incurring an
additional O(τ log τ) cost over the time complexity of selec-
tivity estimation.

4. GENERAL DECAY FUNCTIONS
VIA SLIDING WINDOW

4.1 Sliding Window Decay
Recall that a sliding window decay function, given a win-

dow size W , is defined as fW (x) = 1 if x < W , and fW (x) =
0 otherwise. As already observed, the sliding window decay
function is a perfect example of an integral decay function,
and hence we can use the algorithm from Section 3. It also
simplifies the application of the algorithm somewhat: we can
easily compute the expiry time of any element ei as ti +W .
We can prove a stronger result though: If we set f(x) = 1
always when inserting the element. i.e., the element never
expires, and discard the element with the oldest timestamp
when the sample is full, we can keep a single data structure
that is good for any sliding window size W < ∞, where
any W can be specified after the data structure has been
created, to return a good estimate of the aggregates.

Theorem 4.1. Our data structure can answer sliding win-
dow sum and selectivity queries where the parameter W is
provided at query time. Precisely, for τ = O(1

ε2
) and M =

O(logwmax+log idmax), we can provide an estimate V̂ of the

decayed sum V such that Pr[|V̂ −V | < εV] > 2
3

and an esti-

mate Q̂ of the selectivity, Q, such that Pr[|Q̂−Q| < ε] > 2
3
.

The time to answer both queries is O(logM + τ).

Proof. Observe that for all parameters W , the expiry
order is the same: ej expires before ek if and only if tj <
tk. So we keep the data structure as usual, but instead of
aggressively expiring items, we keep the τ most recent items
at each level i as Si. Let ti denote the largest timestamp of
the discarded items from level i. We only have to update
Si when a new item arrives in the level. If there are fewer
than τ items at the level, we retain it. Else, we either reject
the new item if t ≤ ti, or else retain it, eject the oldest
item in the Si, and update ti accordingly. For both sum
and selectivity estimation, we find the lowest level where no
elements which fall within the window have expired—this
is equivalent to the level ` from before. From this level,
we can extract the sample of items which fall within the
window, which are exactly the set we would have if we had
enforced the expiry times. Hence, we obtain the guarantees
that follow from Theorems 3.1 and 3.2. The running time is

slightly faster now: since we compute the expiry time t+W
once and for all, at insertion time we can also compute and
store the value of the RangeSample predicate run on the
inserted range, and so do not need to recompute this at
query time.

Similarly, we can amplify the probability of success to
1 − δ by taking the median of Θ(1/δ) repetitions of the
data structures, each of which is based on different hash
functions.

4.2 Reduction from General Decay Function
to Sliding Window Decay

We now give a reduction from the problem of comput-
ing the decayed sum using a general time decay function to
the problem of computing the sum over a sliding window.
The randomized reduction generalizes a (deterministic) idea
from Cohen and Strauss [11]: rewrite the decayed compu-
tation as the combination of many sliding window queries
(over different sized windows). We further show how this
reduction can be done in a time-efficient manner.

Selectivity Estimation.

Lemma 4.1. Arbitrary decay function selectivities estima-
tion can be rewritten as the combinations of at most 2c slid-
ing window queries, where c is the current time value.

Proof Sketch. Let the set of distinct observations in
the stream (now sorted by timestamps) be D = 〈e1 =
(v1, w1, t1, id1), e2 = (v2, w2, t2, id2), . . . , en = (vn, wn, tn, idn)〉.
The decayed selectivity of P at time c using a decay function
f is defined as

Q =
X

(v,w,t,id)∈D

w · P (v, w) · f(c− t)/
X

(v,w,t,id)∈D

w · f(c− t),

(1)
and can be rewritten as Q = A/B where,

A = f(c− t1)
n

X

i=1

wiP (vi, wi)

+

tn
X

t=t1+1

0

@[f(c − t)− f(c− t+ 1)] ·
X

{i|ti≥t}

P (vi, wi)wi

1

A

B = f(c − t1)
n

X

i=1

wi

+

tn
X

t=t1+1

0

@[f(c− t)− f(c− t+ 1)] ·
X

{i|ti≥t}

wi

1

A

We compute A and B separately; first, consider B, which
is equivalent to V , the decayed sum under the function f .
Write V W for the decayed sum under the sliding window of
size W . We can compute
V̂ =

Ptn

t=t1+1

`

[f(c − t)− f(c − t+ 1)] · V c−t
´

, using the slid-

ing window algorithm for the sum to estimate each V c−t,
from t = t1 + 1 till tn. We also add (

P

i
wi)f(c − t1), by

tracking
P

i
wi exactly. Applying our algorithm, each slid-

ing window query V W is accurate up to a (1 ± ε) relative
error with probability at least 1 − δ, so taking the sum of
(tn − t1) ≤ c such queries yields an answer that is accurate
with a (1± ε) factor with probability at least 1− cδ, by the

(a) (b) (c)

Figure 5: Reduction of general decay functions to sliding window: (a) a sample decay function (b) breaking the
decay function into sliding windows every timestep (c) computing sliding windows only for stored timestamps.

union bound. Similarly, A can also be computed by using
the sliding window algorithm for the sum. Further, Theo-
rem 4.1 implies each sliding window query in A is accurate
up to a (±εV) additive error with probability at least 1− δ,
which further yields an estimate for A with the accuracy up
to (±εV) additive error with probability at least 1−cδ. Com-
bining the estimates for A and B and using τ = O(1/ε2), we
get |Q′−Q| ≤ ε with probability at least (1−2cδ), where Q′

is the estimate of A/B. To give the required overall prob-
ability guarantee, we can adjust δ by a factor of 2c. Since
the total space and time taken depend only logarithmically
on 1/δ, scaling δ by a factor of 2c increases the space and
time costs by a factor of O(log c).

Theorem 4.2. We can answer selectivity queries with ar-
bitrary decay functions in time O(Mτ log(Mτ

δ
) log(Mτ log Mτ

δ
))

to find Q̂ so that Pr[|Q − Q̂| > ε] < δ.

Proof. Implementing the above reduction directly would
be too slow, depending linearly on the range of timestamps.
However, we can improve this by making some observations
on the specifics of our implementation of the sliding window
sum. Observe that since our algorithm stores at most τ
timestamps at each of M levels. So if we probe it with two
timestamps tj < tk such that, over all timestamps stored in
the Si samples, there is no timestamp t such that tj < t ≤ tk,
then we will get the same answer for both queries. Let tji
denote the jth timestamp in ascending order in Si. We can
compute the exact same value for our estimate of (1) by
only probing at these timestamps, as:

M
X

i=0

|Si|
X

j=1

t
j
i
<tmin

i−1

(f(c− tji)− f(c − tj+1
i))V c−t

j
i (2)

where for 0 ≤ i ≤ M , tmin
i denotes the smallest (oldest)

timestamp of the items in Si, and tmin
−1 = c + 1, where c is

the current time (this avoids some double counting issues).
This process is illustrated in Figure 5: we show the original
decay function, and estimation at all timestamps and only
a subset. The shaded boxes denote window queries: the
length is the size, W of the query, and the height gives the
value of f(c − tji)− f(c− tj+1

i).
We need to keep b = log Mτ

δ
independent copies of the

data structure (based on different hash functions) to give
the required accuracy guarantees. We answer a query by
taking the median of the estimates from each copy. Thus,
we can generate the answer by collecting the set of times-
tamps from all b structures, and working through them in
sorted order of recency. In each structure we can incre-
mentally work through level by level: for each subsequent

timestamp, we modify the answer from the structure that
this timestamp originally came from (all other answers stay
the same). We can track the median of the answers in time
O(log b): we keep the b answers in sorted order, and one
changes each step, which can be maintained by standard
dictionary data structures in time O(log b). If we exhaust
a level in any structure, then we move to the next level
and find the appropriate place based on the current times-
tamp. In this way, we work through each data structure in
a single linear pass, and spend time O(log b) for every time
step we pass. Overall, we have to collect and sort O(Mτb)
timestamps, and perform O(Mτb) probes, so the total time
required is bounded by O(Mτb log(Mτb)). This yields the
bounds stated above.

Once selectivity can be estimated, we can use the same
reductions as in the sliding window case to compute time
decayed ranks, quantiles, and frequent items, yielding the
same bounds for those problems.

Decayed Sum Computation.
We observe that the maintenance of the decayed sum over

general decay functions has already been handled as a sub-
problem within selectivity estimation.

Lemma 4.2. Arbitrary decay function sum can be rewrit-
ten as the combinations of at most c sliding window queries,
where c is the current time.

Theorem 4.3. We can answer arbitrary decay function
sum estimation in time O(Mτ log(Mτ

δ
) log(Mτ log(Mτ

δ
))) to

find V̂ such that Pr[|V̂ − V | > εV] < δ].

5. CONCLUDING REMARKS
We observe that this is a very powerful result: not only

does there exist a data structure allowing the duplicate-
insensitive, distributed computation of aggregates over asyn-
chronous data streams, but also, via the reduction to sliding
window computations, there exists a single data structure
which can answer decayed aggregate queries without knowl-
edge of the desired decay function until the query is posed.

Given an integral decay function, we have a choice: either
compute it directly via the method in Section 3, or compute
it via a reduction to sliding windows, using the method in
Section 4. There are pros and cons to each approach: the
method of Section 3 is faster to evaluate queries on, since we
can immediately calculate the result from the appropriate
level, whereas the sliding window reduction requires a linear
time pass through the data structure. The space used is
slightly smaller with the former method, as we need slightly

fewer repetitions to give the necessary probability guaran-
tees. Meanwhile, the method of Section 4 is much more
general, allowing us to specify the decay function after the
sketch has been made.

An open question is therefore if there is more power in fix-
ing a decay function a priori: can we create a smaller sketch
(and hence reduce communication when sending it) for cer-
tain fixed functions? For certain classes, such as exponential
decay functions, which seem to be easier to handle for other
aggregates, it seems possible, but no results are known that
are better than the general case.

6. REFERENCES
[1] C. C. Aggarwal. On biased reservoir sampling in the

presence of stream evolution. In VLDB, 2006.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E.
Cayirci. A survey on sensor networks. IEEE Commun.
Mag. 40 (8) (2002) 102–114

[3] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences,
58(1):137–147, 1999.

[4] A. Arasu and G. Manku. Approximate counts and
quantiles over sliding windows. In PODS, 2004.

[5] B. Babcock, M. Datar, and R. Motwani. Sampling
from a moving window over streaming data. In SODA,
2002.

[6] B. Babcock, M. Datar, R. Motwani, and
L. O’Callaghan. Maintaining variance and k-medians
over data stream windows. In PODS, 2003.

[7] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. In STOC, 1998.

[8] C. Busch and S. Tirthapura. A deterministic
algorithm for summarizing asynchronous streams over
a sliding window. In STACS, 2007.

[9] J.L. Carter and M.L. Wegman. Universal classes of
hash functions. J. of Comp. and System Sciences,
18(2):143–154, 1979.

[10] Y. Chen, H. V. Leong, M. Xu, Jiannong Cao, K.C.C
Chan and A. T.S Chan. In-network data processing
for wireless sensor networks. In MDM (International
Conference on Mobile Data Management) 2006

[11] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In PODS, 2003.

[12] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. In ICDE, 2004.

[13] G. Cormode and S. Muthukrishnan. Space efficient
mining of multigraph streams. In PODS, 2005.

[14] G. Cormode, S. Tirthapura, B. Xu. Time-Decaying
Sketches for Sensor Data Aggregation. Technical
Report TR-2007-06-0, Department of Electrical and
Computer Engineering, Iowa State University.

[15] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows.
SIAM J. on Computing, 31(6):1794–1813, 2002.

[16] P. Flajolet and G. N. Martin. Probabilistic counting.
In FOCS, 1983.

[17] P. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In SPAA,
2001.

[18] P. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In SPAA, 2002.

[19] P. Indyk, D. Woodruff. Tight lower bounds for the
distinct elements problem. In FOCS, 2003.

[20] N. Kimura and S. Latifi. A survey on data
compression in wireless sensor networks. In ITCC
International Conference on Information Technology
Coding and Computing, 2005

[21] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[22] L.K. Lee and H.F. Ting. A simpler and more efficient
deterministic scheme for finding frequent items over
sliding windows. In PODS, 2006.

[23] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor
networks. SIGOPS Operating Systems Review,
36(SI):131–146, 2002.

[24] J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
12(3):315–323, 1980.

[25] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science. Now Publishers, August 2005.

[26] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson.
Synopsis diffusion for robust aggregation in sensor
networks. In SENSYS, 2004.

[27] A. Pavan and S. Tirthapura. Range-efficient
computation of F0 over massive data streams. In
SIAM Journal on Computing, 37(2):359–379, 2007.

[28] S. Tirthapura, B. Xu, and C. Busch. Sketching
asynchronous streams over a sliding window. In
PODC, 2006.

