
A Second Look at Counting Triangles in Graph Streams

Graham Cormode, Hossein Jowharia,b,

aG.Cormode@warwick.ac.uk, Corresponding author
bhjowhari@sfu.ca

Abstract

In this paper we present improved results on the problem of counting triangles in
edge streamed graphs. For graphs with m edges and at least T triangles, we show
that an extra look over the stream yields a two-pass streaming algorithm that uses
O(m

ε4.5
√
T

) space and outputs a (1 + ε) approximation of the number of triangles
in the graph. This improves upon the two-pass streaming tester of Braverman,
Ostrovsky and Vilenchik, ICALP 2013, which distinguishes between triangle-free
graphs and graphs with at least T triangle using O(m

T 1/3) space. Also, in terms
of dependence on T , we show that more passes would not lead to a better space
bound. In other words, we prove there is no constant pass streaming algorithm that
distinguishes between triangle-free graphs from graphs with at least T triangles
using O(m

T 1/2+ρ) space for any constant ρ ≥ 0.

1. Introduction

Many applications produce output in form of graphs, defined an edge at a
time. These include social networks that produce edges corresponding to new
friendships or other connections between entities in the network; communication
networks, where each edge represents a communication (phone call, email, text
message) between a pair of participants; and web graphs, where each edge repre-
sents a link between pages. Over such graphs, we wish to answer questions about
the induced graph, relating to the structure and properties.

One of the most basic structures that can be present in a graph is a trian-
gle: an embedded clique on three nodes. Questions around counting the number
of triangles in a graph have been widely studied, due to the inherent interest in
the problem, and because it is a necessary stepping stone to answering questions
around more complex structures in graphs. Triangles are of interest within social
networks, as they indicate common friendships: two friends of an individual are

Preprint submitted to Theoretical Computer Science July 21, 2014

themselves friends. Counting the number of friendships within a graph is there-
fore a measure of the closeness of friendship activities. Another use of the number
of triangles is as a parameter for evaluation of large graph models [LBKT08].

For these reasons, and for the fundamental nature of the problem, there have
been numerous studies of the problem of counting or enumerating triangles in var-
ious models of data access: external memory [LWZW10, HTC13]; map-reduce [SV11,
PT12, TKMF09]; and RAM model [SW05, Tso08]. Indeed, it seems that triangle
counting and enumeration is becoming a de facto benchmark for testing “big data”
systems and their ability to process complex queries. The reason is that the prob-
lem captures an essentially hard problem within big data: accurately measuring
the degree of correlation. In this paper, we study the problem of triangle counting
over (massive) streams of edges. In this case, lower bounds from communication
complexity can be applied to show that exactly counting the number of triangles
essentially requires storing the full input, so instead we look for methods which
can approximate the number of triangles. In this direction, there has been series
of works that have attempted to capture the right space complexity for algorithms
that approximate the number of triangles. However most of these works have fo-
cused on one pass algorithms and thus, due to the hard nature of the problem, their
space bounds have become complicated, suffering from dependencies on multiple
graph parameters such as maximum degree, number of paths of length 2, number
of cycles of length 4, etc.

In a recent work by Braverman et al. [BOV13], it has been shown that at the
expense of an extra pass over stream, a straightforward sampling strategy gives a
sublinear bound that depends only on m (number of edges) and T (a lower bound
on the number of triangles1). More precisely [BOV13] have shown that one ex-
tra pass yields an algorithm that distinguishes between triangle-free graphs from
graphs with at least T triangles using O(m

T 1/3) words of space. Although their
algorithm does not give an estimate of the number of triangles and more impor-
tant is not clearly superior to the O(m∆

T
) one pass algorithm by [PT12, PTTW13]

(especially for graphs with small maximum degree ∆), it creates some hope that
perhaps with the expense of extra passes one could get improved and cleaner space
complexities that beat the one pass bound for a wider range of graphs. In particular

1In this and prior works, some assumption on the number of triangles is required. This is due
in part to the fact that distinguishing triangle-free graphs from those with one or more triangle
requires space proportional to the number of edges. Other works have required even stronger
assumptions, such as a bound on T2, the number of paths of length 2, or the maximum degree of
the graph

2

one might ask is there aO(m
T

) space multi-pass algorithm? In this paper, while we
refute such a possibility, we show that a more modest bound is possible. Specifi-
cally here we show modifications to the sampling strategy of [BOV13] along with
a different analysis results in a 2-pass (1 + ε) approximation algorithm that uses
only O(m

ε4.5
√
T

) space. We also observe that this bound is attainable in one pass–
if we can make the string assumption that the order of edge arrivals is random.
Additionally, via a reduction to a hard communication complexity problem, we
demonstrate that this bound is optimal in terms of its dependence on T . In other
words there is no constant pass algorithm that distinguishes between triangle-free
graphs from graphs with at least T triangles using O(m

T 1/2+ρ) for any constant
ρ > 0. We also give a similar two pass algorithm that has better dependence on ε
but sacrifices the optimal dependence on T . Our results are summarized in Figure
2 in terms of the problem addressed, bound provided, and number of passes.

In line with prior work, we assume a simple graph – that is, each edge of
the graph is presented exactly once in the stream. Note that our lower bounds
immediately hold for the case when edges are repeated.

Algorithms for Triangle Counting in Graph Streams. The triangle counting
problem has attracted particular attention in the model of graph streams: there is
now a substantial body of study in this setting. Algorithms are evaluated on the
amount of space that they require, the number of passes over the input stream that
they take, and the time taken to process each update. Different variations arise de-
pending on whether deletions of edges are permitted, or the stream is ‘insert-only’;
and whether arrivals are ordered in a particular way, so that all edges incident on
one node arrive together, or the edges are randomly ordered or adversarially or-
dered.

The work of Jowhari and Ghodsi [JG05] first studied the most popular of these
combinations: insert-only, adversarial ordering. The general approach, common
to many streaming algorithms, is to build a randomized estimator for the desired
quantity, and then repeat this sufficiently many times to provide a guaranteed ac-
curacy. Their approach begins by sampling an edge uniformly from the stream of
m arriving edges on n vertices. Their estimator then counts the number of trian-
gles incident on a sampled edge. Since the ordering is adversarial, the estimator
has to keep track of all edges incident on the sampled edge, which in the worst
case is bounded by ∆, the maximum degree. The sampling process is repeated
O(1

ε2
m∆
T

) times (using the assumed bound on the number of triangles, T), leading
to a total space requirement proportial to O(1

ε2
m∆2

T
) to give an ε relative error es-

timation of t, the number of triangles in the graph. The parameter ε ensures that

3

the error in the count is at most εt (with constant probability, since the algorithm
is randomized). The process can be completed with a single pass over the input.
Jowhari and Ghodsi also consider the case where edges may be deleted, in which
case a randomized estimator using “sketch” techniques is introduced, improving
over a previous sketch algorithm due to Bar-Yossef et al. [BYKS02].

The work of Buriol et al. [BFL+06] also adopted a sampling approach, and
built a one-pass estimator with smaller working space. An algorithm is proposed
which samples uniformly an edge from the stream, then picks a third node, and
scans the remainder of the stream to see if the triangle on these three nodes is
present. Recall that n is the number of nodes in the graph, m is number of edges,
and T ≤ t is lower bound on the (true) number of triangles. To obtain an accurate
estimate of number of triangles in the graph, this procedure is repeated indepen-
dently O(mn

ε2T
) times to achieve ε relative error.

Recent work by Pavan et al. [PTTW13] extends the sampling approach of
Buriol et al.: instead of picking a random node to complete the triangle with a
sampled edge, their estimator samples a second edge that is incident on the first
sampled edge. This estimator is repeated O(m∆

ε2T
) times, where ∆ represents the

maximum degree of any node. That is, this improves the bound of Buriol et al.
by a factor of n/∆. In the worst case, ∆ = n, but in general we expect ∆ to be
substantially smaller than n.

Braverman et al. [BOV13] take a different approach to sampling. Instead of
building a single estimator and repeating, their algorithms sample a set of edges,
and then look for triangles induced by the sampled edges. Specifically, an al-
gorithm which takes two passes over the input stream distinguishes triangle-free
graphs from those with T triangles in space O(m/T 1/3).

For graphs with W ≥ m where W is the number of wedges (paths of length
2), Jha et al. [JSP13] have shown a single pass O(1

ε2
m/
√
T) space algorithm that

returns an additive error estimation of the number of triangles.
Pagh and Tsourakakis [PT12] propose an algorithm in the MapReduce model

of computation. However, it can naturally be adapted to the streaming setting.
The algorithm conceptually assigns a “color” to each vertex randomly from C
colors (this can be accomplished, for example, with a suitable hash function). The
algorithm then stores each monochromatic edge, i.e. each edge from the input
such that both vertices have the same color. Counting the number of triangles in
this induced graph, and scaling up by a factor of C2 gives an estimator for t. The
space used is O(m/C) in expectation. Setting C appropriately yields a one-pass
algorithm with space Õ(m

T
J + m√

T
), where J denotes the maximum number of

triangles incident on a single edge.

4

n number of vertices
m number of edges
t(G) number of triangles in graph G
T lower bound on t(G)
ε relative error
δ probability of error
∆ maximum degree
J maximum number of triangles incident on an edge
K maximum number of triangles incident on a vertex

Dist(T) Distinguish graphs with T triangles from triangle-free graphs
Estimate(T, c) c approximate the number of triangles when there are at least T

Disjrp Determine if two length p bitstrings of weight r intersect

Figure 1: Table of notation

Lower bounds for triangle counting. A lower bound in the streaming model
is presented by Bar-Yossef et al. [BYKS02]. They argue that there are (dense)
families of graphs over n nodes such that any algorithm that approximates the
number of triangles must use Ω(n2) space. The construction essentially encodes
Ω(n2) bits of information, and uses the presence or absence of a single triangle
to recover a single bit. Braverman et al. [BOV13] show a lower bound of Ω(m)
by demonstrating a family of graphs with m chosen between n and n2. Their
construction encodes m bits in a graph, then adds τ edges such that there are
either τ triangles or 0 triangles, which reveal the value of an encoded bit.

For algorithms which take a constant number of passes over the input stream,
Jowhari and Ghodsi [JG05] show that still Ω(n/T) space is needed to approxi-
mate the number of triangles up to a constant factor, based on a similar encoding
and testing argument. Specifically, they create a graph that encodes two binary
strings, so that the resulting graph has T triangles if the strings are disjoint, and
2T if they have an intersection. In a similar way, Braverman et al. [BOV13] en-
code binary strings into a graph, so that it either has no triangles (disjoint strings)
or at least T triangles (intersecting strings). This implies that Ω(m/T) space is
required to distinguish the two cases. In both cases, the hardness follows from the
communication complexity of determining the disjointness of binary strings.

5

2. Preliminaries and Results

In this section, we define additional notation and define the problems that we
study.

As mentioned above, we use t(G) to denote the number of triangles in a graph
G = (V,E). Let J(G) denote the maximum number of triangles that share an
edge in G, and K(G) the maximum number incident on any vertex. We use t, J
and K when G is clear from the context.

Problems Studied. We define some problems related to counting the number
of triangles in a graph stream. These all depend on a parameter T that gives a
promise on the number of triangles in the graph.

Dist(T): Given a stream of edges, distinguish graphs with at least T triangles
from triangle-free graphs.

Estimate(T, ε): Given the edge stream of a graph with at least T triangles,
output s where (1− ε) · t(G) ≤ s ≤ (1 + ε) · t(G).

Observe that any algorithm which promises to approximate the number of
triangles for ε < 1 must at least be able to distinguish the case of 0 triangles or
T triangles. Consequently, we provide lower bounds for the Dist(T) problem,
and upper bounds for the Estimate(T, ε) problem. Our lower bounds rely on the
hardness of well-known problems from communication complexity. In particular,
we make use of the hardness of Disjrp:

Problem 1 The Disjrp problem involves two players, Alice and Bob, who each have
binary vectors of length p. Each vector has Hamming weight r, i.e. r entries set
to one. The players want to distinguish non-intersecting inputs from inputs that
do intersect.

This problem is “hard” in the (randomized) communication complexity set-
ting: it requires a large amount of communication between the players in order
to provide a correct answer with sufficient probability [KN97]. Specifically, Disjrp
requires Ω(r) bits of communication for any r < p/2, over multiple rounds of
interaction between Alice and Bob.

Our Results. We summarize the results for this problem discussed in Section 1,
and include our new results, in Figure 2. We observe that, in terms of dependence
on T , we achieve tight bounds for 2 passes: Theorem 3 shows that we can obtain
a dependence on T−1/2, and Theorem 7 shows that no improvement for constant
passes as a function of T can be obtained. It is useful to contrast to the results of
[PT12], where a one pass algorithm achieves a dependence of m/T 1/2, but has an

6

Problem Passes Bound Reference
Dist(T) 1 Ω(m) [BOV13]
Dist(T) O(1) Ω(m/T) [BOV13]
Dist(T) 2 O(m

T 1/3) [BOV13]
Estimate(T, ε) 1 O(1

ε2
m∆
T

) [PTTW13]
Estimate(T, ε) 1 O(1

ε2
(mJ
T

+ m
T 1/2)) [PT12]

Estimate(T, ε) 2 O(m
ε4/3

√
logn
T 1/3) Theorem 1

Estimate(T, ε) 2 O(m
ε4.5T 1/2) Theorem 3

Dist(T) O(1) Ω(m
T 2/3) Theorem 6

Dist(T) O(1) Ω(m
T 1/2) for m = Θ(n

√
T) Theorem 7

Figure 2: Summary of results

additional term of mJ/T . This extra term can be large: as big as m in the case
that all triangles are incident on the same edge; here, we show that this term can
be avoided at the cost of an additional pass.

Our results improve over the 2-pass bounds given in [BOV13]. We show that
the Estimate(T, ε) problem can be solved with dependence on T−1/3 (not just the
decision problem Dist(T)), and that the dependence on T can be improved to
T−1/2, at the expense of higher dependence on ε.

Comparing with the additive estimator of [JSP13], while our sampling strategy
is somewhat similar, using an extra pass over the stream we return a relative error
estimation of the number of triangles. However, [JSP13] requires the condition
W ≥ m on W (the number of paths of length 2), while our biased estimator
(Algorithm I) has no such condition. This is achieved at the expense of higher
dependence on ε.

Our analysis assumes familiarity with techniques from randomized algorithms:
first, second and exponential moments methods, in the form of the Markov in-
equality, Chebyshev inequality, and Chernoff bounds [MR95].

3. Upper bounds

In this section, we provide our two upper bounds in the form of randomize
algorithms which succeed with constant probability. The first provides a simple
sampling-based unbiased estimator, which has a low dependence on ε, but scales
with T−1/3. The second uses a similar sampling procedure, and provides a biased
estimator, whose dependence is improved to T−1/2, but with higher cost as a func-
tion of ε.

7

Algorithm I (unbiased estimator).
Let p ∈ (0, 1]. The value of p is determined by the analysis.
In the first pass, the algorithm stores each edge independently at random
with probability p. Let G′ = (V,E ′) be the sampled subgraph.
In the second pass, the algorithm, upon reading the edge ei /∈ E ′, counts
the number of new triangles in (V,E ′∪{ei}) and adds it to a global counter
s. At the end of the second pass, the algorithm outputs Y = s

3p2(1−p) as
the estimate for t(G).

Theorem 1 Algorithm I is a 2-pass randomized streaming algorithm for Estimate(T, ε)

that uses O(m
ε4/3

√
logn
T 1/3) space.

PROOF: Let T represent the set of triangles in the graph. For the analysis, we
partition T into several groups through the following process. Fix an L ∈ [1, t]
(determined below). Pick an arbitrary edge e ∈ E with at least L triangles on it.
We notionally assign the triangles on e to the edge e. Let this be the set Te ⊆ T .
Continue this process until all the remaining edges participate in fewer than L
unassigned triangles. Let T ′ be the unassigned triangles. Note that either of Te
and T ′ may be empty.

Let Xi be the indicator random variable associated with the i-th triangle in T .
We have Xi = 1 with probability 3p2(1− p). For each edge e, let se =

∑
i∈Te Xi

and define sT ′ =
∑

i∈T ′ Xi. We have s =
∑

e∈E se + sT ′ and the expectation of s
is E(s) = 3p2(1− p)t.

First we analyse the concentration of sT ′ . We have E(sT ′) = 3p2(1 − p)|T ′|.
We also compute

Var(sT ′) = E(s2
T ′)− E2(sT ′)

≤
∑
i∈T ′

E(X2
i) +

∑
i∈T ′ 6=j∈T ′

E(XiXj)− E2(sT ′)

≤ 3p2(1− p)|T ′|+ (4p3(1− p)2 + p4(1− p))|T ′|L.

The final term derives from considering pairs of triangles i, j. We break these
into those which share an edge, and those which are disjoint. For those sharing an
edge, both are sampled if either (a) the shared edge and exactly one other edge in
each triangle is sampled, with total probability 4p3(1−p)2 or (b) if all edges except
the shared edge are sampled, which occurs with probability p4(1 − p). There are

8

at most |T ′|L such triangle pairs. For pairs of triangles which do not share any
edge, their contribution to the sum is outweighted by the term −E(sT ′)2.

Since (1 − p) < 1 and p < 1 we simplify this expression to Var(sT ′) <
3p2|T ′|+ 5p3|T ′|L. By the Chebyshev inequality,

Pr[|sT ′ − E(sT ′)| ≥ εp2t] ≤ Var(sT ′)

ε2p4t2
≤ 3|T ′|
ε2p2t2

+
5|T ′|L
ε2pt2

(1)

To bound the deviation of each se, we use the Chernoff bound. Let Ze be
the event corresponding to e /∈ E ′. Since the edges are sampled independently,
conditioned on Ze, the random variables {Xi}i∈Te are independent. Moreover we
have E(Xi|Ze) = p2. From the Chernoff bound, we get

Pr[|se − E(se)| ≥ εE(se) | Ze] ≤ e−
p2|Te|ε2

2 ≤ e−
p2Lε2

2 (2)

Similarly, conditioned on Ze, the random variables {Xi}i∈Te are independent
and E(Xi|Z̄e) = 2p(1− p).

Pr[|se − E(se)| ≥ εE(se) | Ze] ≤ e−p(1−p)|Te|ε
2 ≤ e−p(1−p)Lε

2

(3)

From (2) and (3), for each e ∈ E, we get

Pr[|se − E(se)| ≥ εE(se)] ≤ e−
p2Lε2

2 (4)

Therefore using the union bound and the fact that the number of edges with
non-empty Te is bounded by t/L, we get

Pr

[∣∣∣∣∣∑
e

se −
∑
e

E(se)

∣∣∣∣∣ ≥ ε
∑
e

E(se)

]
≤ t

L
e−

p2Lε2

2 (5)

Since t ≥ T and setting L = (εt)2/3 and p = Ω(1
ε4/3

√
logn
T 1/3) with large enough

constants, the probabilities in (1) and (5) will be bounded by a small constant. The
expected number of edges in the sampled graph G′ is pm, and can be shown to be
tightly concentrated around its expectation via a Chernoff bound on the Binomial
tail probability, so the space usage is as stated above. This proves our theorem. �

The algorithm can be implemented quite efficiently. In the second pass, we
can retrieve for each edge (i, j) the neighborhood of i and j stored in the first
pass, and so compute the number of triangles complete by the edge. In the worst

9

case, this takes O(n) time for edges incident on high degree vertices, but other
bounds can be given for this time cost, as a function of p and the degree of each
node.

It is possible to extend this algorithm to the case where each edge may appear
multiple times in the stream. Two modifications are needed to handle the fact that
an edge may appear multiple times. The first is that the we must sample each
edge with probability p, regardless of its multiplicity in the stream. This can be
achieved by using a hash function to determine whether the edge is sampled: the
edge is hashed to the range [0 . . . 1], and is sampled if the hash value is below
p. The second is that we need to count the number of distinct triangles formed
in the second pass. This can be done by using a distinct counting algorithm in
place of the global counter, applied to the triangles as described by their three
nodes [BYJK+02].

We now modify this algorithm to work in the random order streaming model,
where all permutations of the input are equally likely [GM09].

Corollary 2 Assuming the data arrives in random order, there is a one-pass ran-
domized streaming algorithm for Estimate(T, ε) that uses O(m

ε4/3

√
logn
T 1/3) space.

PROOF: The one-pass algorithm collapses the two passes of Algorithm I into one.
That is, the algorithm stores each edge into graph G′ with probability p, and also
counts the number of triangles completed in G′ by each edge from the stream G.

The analysis follows the same outline as the main theorem, with some modi-
fication. First, we now have Pr[Xi = 1] = p2(1 − p), since the unsampled edge
must be the last in the stream order, and E(s) is correspondingly lower by a factor
of 3. Then E(Xi|Zi) = p2/3, since to count triangle i, we must have that the first
two edges are seen before edge e in the stream. Likewise, E(Xi|Z̄i) = 2p(1−p)/3,
since we must have the unsampled edge appear after the two sampled edges. This
causes us to rescale p by a constant, which does not change the asymptotic cost of
the algorithm. �

Note that the requirement of random order is important for the one-pass result.
Because we split the analysis based on the particular edges, the order in which
these edges appear can affect the outcome. If the edge e were to always appear
after the two other edges in triangle i, then E(Xi|Ze) would be 0. Hence, we need
the edges to appear in random order to ensure this one-pass analysis holds.

Our next algorithm builds a similar estimator, but differs in some important
ways.

10

Algorithm II (biased estimator).
Repeat the following l ≥ 16/ε times independently in parallel and output
the minimum of the outcomes.
In the first pass, pick every edge with probability p (the value of p is
determined below.)
In the second pass, count the total number of triangles detected: both
those where all three edges were sampled in the first pass, and where two
edges were sampled in the first pass, and the completing edge observed in
the second pass. Let r be the total number of triangles detected. Output

r
3p2(1−p)+p3 .

Theorem 3 Algorithm II is a 2-pass randomized streaming algorithm for Estimate(T, ε)
that uses O(m

ε4.5
√
T

) space.

PROOF: LetR be the output of Algorithm II. As in the previous proof, let T repre-
sent the set of triangles in the graph. Consider one instance of the basic estimator,
and letX be the outcome of this instance. LetXi denote the indicator random vari-
able associated with the ith triangle in T being detected. By simple calculation,
we have Pr[Xi = 1] = 3p2(1− p) + p3 and E(X) = 1

3p2(1−p)+p3
∑

i∈T E[Xi] = t.
Thus, X is an unbiased estimator for t; however, R, which is the minimum of
l independent repetitions of X , is biased. By the Markov inequality, Pr[X ≥
(1 + ε)E(X)] ≤ 1/(1 + ε). Therefore, picking ε ≤ 1, we can conclude,

Pr[R ≤ (1 + ε)t] ≥ (1− Pr[X ≥ (1 + ε)t]16/ε) ≥ 1−
(

1

2

)16

≥ 1− 10−4.

However, proving a lower bound on R is more complex, and requires a more
involved analysis. First, we show that most triangles share an edge with a limited
number of triangles. More precisely, let L ⊆ E denote the set of edges where each
e ∈ L belongs to at most 3

√
t/ε triangles. We call L the set of light edges and

H = E \L the heavy edges. We claim there exists S ⊆ T such that |S| ≥ (1− ε)t
and every triangle in S has at least two light edges. This is true because there
can be at most 3t

3
√
t/ε

=
√
εt heavy edges, and moreover every two distinct edges

belong to at most one triangle.
For each triangle i ∈ S, fix two of its light edges. Let Yi denote the indicator

random variable for the event where the algorithm picks these two light edges of
i ∈ S in the first pass. We have E(Yi) = p2 and always Yi ≤ Xi. Therefore,
finding a lower bound on Y will give a lower bound on X . We will argue that the

11

probability of Y being less than (1−ε)|S| is small, even after taking the minimum
of the l parallel repetitions. Let Y = 1

p2

∑
i∈S Yi. We have

E(Y) = |S| ≥ (1− ε)t.

We also have

Var(Y) = E(Y 2)− E2(Y) ≤ 1

p2
|S|+ 1

p
|S|
√
t/ε.

The first term comes from
∑

i∈S
1
p4
E(Y 2

i), and the second term arises from pairs
of triangles which share a light edge, of which there are at most |S|

√
t/ε (since

the edge is light), and which are both sampled with probability p3. Using the
Chebyshev inequality and assuming ε < 1

2
, we have

Pr[Y < (1− ε)2t] ≤ Pr[Y < (1− ε)|S|]

≤ Var(Y)

ε2|S|2

≤ 1

ε2

(
1

p2|S|
+

√
t/ε

p|S|

)

<
1

ε2

(
2

p2t
+

2

p
√
εt

)
.

Since T ≤ t, setting p > 320
ε3.5
√
T

, allows the above probability to be bounded
by ε

160
. Now the probability that the minimum of 16/ε independent trials is below

the designated threshold is at most ε
160

16
ε

= 1/10. Therefore with probability
at least 1 − (1/10−4 + 1/10) the output of the algorithm is within the interval
[(1− 2ε)t, (1 + ε)t]. This proves the statement of our theorem. �

Asymptotically, the running time of this algorithm is the same as Algorithm
I, since in both the dominating cost is that of finding the number of triangles
completed by an edge seen in the second pass. It can also be extended to handle
multiple occurrences of edges in the same manner as Algorithm I, by using hash
based sampling and approximate distinct counting.

Corollary 4 Assuming the data arrives in random order, there is a one-pass ran-
domized streaming algorithm for Estimate(T, ε) that uses O(m

ε4.5
√
T

) space.

12

PROOF: Under random order, we can combine the first and second passes of
algorithm II. We count all triangles formed as r: either those with all three edges
sampled, or those with two edges sampled and the third observed subsequently in
the stream. The estimator is now r

p2
, since the probability of counting any triangle

is p3 (for all three edges sampled) plus p2(1 − p) (for the first two edges in the
stream sampled, and the third unsampled). The same analysis as for Theorem 3
then follows: we partition the edges in to light and heavy sets, and bound the
probability of sampling a subset of triangles. A triangle with two light edges is
counted if both light edges are sampled, and the heavy edge arrives last. This
happens with probability p2/3. We can nevertheless argue that we are unlikely to
undercount such triangles, following the same Chebyshev analysis as above. This
allows us to conclude that the estimator is good. �

Again, random order is critical to make this algorithm work in one pass: an
adversarial order could arrange the heavy edges to always come last (increasing
the probability of counting a triangle under this analysis) or always first (giving
zero probability of counting a triangle under this analysis). It remains an open
question to understand whether these bounds can be obtained in a single pass
without the random order assumption.

4. Lower bounds

We now show lower bounds for the problem Dist(T), to distinguish between
the case t = 0 and t ≥ T . Our first result builds upon a lower bound from prior
work, and amplifies the hardness. We formally state the previous result:

Lemma 5 [BOV13] Every constant pass streaming algorithm for Dist(T) re-
quires Ω(m

T
) space.

Theorem 6 Any constant pass streaming algorithm for Dist(T) requires Ω(m
T 2/3)

space.

PROOF: Given a graph G = (V,E) with m edges we can create a graph G′ =
(V ′, E ′) with mT 2 edges and t(G′) = T 3t(G). We do so by replacing each vertex
v ∈ V with T vertices {v1, . . . , vT} and replacing the edge (u, v) ∈ E with the
edge set {u1, . . . , uT} × {v1, . . . , vT}. Clearly any triangle in G will be replaced
by T 3 triangles in G′ and every triangle in G′ corresponds to a triangle in G.
Moreover this reduction can be peformed in a streaming fashion usingO(1) space.
Therefore a streaming algorithm for Dist(T) using o(m

T 2/3) (applied to G′) would

13

imply an o(m) streaming algorithm for Dist(1). But from Lemma 5, we have that
Dist(1) requires Ω(m) space for constant pass algorithms. This is a contradiction
and as a result our claim is proved. �

Our next lower bound more directly shows the hardness by a reduction to the
hard communication problem of Disjrp for the case of up to a quadratic number of
triangles.

Theorem 7 For any ρ > 0 and T ≤ n2, there is no constant pass streaming
algorithm for Dist(T) that takes O(m

T 1/2+ρ) space.

PROOF: We show that there are families of graphs with Θ(n
√
T) edges and T

triangles such that distinguishing them from triangle-free graphs in a constant
number of passes requires Ω(n) space. This is enough to prove our theorem.

We use a reduction from a standard set intersection problem, here denoted by
Disjn/4n . Given y ∈ {0, 1}n, Bob constructs a bipartite graph G = (A ∪ B,E)
where A = {a1, . . . , an} and B = {b1, . . . , b√T}. He connects ai to all vertices
in B iff y[i] = 1. On the other hand, Alice adds vertices C = {c1, . . . , c√T}
to G. She adds the edge set C × B. Also for each i ∈ [

√
T] and j ∈ [n], she

adds the edge (ci, aj) iff x[j] = 1. We observe that if x and y (uniquely) intersect
there will be precisely T triangles passing through each vertex of C. Since there
is no edge between the vertices in C, in total we will have T triangles. On the
other hand, if x and y represent disjoint sets, there will be no triangles in G. In
both cases, the number of edges is between 2n

√
T and 3n

√
T , over O(n) vertices

(using the bound T 2 ≤ n). Considering the lower bound for the Disjrp (Section 2),
our claim is proved following a standard argument: a space efficient streaming
algorithm would imply an efficient communication protocol between Alice and
Bob whose messages are the memory state of the algorithm executed on their
respective portions of the input (transformed into graph form). Since any such
protocol requires Ω(n) bits of communication, this shows the claimed Ω(n) space
lower bound. �

Acknowledgments. We thank Andrew McGregor, Srikanta Tirthapura and Vladimir
Braverman for several helpful conversations.

[BFL+06] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto
Marchetti-Spaccamela, and Christian Sohler, Counting triangles in
data streams, PODS, 2006, pp. 253–262.

14

[BOV13] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik, How
hard is counting triangles in the streaming model?, ICALP (1), 2013,
pp. 244–254.

[BYJK+02] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and L. Tre-
visian, Counting distinct elements in a data stream, Proceedings of
RANDOM 2002, 2002, pp. 1–10.

[BYKS02] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, Reductions in stream-
ing algorithms, with an application to counting triangles in graphs,
ACM-SIAM Symposium on Discrete Algorithms, 2002, pp. 623–
632.

[GM09] Sudipto Guha and Andrew McGregor, Stream order and order statis-
tics: Quantile estimation in random-order streams, SIAM J. Com-
put. 38 (2009), no. 5, 2044–2059.

[HTC13] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung, Massive graph tri-
angulation, Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013, pp. 325–336.

[JG05] Hossein Jowhari and Mohammad Ghodsi, New streaming algorithms
for counting triangles in graphs, COCOON, 2005, pp. 710–716.

[JSP13] Madhav Jha, C. Seshadhri, and Ali Pinar, A space efficient streaming
algorithm for triangle counting using the birthday paradox, KDD,
2013, pp. 589–597.

[KN97] E. Kushilevitz and N. Nisan, Communication complexity, Cambridge
University Press, 1997.

[LBKT08] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins,
Microscopic evolution of social networks, KDD, 2008, pp. 462–470.

[LWZW10] Zhiyu Liu, Chen Wang, Qiong Zou, and Huayong Wang, Cluster-
ing coefficient queries on massive dynamic social networks, WAIM,
2010, pp. 115–126.

[MR95] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge
University Press, 1995.

15

[PT12] Rasmus Pagh and Charalampos E. Tsourakakis, Colorful triangle
counting and a mapreduce implementation, Inf. Process. Lett. 112
(2012), no. 7, 277–281.

[PTTW13] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung
Wu, Counting and sampling triangles from a graph stream, PVLDB,
2013.

[SV11] Siddharth Suri and Sergei Vassilvitskii, Counting triangles and the
curse of the last reducer, WWW, 2011, pp. 607–614.

[SW05] Thomas Schank and Dorothea Wagner, Finding, counting and listing
all triangles in large graphs, an experimental study, WEA, 2005,
pp. 606–609.

[TKMF09] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Chris-
tos Faloutsos, Doulion: counting triangles in massive graphs with a
coin, KDD, 2009, pp. 837–846.

[Tso08] Charalampos E. Tsourakakis, Fast counting of triangles in large
real networks without counting: Algorithms and laws, ICDM, 2008,
pp. 608–617.

16

