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ABSTRACT
There is currently a tug-of-war going on surrounding data releases.
On one side, there are many strong reasons pulling to release data
to other parties: business factors, freedom of information rules, and
scientific sharing agreements. On the other side, concerns about in-
dividual privacy pull back, and seek to limit releases. Privacy tech-
nologies such as differential privacy have been proposed to resolve
this deadlock, and there has been much study of how to perform pri-
vate data release of data in various forms. The focus of such works
has been largely on the data owner: what process should they apply
to ensure that the released data preserves privacy whilst still captur-
ing the input data distribution accurately. Almost no attention has
been paid to the needs of the data user, who wants to make use of
the released data within their existing suite of tools and data. The
difficulty of making use of data releases is a major stumbling block
for the widespread adoption of data privacy technologies.

In this paper, instead of proposing new privacy mechanisms for
data publishing, we consider the whole data release process, from
the data owner to the data user. We lay out a set of principles for
privacy tool design that highlights the requirements for interoper-
ability, extensibility and scalability. We put these into practice with
UMicS, an end-to-end prototype system to control the release and
use of private data. An overarching tenet is that it should be possi-
ble to integrate the released data into the data user’s systems with
the minimum of change and cost. We describe how to instantiate
UMicS in a variety of usage scenarios. We show how using data
modeling techniques from machine learning can improve the util-
ity, in particular when combined with background knowledge that
the data user may possess. We implement UMicS, and evaluate it
over a selection of data sets and release cases. We see that UMicS
allows for very effective use of released data, while upholding our
privacy principles.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous—Privacy
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1. INTRODUCTION
In the current technological environment, data is an increasingly

valuable, as well as sensitive, resource. There is great sensitivity
surrounding health information, location data, private communica-
tions etc., and corresponding legal and regulatory requirements to
protect such data. As a result, there is a growing need to provide
“anonymized” versions of data which simultaneously reveal useful
information while respecting the privacy of the data subjects.

Initial efforts for developing privacy models focused on weak-
ening (or breaking) the connection between “quasi-identifiers” and
“sensitive values”. However, subsequent studies showed that some
of the connections can be reconstructed from the published data,
using statistical inference and/or knowledge of the anonymization
procedure [11, 20]. The more recent differential privacy model [6],
which has gained considerable support in the research community,
imposes a conceptually different condition: its output is nearly
identical (in a probabilistic sense), whether or not an individual
contributes his data to the set. In addition to a rigorous defini-
tion of privacy, this model enjoys several mechanisms to achieve
it. The mechanisms, developed in a series of papers [7–9, 14], are
often simple to implement and have great practical appeal. Thus,
much of the recent work in differential privacy has focused on de-
signing algorithms that apply these privacy mechanisms in increas-
ingly sophisticated ways. Their goal is to preserve higher utility in
the anonymized data, assuming relatively simple query workloads
(e.g., range queries or the more general linear queries) [2, 12].

In this work, we offer a general solution to the effective use of
privately released data, so that different models published under
differential privacy can be easily incorporated and quickly benefit
various data analysis tasks. Thus, our work has to carefully balance
utility improvement and its applicability in practice. For example,
advanced techniques have been proposed to generate synthetic data
targeting at specific types of query workloads [10, 18]. Adopting
such techniques may offer better utility for a certain narrow range
of applications, but with poor applicability in practice due to the
lack of extensibility. In the following discussion, we distinguish
between the two parties involved in an exchange of anonymized
data: data owners and data users. Unlike prior work, which fo-
cused mostly on designing algorithms for the data owners (while
making simplistic assumptions on the data users), we focus mostly
on the challenges facing data users in real-life scenarios.
Principles for privacy tool design. Most prior work [2, 12, 21]
assumes a data user who only issues simple queries (e.g., range
counting or linear queries) and can devote considerable resources
to optimizing their answer. Recent work [19,24] studies more com-
plex workloads, such as linear and logistic regression. In practice,
workloads mix many types of queries, and data users are not able
to perform query-specific result optimization. We therefore pro-
pose three principles for the design of a privacy tool.



Interoperability with existing software. Enterprise databases sup-
port many applications running various types of SQL queries, rang-
ing from simple selections to complex joins. In this environment,
a privacy tool provides a filtered view of the data to analysts who
are not allowed access to the raw data. Often, these analysts al-
ready have data analysis programs running on, e.g., a prior sample
of deprecated data. Thus, the data user should be able to run their
queries over anonymized data that has the same (or very similar)
format as the original data.

Extensibility of existing software. Most differential privacy re-
search has focused on releasing aggregate statistics of the data, such
as wavelet and Fourier coefficients [1,21]. Thus every type of query
supported by the private data summary requires specialized soft-
ware to map the query onto the specific model. Note that there is
a high likelihood that new query types will need to be supported
in the future. This will either require adapting the query-mapping
tool, or violating interoperability. We adopt the guideline that the
differentially private data must be able to support the same kind of
applications as the original data (with some error in the results).

Scalability. Differentially private “summaries” can grow to or-
ders of magnitude larger than the original data. Hence, the data
user can incur prohibitive storage and processing costs when work-
ing with such models. We enforce scalability by requiring a new
dataset having size that is similar to the original one.

These three principles support the following approach: The data
user receives from the data owner some differentially private model
of the original data. She then generates a synthetic dataset from
this model, such that the size and format of the synthetic data are
consistent with the original data. This dataset can then be used
freely with existing tools and data sets. Similar approaches have
been advocated in early differential privacy work [13] for masking
commuting patterns in modeling geographic data. However, the ap-
proach was tailored to that specific application, and was not studied
in a more general context.
Enhancing data utility. Most prior work assumes that anonymized
data will be used in isolation, and so studies its utility as such. In
reality, it is common that different organizations possess different
pieces of sensitive information about the same individuals. For ex-
ample, the employer knows one’s salary, the grocery store knows
one’s shopping list, the clinic knows one’s health condition. It is
important to study how an organization can use data released un-
der differential privacy by other organizations, given that different
organizations may have overlapping information about their popu-
lation. Consider the following scenarios:

Example. A hospital computes a differentially private version
of the health records of its patients, including some demographic
data. A researcher conducts a study over this data to find po-
tential correlations between some demographic attributes and the
sensitive diagnostic values. The researcher does not use any other
dataset for this study, either as a requirement of the study or for
lack of access to relevant data.

The hospital also releases the anonymized data to an insurance
company. The company does not have the exact sensitive diagnosis
but has access to the demographic information about its own cus-
tomers (who were treated in that hospital), and would also like to
do data analysis involving the sensitive diagnosis to better under-
stand and analyze its customers. How much additional utility can
the insurance company derive by combining its own database with
the differentially private data released by the hospital?

In both scenarios, data users receive the same differentially pri-
vate data from the data owner. However, the insurance company
has access to an auxiliary dataset (its own customers) which is
a subset of the data owner’s population. Some attributes in the
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Figure 1: The UMicS workflow

anonymized data are also present in the auxiliary table, and some
are not. The data user wants to learn as much as possible about
all attributes of his own population, without violating anyone’s pri-
vacy.

We propose a framework which addresses the above scenario by
combining the data owner’s private release with the data user’s aux-
iliary information. We discuss several machine learning algorithms
that the data user could employ, as well as the effect of the number
of common attributes the two datasets share. At one extreme, the
data user has no information about any of the attributes present in
the privately released data; this is consistent with the assumptions
of most prior work. At the other extreme, the data user knows all
but one of the attributes of the differentially private data. As we
show in our experiments, the utility that the data user can derive
varies significantly under these different assumptions.
Contributions. We design and analyze a privacy tool to support
private data release, called UMicS, short for “Usable Micro-data
Sampling”. The UMicS system takes a holistic view of the practical
requirements of data users, and offers an end-to-end solution to
control the release and use of private data. Specifically,

• We propose a framework for synthetic data generation from dif-
ferentially private models derived from real data as part of UMicS.

• We study a variety of configuration choices within UMicS that use
machine learning techniques to combine the differentially private
data with various types of auxiliary data, in order to improve utility;

• We evaluate possible combinations of techniques that the data
owners and data users can employ within UMicS, and conclude
that the data user can obtain significant utility from the released
data, while making no changes to existing tools and systems.

2. OVERVIEW OF UMicS
Our UMicS system operates in a “publishing” mode: the data

owner builds and releases a private data model that describes the
distribution of data in the original dataset. We adopt the model
of differential privacy—for more details, see the original papers or
surveys [6]. UMicS incorporates a synthetic data generator that en-
sures that the resulting data is compatible with existing tools and
programs. One can sample multiple synthetic datasets from the re-
leased model without decreasing the privacy level, since this is just
post-processing computation over a differentially private model.

The UMicS system applies to a common scenario in data release
through the following sequence of steps, illustrated in Figure 1.
1. Dataset D. A data owner (DO) has an original dataset D which
contains microdata (records on individual level) regarding each in-
dividual’s demographic information. For example, these demo-
graphics can include data on the individual’s age, education level,
home zip code, and so on. The information about an individual can
also include information which may be less widely known, to be



considered particularly private e.g., salary and disease status. We
denote by ‘target attribute’ any attribute of D that is not widely
known, over which a data user may wish to run some data analy-
sis software, and for which there are significant privacy concerns.
However, we emphasize that in our privacy model all attributes are
potentially private, and so all are protected by the UMicS system.
2. Private data model P . In order to share data in a privacy-
preserving manner, the data owner creates a private data model P
under differential privacy. In general, P will be a noisy descrip-
tion of the data distribution in some fashion. Depending on the
anonymization approach chosen by DO, P may have different for-
mats, e.g. a set of contingency tables or a spatial decomposition
tree.
3. Private data sample S. The data user (DU) is the entity who
wants to do data analysis based on the private data summary P .
The data user prefers data in its original format (microdata) since
most of his data analytic tools are off-the-shelf, i.e., they may not
be able to take P directly as input. Consequently, the data user will
not run queries directly overP , but instead will generate a synthetic
dataset S, based on P . Queries can then be directly answered over
S, satisfying the interoperability and extensibility.
4. Private classifier C. To improve accuracy and make full use
of the synthetic data S, the data user can perform additional post-
processing of S to obtain a richer model. Specifically, we advocate
using S to train a classifier C, which can learn the correlation be-
tween the target attribute and the demographic attributes.
5. Auxiliary table A. As described in Section 1, the data user
may sometimes have access to an auxiliary table which contains a
subset of the attributes from S. Moreover, the auxiliary table may
contain a proper or partly overlapping subset of the tuples present
in the data owner’s original set D. Note that while P is released to
the public, A is only available to DU, i.e., A does not compromise
the privacy of P .
6. Final data F . If DU has an auxiliary table A, he can use the
classifier C in combination with A: for each tuple τ ∈ A, DU
applies C to obtain predictions for the target attribute value of τ .
Drawing from the distribution of these predicted values for each
tuple τ ∈ A yields a final data set F , over which DU applies his
queries of interest. If DU does not have an auxiliary table, then F
is the synthetic dataset S.

3. DATA OWNER

3.1 Private Data Models (Step 2 in Section 2)
We make the observation that much of the recent work in pri-

vate data release can be thought of as using the input data set to
obtain the parameters of a data model, and then adding suitable
“noise” to these parameters. This is done so that the noisy model
description meets the differential privacy definition and thus can be
released. The idea of working with models is that the parameters
are less sensitive to any one individual, and so noisy parameters can
be quite faithful to their true values.

Below, we describe some models that are well-suited for UMicS.
Because of the scalability principle, we are interested in models
that are sufficiently compact, have small parameter sensitivity, and
allow fast synthetic data generation.
One-way Marginals. A first model of a dataset D is to describe
the distribution of each attribute of D in isolation. That is, for each
attribute D.A (e.g., gender), we compute its marginal distribution
of values (e.g., the number of males, resp. females, in the data).
For simplicity, we assume that this distribution is discrete. This
follows immediately when D.A is categorical. For continuous at-
tributes, the distribution can be given as a histogram overD.A. For

example, we might break ages into ranges of ten years (0-9, 10-19,
20-29 etc.). There has been substantial work around how to choose
the bucket boundaries for such histograms in a privacy-preserving
fashion: this can be done via private quantiles for equi-depth his-
tograms [2]; by private dynamic programming [23]; or by exact
computation on similar data [16].

To release one-way marginals privately, noise is added to each
entry, which is scaled by d

n
, where d is the number of attributes

in the data, and n is the number of individuals. Often, d � n,
so the amount of noise is small. However, the model is limited: it
essentially treats all attributes as if they are independent, since it
does not describe any correlations between attribute values.
Contingency Tables (Multi-way Marginals). A contingency table
gives the (joint) distribution of a subset of attributes, thus encoding
the correlations between these attributes. E.g., a contingency table
could record the joint distribution between age and gender. As in
the case of one-way marginals, when an attribute is continuous, its
domain is usually coarsened by imposing a grid on it. To comply
with differential privacy, noise is added to the count in each cell.

Contingency tables have been advocated as a data model for
many years [5]. The most natural way to release a contingency
table is to directly compute and add noise to each cell indepen-
dently. However, one can also compute a transformation of the
table (such as a Fourier or Wavelet transform), and add noise to
the coefficients of the transform. The released table is then found
from the noisy coefficients [1, 21]. Separately, there is the ques-
tion of which subsets of attributes to release in the form of contin-
gency tables [4, 22]. In particular, [22] releases a d-dimensional
frequency matrix, which is a full contingency table over all at-
tributes, while [4] releases a set of contingency tables (also called
cuboids) whose subsets of attributes may overlap. Both methods
aim at minimizing the maximal noise when a range query touches
a large number of cells.
Private Spatial Decompositions. Contingency tables can be seen
as providing a description of the density of the data across a set of
attributes. However, the density can vary within the dataset, mean-
ing that the description of the data is too coarse in some places, and
too fine in others. To remedy this, spatial decompositions have been
proposed which adaptively form a description of the data based on
the observed density. These begin with the full data space, and
progressively partition the space into smaller regions. Finally, the
density of points within each ‘leaf’ region is reported (with noise).

The main variation across different decompositions is in the par-
titioning step: how to choose which region to partition next, and
how to do the partitioning. The splitting can be data-independent
(splitting mid-way along each dimension, similar to quad-trees,
oct-trees and binary spatial partitionings), or data-dependent (split-
ting based on medians, similar to kd-trees) [2]. The choice of which
region to split can also be based on which region will benefit most
from this refinement [15]. Other design decisions to fix include
when to stop splitting, and what post-processing to do on the struc-
ture. The resulting private data summaryP is the leaf regions of the
spatial decomposition: For each leaf, we publish its boundaries (its
range along each attribute), and information about the distribution
within the cell, such as the count or density of points.

4. DATA USER
Once the private data model has been computed, the data owner

is free to release it, knowing that the desired privacy definition has
been met. Throughout this section, we consider a variety of ap-
proaches that DU can follow to answer queries: the local, sample,
hist and predict methods. We explain each in turn, as they arise.



4.1 Sampling from model (Step 3 in Section 2)
In principle, the data user can adapt their queries to operate on

the model in terms of its parameters, and derive query answers from
them. For example, a range query can be applied to a private spatial
decomposition, by finding the regions of the decomposition that it
intersects, and estimating the intersection size of the query with
each of these. This is the approach adopted in [2]. We refer to this
as the local approach to query answering.

However, the data user may have difficulty making use of this
model per se: it describes the data, but it is not in the form of the
original microdata. It is unclear, for example, how to perform linear
regression on data described in the form of a private spatial decom-
position. In general, most data users prefer processing their queries
directly over microdata, rather than having to map the queries into
possibly complex functions of the model parameters. In UMicS,
we advocate the idea of sampling from the data model in order to
generate microdata. While the sampling step does require some
effort on the part of the data user, it is simple to implement and
provides universal results: once the sample is generated, all queries
can be processed over it directly without additional code. The mod-
els described in Section 3 all provide a description of the density of
the data in different regions, so we can adopt appropriate sampling
procedures for each model in turn.
Marginals. To sample from the (noisy) marginal distributions,
DU draws tuple values independently from their corresponding at-
tribute distributions. That is, for each attribute i, DU samples a
value from the marginal distribution of attribute Ai, then concate-
nates these values to obtain the output tuple.
Contingency Tables. The data user can similarly sample from
noisy contingency tables. When there is a single contingency ta-
ble that describes the joint distribution of all attributes, this can be
sampled directly. Similarly, when there are multiple contingency
tables, each of them over disjoint subsets of attributes, the data
user can sample from each table independently and concatenate the
results to generate a tuple consistent with the model. The chal-
lenging case is when there are contingency tables on overlapping
subsets of attributes. In that case, the approach is to first com-
bine these tables to generate a single contingency table over the
union of their attributes, so that the result is most consistent with
the data model. Various consistency-achieving methods have been
suggested for this problem [1, 3, 4].
Private Spatial Decompositions. The output of a private spatial
decomposition is a set of leaf regions and associated counts. The
data user first samples a region with probability proportional to its
noisy count. Then a sample tuple is drawn from the region by
choosing uniformly among all tuples covered by the leaf region.
The output set S is thus consistent with the data model.

4.2 Query answering in UMicS
Given a set of queries over the data, DU can directly evaluate

them on S to get an answer. We call this the sample approach to
query answering, and evaluate it in our experimental study. Below,
we discuss ways to improve over this method.
Noisy histogram. In this approach (called hist), DU can project
S on t, and obtain its (noisy) marginal distribution, S.t. DU can
then sample a value from S.t for each tuple in the tableA, and then
apply its queries to this new table. This takes advantage of the fact
that S gives a fairly accurate description of the global distribution
of t, but does not exploit any of the information in S about the
correlations between other attributes and t.
Combine with the user’s model. We saw in Section 3 that it is
common for the data owner to build a model of the data (possibly
implicitly) prior to release. We now argue that it is beneficial for the

data user to build their own data model from the released data. The
intuition is that the released data contains information about the
overall distribution spread throughout it. If the data user answers
queries directly over S, we miss out on exploiting this information.

We propose to build models of the data based on classifiers drawn
from machine learning (Step 4 in Section 2). That is, the data user
uses S as the training data for a classifier C, with the goal of predict-
ing the target attribute. Here, we can use an off-the-shelf classifier,
such as SVM, Random Forest, Naive Bayes and so on. The train-
ing process does not need to take account of the data model used
by the data owner, or the process used to generate it: we can treat S
as standard training input to the classifier. The data owner can use
C to help answer queries. Specifically, in the case where the data
user has an additional table A describing a subset of individuals of
interest, DU can take each tuple in table A and apply C to obtain
a predicted value of target attribute t. DU can then answer queries
over this data set, F (Steps 5 and 6 in Section 2).

While this works quite well in practice, there is some loss of
information: most classifiers output not just a single predicted val-
ues, but rather a belief distribution B over values. We found that
we can achieve improved accuracy if we sample from the distribu-
tion B, rather than just pick b = argmaxb Pr[B = b], the most
likely value. This is equivalent in the limit to weighting all possible
values of t by the corresponding probability from B. We call this
approach to query answering the predict method.

5. EXPERIMENTAL STUDY

5.1 Experimental Environment
Experiments were performed on two real data sets containing

demographic data: the Adult dataset from the UCI Machine Learn-
ing repository1 and 2010 Census microdata extracted from IPUMS
USA [17] The attributes we selected are summarized in Figure 2.
The target attribute used for the experiment is marked with ‘TA’,
while the rest are demographic values which may be present in the
data user’s table A. After removing tuples with missing values,
there are a total of 30,162 tuples in Adult dataset and 200,000 tu-
ples from the Census dataset.

The data owner DO holds the dataset D while the data user DU
has a table A ⊂ D whose distribution may be different from D.
We experimented with a variety of distributions for A. The results
shown here are for a tableA constructed so that records inD having
higher attribute values are more likely to be sampled than those
having lower values. In order to study the impact of dimensionality,
we created d dimensional datasets for d = {2, 3, 4, 5} by selecting
the first d − 1 attributes and the target attribute from each of the
two datasets described in Figure 2.
Measures. We study combinations of approaches by DO and DU
in our UMicS workflow by comparing the accuracy of answering
a variety of queries on the final dataset F . The default workload
consists of 1,000 range count queries of the form:

1http://archive.ics.uci.edu/ml/datasets/Adult

Attribute Cardinality
education 16

age 74
marital status 7

workclass 7
occupation (TA) 14

(a) Adult dataset

Attribute Cardinality
education 11
occupation 26

age 79
health insurance 2
salary-class (TA) 11

(b) Census dataset

Figure 2: Summary of dataset attributes



(a) ε = 0.1 (b) ε = 0.5 (c) ε = 1.0

Figure 3: DU’s Choice of query strategy. IPUMS dataset, 3D.

(a) Adult 2D (b) Adult 3D (c) Adult 4D

Figure 4: DO’s choice of private data model. Adult dataset, ε = 0.5.

SELECT COUNT(*) FROM Microdata
WHERE pred(Attr1) AND . . . AND pred(AttrM ) AND pred(TA)

since counting queries are the building blocks of many advanced
data analysis tasks. The selectivity of a query q is the fraction of tu-
ples in DU’s datasetA that satisfy all the predicates in q (including
predicates over the withheld target attribute value). Here, the gen-
erated data set (including the target attribute) is used as the ground
truth for query accuracy. Since in practice DU has only the aux-
iliary table without the TA, the experiments measure the ability of
DU to use the UMicS methodology to obtain accurate answers to
queries that span the target attribute. Query accuracy is measured
by the average relative error

∑
q∈Q

|q(F)−q(A)|
max{C,q(A)}/|Q|, where q(F)

and q(A) is the query result and true result respectively for query q.
We include the constant C as a sanity bound to mitigate the effects
of the queries with extremely small selectivities. This is consistent
with prior work that has faced similar issues in evaluating query
accuracy, e.g. [21]. In the experiments we set C to be 0.1% of
the total number of records. All experiments were conducted on a
3.00GHz CPU with 8GB RAM, so the data sets fit easily in mem-
ory. The reported experimental results are the average of 10 runs.
We implemented our instantiations of UMicS in Python 2.6 with
the scientific package Numpy to assist data handling. Three typi-
cal values of the privacy parameter ε (ε = 0.1, 0.5, 1.0) are used
throughout, to study the impact of the privacy budget on accuracy.

5.2 DU’s Choice of Query Strategy
We compare strategies DU may employ in the UMicS system.

For these, we fix the choice of the private data model P as a pri-
vate spatial decomposition tree (Section 3.1) and evaluate the four
approaches of the data user introduced in Section 4: predict, hist,

local and sample. Figures 3 shows the query accuracy in terms of
average relative error on 3D IPUMS datasets for different ε values,
as query selectivity is varied.

Figure 3 shows tree-predict and tree-local are the preferred query
strategies for DU, providing single-digit relative error for all queries
with selectivities greater than 10%. Thus, both strategies are able
to capture the association between the target attribute and the other
attributes. In particular, since the local approach requires querying
directly over the private model P and is not always available, the
predict method should be the top choice of DU. Moreover, in most
cases a classifier can make better use of the sample data S than hist
by learning and predicting instead of relying on the global distri-
bution. We see that without the auxiliary table, using the sample
data S provides limited insights in understanding DU’s own popu-
lation, giving much larger query errors than other approaches. This
highlights the improvement possible when a data user brings some
information about their own data to the analysis.

5.3 Choice of Data Model with A
In this section we contrast three models that fit naturally within

the UMicS system as discussed in Section 3.1. We fix DU’s choice
of query strategy as predict. Figure 4 shows the relative query error
under different dimensionality when DO releases a spatial decom-
position tree (tree-predict), a full contingency table (CT-predict) or
the marginals (marginal-predict) on the Adult dataset given a cer-
tain value of ε = 0.5.

First, it is noticeable that no model is able to win hands down
across the board. This indicates that each model has its own advan-
tage over certain types of data (based on distribution and dimen-
sionality). Specifically, for the contingency tables model, when



ε original CT-predict CT-hist CT-sample
0.1

26784
26939 28427 27027

0.5 26936 28426 27024
1.0 26933 28427 27024

Figure 5: Sum of Squared Error of Linear Regression Models

there are significant numbers of points in most cells, the indepen-
dently added noise does not perturb the signal much. This explains
the better query accuracy of CT-predict on the 2D Adult dataset in
Figure 4(a), where there are fewer cells and so the counts in most
cells are quite high. Since the Adult dataset has similar domain
ranges for each attribute compared to IPUMS but far fewer records,
CT-predict seems to lose its edge as we increase the data dimen-
sionality, as shown in Figures 4(b) and 4(c). We explain this due to
the smaller signal-to-noise ratio in each cell.

The marginal model drops much information about the original
dataset by releasing only the noisy histogram of each attribute in-
dependently. Thus it provides less accurate query answers in most
scenarios, which is in line with expectations. An exception is in
Figure 4(c), where marginal outperforms the tree model for selec-
tivities greater than 15%. A plausible explanation is that in Adult
4D data, the correlation between t and other attributes is rather
weak, so the information loss in releasing the marginals is mini-
mal, even smaller than the impact of the noise in the decomposition
tree. That is, the classifier used can build a sufficiently good model
of the data from just the marginal distributions for this data.

5.4 More Complex Data Analysis.
An important factor in designing UMicS is that the DU often

prefers data in its original form, as it enables more advanced data
analysis using off-the-shelf data mining tools, beyond simple range
count queries, such as linear regression. We used standard tools to
build ordinary least squares estimators on various datasets obtained
by different strategies, and measure the sum of squared residuals
(SSR) in DU’s data. Figure 5 shows the SSRs of linear models
obtained by CT-predict, CT-hist and CT-sample with different pri-
vacy budgets on 3D IPUMS data. Here, salary class is used as the
dependent variable and the explanatory variables are age and edu-
cation. It can be seen that CT-predict has the least SSR among the
three approaches, which means it is able to provide a more accurate
linear model, and only 0.5% greater than the SSR of the regression
on the original data, indicating that data utility is well preserved in
our UMicS framework for this data analysis task. This computa-
tion is also quite robust: the results change little as ε varies. Other
experiments, such as more complex SQL queries, showed similar
results, and are omitted for brevity.

6. CONCLUDING REMARKS
The vast interest in private data release, along with the many

strong motivations for releasing data, mean that there is great pres-
sure to enable releases to take place smoothly. We have shown the
need for additional tools and systems to support the usage of such
outputs. Since data users have existing tools and data, it is vital
to enable the smooth integration of private data with these. We
have proposed UMicS as a model system for permitting this data
usage. We have shown how it upholds the principles of interoper-
ability, extensibility and scalability. Our experimental results show
that queries over private data can be answered effectively, with low
error. Existing background knowledge of the data user can be com-
bined with private data to enhance utility while preserving privacy.

The UMicS workflow is flexible and general. Different choices
of private data model for DO, and of the data model used by DU,
can be easily incorporated. The next steps are to extend the work-
flow to additional data release settings beyond the central case in
data release with a single private table of interest. Of particular
interest is the case where there is a database of private data, with
multiple tables, and join relationships among them.
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