
Kernelization via Sampling with Applications to
Finding Matchings and Related Problems in Dynamic Graph Streams

Rajesh Chitnis∗ Graham Cormode† Hossein Esfandiari‡ MohammadTaghi Hajiaghayi‡

Andrew McGregor§ Morteza Monemizadeh¶ Sofya Vorotnikova§

Abstract
In this paper we present a simple but powerful subgraph sampling
primitive that is applicable in a variety of computational models
including dynamic graph streams (where the input graph is defined
by a sequence of edge/hyperedge insertions and deletions) and
distributed systems such as MapReduce. In the case of dynamic
graph streams, we use this primitive to prove the following results:

• Matching: Our main result for matchings is that there exists an
Õ(k2) space algorithm that returns the edges of a maximum
matching on the assumption the cardinality is at most k. The
best previous algorithm used Õ(kn) space where n is the
number of vertices in the graph and we prove our result is
optimal up to logarithmic factors. Our algorithm has Õ(1)
update time. We also show that there exists an Õ(n2/α3)
space algorithm that returns an α-approximation for matchings
of arbitrary size. In independent work, Assadi et al. (SODA
2016) proved this approximation algorithm is optimal and
provided an alternative algorithm. We generalize our exact
and approximate algorithms to weighted matching. For graphs
with low arboricity such as planar graphs, the space required
for constant approximation can be further reduced. While
there has been a substantial amount of work on approximate
matching in insert-only graph streams, these are the first non-
trivial results in the dynamic setting.

∗The Weizmann Institute of Science, Rehovot, Israel. Sup-
ported by a postdoctoral fellowship from I-CORE ALGO. Email:
rajesh.chitnis@weizmann.ac.il
†Department of Computer Science, University of Warwick, UK. Sup-

ported in part by European Research Council grant ERC-2014-CoG 647557,
the Yahoo Faculty Research and Engagement Program and a Royal Society
Wolfson Research Merit Award. Email: g.cormode@warwick.ac.uk.
‡Department of Computer Science, University of Maryland. Supported

in part by NSF CAREER award 1053605, NSF Grant CCF-1161626, NSF
grant IIS-1546108, ONR YIP award N000141110662, DARPA/AFOSR
grant FA9550-12-1-0423, and a Google Faculty Research award. Email:
{hossein, hajiagha}@cs.umd.edu

§University of Massachusetts Amherst. Supported by NSF CAREER
Award CCF-0953754 and CCF-1320719 and a Google Faculty Research
Award. Email: {mcgregor,svorotni}@cs.umass.edu
¶Computer Science Institute of Charles University, Faculty of Math-

ematics and Physics, Prague, Czech Republic. Partially supported by
the project 14-10003S of GA ČR. Part of this work was done when
the author was at Department of Computer Science, Goethe-Universität
Frankfurt, Germany and supported in part by MO 2200/1-1. Email:
monemi@iuuk.mff.cuni.cz

• Vertex Cover and Hitting Set: There exists an Õ(kd) space
algorithm that solves the minimum hitting set problem where
d is the cardinality of the input sets and k is an upper bound on
the size of the minimum hitting set. We prove this is optimal
up to logarithmic factors. Our algorithm has Õ(1) update time.
The case d = 2 corresponds to minimum vertex cover.

Finally, we consider a larger family of parameterized problems
(including b-matching, disjoint paths, vertex coloring among others)
for which our subgraph sampling primitive yields fast, small-space
dynamic graph stream algorithms. We then show lower bounds for
natural problems outside this family.

1 Introduction
Over the last decade, a growing body of work has considered
solving graph problems in the data stream model. Most
of the early work considered the insert-only variant of the
model where the stream consists of edges being added to
the graph and the goal is to compute properties of the graph
using limited memory. Recently, however, there has been a
significant amount of interest in being able to process dynamic
graph streams where edges are both added and deleted from
the graph [3, 6–8, 10, 27, 28, 33, 34, 40]. These algorithms are
all based on the surprising efficacy of using random linear
projections, aka linear sketching, for solving combinatorial
problems. Results include testing edge connectivity [6] and
vertex connectivity [28], constructing sparsifiers [7, 8, 33],
approximating the densest subgraph [10, 20, 43], correlation
clustering [3], and estimating the number of triangles [40].
For a recent survey of the area, see [42].

The concept of parameterized stream algorithms was
explored by Chitnis et al. [13] and Fafianie and Kratsch [22].
Their work investigated a natural connection between data
streams and parameterized complexity. In parameterized
complexity, the time cost of a problem is analyzed in terms of
not only the input size but also other parameters of the input.
For example, while the classic vertex cover problem is NP
complete, it can be solved via a simple branching algorithm
in time 2k · poly(n) where k is the size of the optimal vertex
cover. An important concept in parameterized complexity
is kernelization in which the goal is to efficiently transform
an instance of a problem into a smaller instance such that
the smaller instance is a “yes” instance (e.g., has a solution

of at least a certain size) iff the original instance was also
a “yes” instance. For more background on parameterized
complexity and kernelization, see [16, 24]. Parameterizing
the space complexity of a problem in terms of the size of
the output is a particularly appealing notion in the context of
data stream computation. In particular, the space used by any
algorithm that returns an actual solution (as opposed to an
estimate of the size of the solution) is necessarily at least the
size of the solution.

Our Results and Related Work. In this paper we present
a simple but powerful subgraph sampling primitive that is
applicable in a variety of computational models including
dynamic graph streams (where the input graph is defined
by a sequence of edge/hyperedge insertions and deletions)
and distributed systems such as MapReduce. This primitive
will be useful for both those parameterized problems whose
output has bounded size and for those where the optimal
solution need not be bounded. In the case where the output has
bounded size, our results can be thought of as kernelization
via sampling, i.e., we sample a relatively small set of edges
according to a simple (but not uniform) sampling procedure
and can show that the resulting graph has a solution of size at
most k iff the original graph has an optimal solution of size
at most k. We present the subgraph sampling primitive and
implementation details in Section 2.

Graph Matchings. Finding a large matching is the most
well-studied graph problem in the data stream model [4, 5, 15,
18, 23, 26, 31, 32, 37, 38, 41, 48]. However, all of the existing
single-pass stream algorithms are restricted to the insert-only
case, i.e., edges may be inserted but will never be deleted.
This restriction is significant: for example, the simple greedy
algorithm using Õ(n) space returns a 2-approximation if
there are no deletions. In contrast, prior to this paper no
o(n)-approximation was known in the dynamic case when
there are both insertions and deletions. Finding an algorithm
for the dynamic case of this fundamental graph problem was
posed as an open problem in the Bertinoro Data Streams Open
Problem List [1, Problem 64].

We prove the following results for computing a matching
in the dynamic model. Our first result is an Õ(k2) space algo-
rithm that returns the edges of a maximum matching on the
assumption that its cardinality is at most k. Our algorithm has
Õ(1) update time. The best previous algorithm [13] collects
min(deg(u), 2k) edges incident to each vertex u and finds
the optimal matching amongst these edges. This algorithm
can be implemented in Õ(kn) space where n is the number
of vertices in the graph. Indeed obtaining an algorithm with
f(k) space, for any function f , in the dynamic graph stream
case was left as an important open problem [13]. We can also
extend our approach to maximum weighted matching. Our
second result is an optimal Õ(n2/α3) space algorithm that
returns an α-approximation for matchings of arbitrary size.

For example, this implies an n1/3 approximation using Õ(n)
space, commonly known as the semi-streaming space restric-
tion [23, 44]. We present our second result and an algorithm
for graphs with bounded arboricity, along with a discussion
of very recent related work [9, 11, 36], in Section 4.

Vertex Cover and Hitting Set. We next consider the prob-
lem of finding the minimum vertex cover and its generaliza-
tion, minimum hitting set. The hitting set problem can be
defined in terms of hypergraphs: given a set of hyperedges,
select the minimum set of vertices such that every hyperedge
contains at least one of the selected vertices. If all hyperedges
have cardinality two, this is the vertex cover problem.

There is a growing body of work analyzing hypergraphs
in the data stream model [17, 28, 35, 45–47]. For example,
Emek and Rosén [17] studied the following set-cover problem
which is closely related to the hitting set problem: given a
stream of hyperedges (without deletions), find the minimum
subset of these hyperedges such that every vertex is included
in at least one of the hyperedges. They present an O(

√
n)

approximation streaming algorithm using Õ(n) space along
with results for covering all but a small fraction of the
vertices. Another related problem is independent set since the
minimum vertex cover is the complement of the maximum
independent set. Halldórsson et al. [29] presented streaming
algorithms for finding large independent sets but these do
not imply a result for vertex cover in either the insert-only or
dynamic setting.

In Section 3.2, we present a Õ(kd) space algorithm that
finds the minimum hitting set where d is the cardinality of the
input sets and k is an upper bound on the cardinality of the
minimum hitting set. We prove the space use is optimal and
matches the space used by previous algorithms in the insert-
only model [13,22]. Our algorithms can be implemented with
Õ(1) update time. The only previous results in the dynamic
model were by Chitnis et al. [13] and included a Õ(kn) space
algorithm for the vertex cover problem. They also provide
a Õ(k2) space algorithm under a much stronger “promise”
that the vertex cover of the graph defined by any prefix of the
stream may never exceed k. Relaxing this promise remained
as the main open problem of Chitnis et al. [13]. In Section 3.2,
we also generalize our exact matching result to hypergraphs.
In Section 6, we show our result is also optimal.

General Family of Results. We consider a larger family of
parameterized problems for which our subgraph sampling
primitive yields fast, small-space dynamic graph stream
algorithms. This result is presented in Section 5, while lower
bounds for various problems outside this family are proved in
Section 6.

2 Basic Subgraph Sampling Technique

Basic Approach and Intuition. The inspiration for our sub-
graph sampling primitive is the following simple procedure

for edge sampling. Given a graphG = (V,E) and probability
p ∈ [0, 1], let µG,p be the distribution over E ∪ {⊥} defined
by the following process:

1. Sample each vertex independently with probability p
and let V ′ denote the set of sampled vertices.

2. Return an edge chosen uniformly at random from the
edges in the induced graph on V ′. If no such edge exists,
return ⊥.

The distribution µG,p has some surprisingly useful
properties. For example, suppose that the optimal matching
in a graph G has size at most k. It is possible to show that
this matching has the same size as the optimal matching in
the graph formed by taking O(k2) independent samples from
µG,1/k. It is not hard to show that such a result would not
hold if the edges were sampled uniformly at random.1 The
intuition is that when we sample from µG,p we are less likely
to sample an edge incident to a high degree vertex than if
we sampled uniformly at random from the edge set. For
a large family of problems including matching, it will be
advantageous to avoid bias towards edges whose endpoints
have high degree.

Our subgraph sampling primitive essentially parallelizes
the process of sampling from µG,p. This will lead to more
efficient algorithms in the dynamic graph stream model. The
basic idea is rather than select a subset of vertices V ′, we
randomly partition V into V1 ∪ V2 ∪ . . . ∪ V1/p. Selecting
a random edge from the induced graph on any Vi results in
an edge distributed as in µG,p. Sampling an edge on each
Vi results in 1/p samples from µG,p although note that the
samples are no longer independent. This lack of independence
will not be an issue and will sometimes be to our advantage.
In many applications it will make sense to parallelize the
sampling further and select a random edge between each
pair, Vi and Vj , of vertex subsets. For applications involving
hypergraphs we select random edges between larger subsets
of {V1, V2, . . . , V1/p}.
Sampling Data Structure: We now present the subgraph
sampling primitive formally. Given an unweighted (hy-
per)graph G = (V,E), consider a “coloring” defined by
a function c : V → [b]. It will be convenient to introduce the
notation: for each i ∈ [b]

Vi = {v ∈ V : c(v) = i}
and say that every vertex in Vi has color i. For a (hyper)edge
e ∈ E, we define c(e) = {c(v) : v ∈ e}, i.e., c(e) is exactly

1To see this, consider a layered graph on vertices L1∪L2∪L3∪L4 with
edges forming a complete bipartite graph on L1 × L2, a complete bipartite
matching on L2×L3, and a perfect matching on L3×L4. If |L1| = n� k

and |L2| = |L3| = |L4| = k/2 then the maximum matching has size k and
every matching includes all edges in the perfect matching on L3×L4. Since
there are Ω(nk) edges in this graph we would need Ω(nk) edges sampled
uniformly before we find the matching on L3 × L4.

the set of colors seen on the vertices of e. For S ⊆ [b], we say
that an (hyper)edge e of G is S-colored if c(e) = S, i.e., each
color from S is used to color the vertices in e and no other
colors are used. Given a constant q ≥ 1 which denotes the
“size restriction", for each S ⊆ [b] of cardinality at most q,
ES contains a single edge chosen uniformly at random from
the set of all S-colored edges. If there are no S-colored edges,
then ES = ∅. The union of these sets defines the random
graph G′ = (V,E′), i.e.,

E′ =
⋃

S⊆[b],|S|≤q

ES .

For example, given a simple graph, if we have q = 1 then for
each color i ∈ [b] we choose an edge whose endpoints are
both colored i. If q = 2, then for every 1 ≤ i ≤ j ≤ b we
choose an edge whose one endpoint has color i and the other
endpoint has color j: note that this includes the possibility
that i = j. In the case of a weighted graph, for each distinct
weight w we choose a single edge ES,w uniformly at random
from the set of S-colored edges with weight w.

DEFINITION 2.1. We define Sampleb,q,1 to be the distribu-
tion over subgraphs generated as above where c is chosen
uniformly at random from a family of pairwise independent
hash functions. Sampleb,q,r is the distribution over graphs
formed by taking the union of r independent graphs sampled
from Sampleb,q,1. Algorithm 1 gives pseudocode for sampling
from Sampleb,q,r.

Motivating Application. As a first application to motivate
the subgraph sampling primitive we again consider the
problem of estimating matchings. We will use the following
simple lemma that will also be useful in subsequent sections.

LEMMA 2.1. Let U ⊆ V be an arbitrary subset of |U | = r
vertices and let c : V → [4rε−1] be a pairwise independent
hash function. Then with probability at least 3/4, at least
(1 − ε)r of the vertices in U are hashed to distinct values.
Setting ε < 1/r ensures all vertices are hashed to distinct
values with this probability.

Proof. Let b = 4ε−1r. For a vertex u ∈ U , let Iu be
the indicator random variable that equals one if there exists
u′ ∈ U \ {u} such that c(u) = c(u′). Since c is pairwise
independent,

P [Iu] ≤
∑

u′∈U\{u}

P [c(u) = c(u′)]

=
∑

u′∈U\{u}

1/b < r/b = ε/4 .

Let I =
∑
u∈U Iu and note that E [I] ≤ εr/4. Then

Markov’s inequality implies P [I ≥ εr] ≤ 1/4. �

Algorithm 1 Algorithm for Sampling Subgraphs According to Sampleb,q,r

Input: A (hyper)graph G = (V,E) and natural numbers b, q, r.
Output: A subgraph G′ = (V,E′) where E′ ⊆ E

1: Choose c1, . . . , cr u.a.r. from a family of pairwise independent hash functions mapping V to [b]
2: Set E′ = ∅
3: for 1 ≤ j ≤ r do
4: for each S ⊆ [b] such that |S| ≤ q do
5: Select an edge EjS u.a.r. from the set of S-colored edges {e ∈ E : ∪v∈ecj(v) = S} if this set is non-empty.

Otherwise let EjS = ∅.
6: E′ ← E′ ∪ EjS
7: Report the graph G′ = (V,E′).

SupposeG is a graph with a matchingM = {e1, . . . , ek}
of size k. Let G′ ∼ Sampleb,2,1. By the above lemma, there
exists b = O(k2), such that all the 2k endpoints of edges in
M are colored differently with constant probability. Suppose
the endpoints of edge ei received the colors ai and bi. Then
G′ contains an edge in E{ai,bi} for each i ∈ [k]. Assuming
all endpoints receive different colors, no edge in E{ai,bi}
shares an endpoint with an edge in E{aj ,bj} for j 6= i. Hence,
we can conclude that G′ also has a matching of size k. In
Section 5, we show that a similar approach can be generalized
to a range of problems. Using a similar argument there exists
b = O(k) such that G′ contains a constant approximation
to the optimum matching. However, in Section 3, we show
that there exists b = O(k) such that with high probability
graphs sampled from Sampleb,2,O(log k) preserve the size of
the optimal matching exactly.

2.1 Application to Data Streams and MapReduce
We now describe how the subgraph sampling primitive can
be implemented in various computational models.

Dynamic Graph Streams. Let S be a stream of insertions
and deletions of edges of an underlying graph G(V,E). We
assume that vertex set V = {1, 2, . . . , n}. We assume that the
length of the stream is polynomially related to n and hence
O(log |S|) = O(log n). We denote an undirected edge in E
with two endpoints u, v ∈ V by uv. For weighted graphs, we
assume that the weight of an edge is specified when the edge
is inserted and deleted and that the weight never changes. The
following theorem establishes that the sampling primitive can
be efficiently implemented in dynamic graph streams.

THEOREM 2.1. Suppose G is a graph with w0 distinct
weights. It is possible to sample from Sampleb,q,r with
probability at least 1− δ in the dynamic graph stream model
using Õ(bqrw0) space and Õ(r) update time.

Proof. To sample a graph from Sampleb,q,r we simply
sample r graphs from Sampleb,q,1 in parallel. To draw a
sample from Sampleb,q,1, we employ one instance of an `0-
sampling primitive for each of the O(bq) edge colorings [14,

30]. Given a dynamic graph stream, the behavior of an `0-
sampler algorithm is defined as follows: It returns FAIL
with probability at most δ and otherwise, it returns an edge
chosen uniformly at random amongst the edges that have
been inserted and not deleted. If there are no such edges,
the `0-sampler returns NULL. The `0-sampling primitive can
be implemented using O(log2 n log δ−1) bits of space and
O(polylog n) update time. In some cases, we can make use
of simpler deterministic data structures. For Theorem 3.1, we
can replace the `0 sampler with a counter and the exclusive-or
of all the edge identifiers, since we only require to recover
edges when they are unique within their color class. For
Theorem 5.1, we only require a counter. In both cases, the
space cost is reduced to O(log n).

At the start of the stream we choose a pairwise indepen-
dent hash function c : V → [b]. For each weight w and subset
S ⊆ [b] of size q, this hash function defines a sub-stream
corresponding to the S-colored edges of weight w. We then
use `0-sampling on each sub-stream to select a random edge
to be used as ES . �

MapReduce and Distributed Models. The sampling dis-
tribution is naturally parallel, making it straightforward to
implement in a variety of popular models. In MapReduce,
the r hash functions can be shared state among all machines,
allowing Map function to output each edge keyed by its color
under each hash function. Then, these can be sampled from
on the Reduce side to generate the graph G′. Optimizations
can do some data reduction on the Map side, so that only one
edge per color class is emitted, reducing the communication
cost. A similar outline holds for other parallel graph models
such as Pregel.

3 Parameterized Matching, Vertex Cover, and Hitting
Set

3.1 Finding Maximum Matchings and Minimum Ver-
tex Covers Exactly

In this section, we present results on finding edges in a
maximum matching and the vertices in a minimum vertex

cover of a graph G. We use match(G) to denote the size
of the maximum (weighted or unweighted as appropriate)
matching in G and use vc(G) to denote the size of minimum
vertex cover. The main theorem we prove in this section is
that a maximum matching (or minimum vertex cover) in the
sampled graph is also a maximum matching (or minimum
vertex cover) in the original graph.

THEOREM 3.1. (FINDING EXACT SOLUTIONS) Suppose
match(G) ≤ k. Then, with probability 1− 1/poly(k),

match(G′) = match(G) and vc(G′) = vc(G) ,

where G′ = (V,E′) ∼ Sample1000k,2,Θ(log k).

Intuition and Preliminaries. To argue that G′ has a
matching of the optimal size, it suffices to show that for
every edge uv ∈ G that is not in G′, there is a large number
of edges incident to one or both of u and v that are in G′. If
this is the case, then it will still be possible to match at least
one of these vertices in G′.

To make this precise, let U be the subset of vertices with
degree at least 10k. Let F be the set of edges in the induced
subgraph on V \U , i.e., the set of edges whose endpoints both
have small degree. We will prove that with high probability,

(3.1) (F ⊆ E′) and (∀u ∈ U , degG′(u) ≥ 5k) ,

where E′ is the set of edges in G′. Note that any sampled
graph G′ that satisfies (3.1) has the property that for all edges
uv ∈ G that are not in G′ we have degG′(u) ≥ 5k or
degG′(v) ≥ 5k.

Analysis. The first lemma establishes that it is sufficient to
prove that (3.1) holds with high probability.

LEMMA 3.1. If match(G) ≤ k then (3.1) implies
match(G′) = match(G) and vc(G′) = vc(G).

Proof. We first argue that vc(G′) = vc(G). Since the vertex
cover of G is of size at most 2k, every vertex in U must be
in the vertex cover of both G and G′ since the degrees of
such vertices in both graphs are strictly greater than 2k. This
follows because if a vertex in U was not in the minimum
vertex cover then all its neighbors need to be in the vertex
cover. To complete the vertex cover requires consideration of
only those edges not incident on U . This is exactly the set of
edges F , which by the assumption are present in G′, leading
to the same vertex cover.

We next argue that match(G′) = match(G). If
property (3.1) is satisfied then G′ contains a matching of
size match(F) + |U | ≥ match(G) since we may choose the
optimum matching in F and then still be able to match every
vertex in U . This follows because the optimum matching
in F “consumes” at most 2k potential endpoints, since
match(G) ≤ k. Hence, each of the (at most 2k) vertices
in U can still be matched to 3k possible vertices. �

The next lemma establishes that (3.1) holds with the
required probability.

LEMMA 3.2. Property (3.1) holds with probability at least
1− 1/ poly(k).

Proof. Let VC(G) be a minimum vertex cover of G. Recall
that match(G) ≤ k implies that vc(G) = |VC(G)| ≤ 2k
because the endpoints of the edges in a maximum matching
form a vertex cover. Next consider H ∼ Sample1000k,2,1.
We will show that for any e ∈ F and u ∈ U ,

P [e ∈ H] > 1/2 and P [degH(u) ≥ 5k] ≥ 1/2 .

It follows that if r = Θ(log k) and G′ ∼ Sample1000k,2,r

then

P [e ∈ G′ and degG′(u) ≥ 5k] ≥ 1− 1/ poly(k) .

We then take the union bound over the O(k2) edges in F
and the O(k) vertices in U . The fact that |F | = O(k2) and
|U | = O(k) follows from the promises match(G) ≤ k and
vc(G) ≤ 2k. In particular, the induced graph on V \ U has
a matching of size Ω(|F |/k) since the maximum degree is
O(k) and this size is at most k. Since all vertices in U must
be in the minimum vertex cover, |U | ≤ 2k.

To prove P [e ∈ H|e ∈ F] ≥ 1/2. Let the endpoints of
e be x and y. We define a set of vertices A such that e is
the unique edge that remains if all vertices in A are removed
from the graph:

A = (VC(G) ∪ Γ(x) ∪ Γ(y)) \ {x, y}

where Γ(·) denotes the set of neighbors of a vertex. The
removal of VC(G) \ {x, y} ensures all remaining edges
are incident to either x or y. The subsequent removal of
(Γ(x) ∪ Γ(y)) \ {x, y} ensures the unique remaining edge is
xy as claimed.

Consider the hash function c : [n] → [b] that defined
H where b = 1000k. Observe that if all the vertices in A
receive colors that are different than c(x) and c(y), then xy is
the unique {c(x), c(y)}-colored edge and hence is definitely
sampled. Since b = 1000k and |A| ≤ 2k+10k+10k = 22k,

P [xy ∈ H]

≥ 1− P [∃a ∈ A : c(a) = c(x)]− P [∃a ∈ A : c(a) = c(y)]

≥ 1− 2|A|/b > 1/2 .

To prove P [degH(u) ≥ 5k|u ∈ U] ≥ 1/2. Let Nu be
an arbitrary set of 10k neighbors of u and A = VC(G) \ {u}.
If c(u) 6∈ c(A) and there exist different colors c1, . . . , c5k
such that each ci ∈ c(Nu) \ c(A) then the algorithm returns
at least 5k edges incident to u in H . This follows since every
edge not incident to u has at least one vertex in A. Hence,

every {ci, c(u)}-colored edge is incident to u and is distinct
from every {cj , c(u)}-colored edge.

Observe that P [c(u) ∈ c(A)] ≤ 2k/b. By appealing
to Lemma 2.1, with probability at least 3/4, there are at
least 6k colors used to color the vertices Nu. Of these
colors, at least 5k are colored differently from vertices in
A. Hence we find 5k edges incident to u with probability at
least 3/4− 2k/b ≥ 1/2. �

Extension to Weighted Matching. We now extend the result
of the previous section to the weighted case. The following
lemma shows that it is possible to remove an edge uv from a
graph without changing the weight of the maximum weighted
matching, if u and v satisfy certain properties.

LEMMA 3.3. Let G = (V,E) be a weighted graph and let
G′ = (V,E′) be a subgraph with the property:

∀uv ∈ E \E′ , deg
w(uv)
G′ (u) ≥ 5k or deg

w(uv)
G′ (v) ≥ 5k ,

where degwG(u) is the number of edges incident to u inG with
weight w. Then, match(G) = match(G′).

Proof. Let E \ E′ = {e1, e2, . . . et} and let G′i be the graph
formed by removing {e1, . . . , ei} from G. So G′0 = G
and G′t = G′. For the sake of contradiction, suppose
match(G) > match(G′) and let r be the minimal value
such that match(G) > match(G′r).

By the minimality of r, match(G) = match(G′r−1).
Consider the maximum weight matching M in G′r−1. If
er 6∈ M then match(G) = match(G′r−1) = match(G′r)
and we have a contradiction. If er ∈ M , let u, v be the
endpoints of er and the weight of er be w. Without loss of
generality degwG′

r
(u) ≥ dwG′(u) ≥ 5k. Hence, there exists

edge ux of weight w in G′r where x is not an endpoint
in M . Therefore, the matching (M \ {er}) ∪ {ux} is
contained in G′r and has the same weight as M . Hence,
match(G) = match(G′r−1) = match(G′r) and we again
have a contradiction. �

Consider a weighted graph G and let G′ ∼
Sample1000k,2,Θ(log k). For each weight w, let Gw and G′w
denote the subgraphs consisting of edges with weight exactly
w. By applying the analysis of the previous section to Gw
and G′w we may conclude that G′ satisfies the properties of
the above lemma. Hence, match(G) = match(G′). To re-
duce the dependence on the number of distinct weights in
Theorem 2.1, we may first round each weight to the nearest
power of (1 + ε) at the cost of incurring a (1 + ε) factor error.
If W is the ratio of the max weight to min weight, there are
O(ε−1 logW) distinct weights after the rounding.

3.2 Finding Minimum Hitting Set Exactly
In this section, we present exact results for computing hitting
sets and hypergraph matchings. Throughout the section, let

G be a hypergraph with hs(G) ≤ k where hs(G) denotes the
cardinality of the minimum hitting set of G. We assume that
each edge has size exactly d where d is a constant.

Intuition and Preliminaries. Given that the hitting set
problem is a generalization of the vertex cover problem,
naturally some of the ideas in this section build upon ideas
from the previous section. However, the combinatorial
structure we need to analyze for our sampling result goes
beyond what is typically needed when extending vertex cover
kernelization results to hitting sets. We first need to review a
basic definition and result about “sunflower” set systems.

LEMMA 3.4. (SUNFLOWER LEMMA [19]) Let F be a col-
lection of subsets of [n]. Then A1, . . . , As ∈ F is an s-
sunflower if Ai ∩ Aj = C for all 1 ≤ i < j ≤ s. We refer
to C as the core of the sunflower and Ai \ C as the petals.
If each set in F has size at most d and |F| > d!kd, then F
contains a (k + 1)-sunflower.

Let sG(C) denote the number of petals in a maximum
sunflower in the graph G with core C. We say a core is large
if sG(C) > ak for some large constant a and significant if
sG(C) > k. Define the sets:

• U = {C ⊆ V | sG(C) > ak} is the set of large cores.

• F = {D ∈ E | ∀C ∈ U,C 6⊆ D} is the set of edges
that do not include a large core.

• U ′ = {C ∈ U | ∀C ′ ⊂ C, sG(C ′) ≤ k} is the set of
large cores that do not contain significant cores.

LEMMA 3.5. |F | = O(kd) and |U ′| = O(kd−1)

Proof. For the sake of contradiction assume |F | > d!(ak)d.
Then, by the Sunflower Lemma, F contains a (ak + 1)-
sunflower. If the core of this sunflower is empty, F has a
matching of size (ak + 1) and therefore cannot have a hitting
set of size at most k. If the sunflower has a non-empty core
C, then some edge D ∈ F contains C, which contradicts the
definition of F . Therefore, |F | ≤ d!(ak)d.

To prove |U ′| ≤ (d−1)!kd−1, first note that |C ′| ≤ d−1
for all C ′ ∈ U ′. For the sake of contradiction assume that
|U ′| > (d− 1)!kd−1. Then, by the Sunflower Lemma again,
U ′ contains a (k + 1)-sunflower. Note that it is a sunflower
of cores, not hypergraph edges. Let C1, C2, . . . , Ck+1 be the
sets in the sunflower. Each of these sets has to contain at
least one vertex of the minimum hitting set. Therefore, if
C1, C2, . . . , Ck+1 are disjoint (i.e., the core of the sunflower
is empty), U ′ has a matching of size (k + 1) and cannot
have a hitting set of size at most k. If the sunflower
has a non-empty core C∗, we will show that union of the
maximum sunflowers with cores C1, C2, . . . , Ck+1 contains
a sunflower with k + 1 edges with core C∗ ⊂ C1 ∈ U ′.
This contradicts the definition of U ′ and therefore |U ′| ≤

D'1

D'2

D'3

D

C

Figure 1: Given sets D′1, D
′
2, D

′
3 that intersect set D exactly

atC thenMC,D consists of the shaded subsets ofD′1, D
′
2, and

D′3. Assuming C is non-empty, {D′1, D′2, D′3} has a hitting
set of size 1 since any vertex in C hits all sets. Lemma 3.6
bounds the size of the minimum hitting set of {D′1, D′2, D′3}
that may not include any vertices in C.

(d− 1)!kd−1 = O(kd−1). To construct the sunflower on C∗,
for i = 1, . . . , k + 1, we pick an edge Di in the maximum
sunflower with core Ci such thatDi∩Cj = C∗ for j 6= i and
Di ∩Dj = C∗ for j < i. This is possible if a is sufficiently
large. �

The sets U and F play a similar role to the sets of
the same name in the previous section. For example, if
d = 2, then a large core corresponds to a high degree vertex.
However, the set U ′ has no corresponding notion when d = 2
because a high degree vertex cannot contain another high
degree vertex. The following (rather technical) lemma will
play a crucial role when dealing with cores that are subsets
of other cores in U ′ or of edges in F . It shows that if a core
C is contained in a set D, then the set of edges that intersect
D at C has a hitting set that a) does not include vertices in C
and b) has small size assuming sG(C) is small.

LEMMA 3.6. For any two sets of vertices C,D, where C ⊆
D, define

MC,D = {D′ \ C | D′ ∈ E,D ∩D′ = C} .

Then hs(MC,D) ≤ sG(C)d. See Figure 1 for an example.

Proof. Consider the size of minimum hitting set of MC,D.
If hs(MC,D) > sG(C)d, then MC,D has a matching of size
greater than sG(C). This matching together with the set C
forms a sunflower with core C and over sG(C) petals, which
contradicts the assumption. Therefore, hs(MC,D) ≤ sG(C)d
as claimed. �

Hitting Set. For the rest of this section we let G′ =
(V,E′) ∼ Sampleb,d,r(G) where b = O(k), d is the

cardinality of the hyperedges, and r = O(log k). It will also
be convenient to use the notation HS(S) to denote a minimum
hitting set of a collection of sets S, i.e., hs(S) = |HS(S)|.

THEOREM 3.2. Suppose hs(G) ≤ k. With probability
1− 1/ poly(k), hs(G′) = hs(G).

Proof. For each significant core C there has to be at least
one vertex from the hitting set in C. Since all large cores
are significant, hs(G) = hs(U ∪ F). If C ∈ U has a subset
C ′ such that sG(C ′) > k, then there is at least one vertex
from the hitting set in C ′ and this vertex also hits C. Thus,
hs(G) = hs(U ′ ∪ F). By Lemma 3.7, the set of significant
cores in G′ is a superset of U ′ with high probability. By
Lemma 3.8, every edge in F is in G′ with high probability. �

LEMMA 3.7. P [∀ C ∈ U ′, sG′(C) > k] ≥ 1− 1/poly(k).

Proof. Fix an arbitrary core C ∈ U ′. Consider H ∼
Sampleb,d,1 and let c : [n] → [b] be the coloring that
defined H . We need to identify k + 1 sets of colors
S1, S2, . . . Sk+1 ⊂ [b] each of size d, such that any set of
edges D1, D2, . . . , Dk+1 where Di is Si-colored forms a
sunflower of size k + 1 on core C. In order for this to hold,
the color sets have to satisfy the following three properties:

1. All edges that are Si-colored contain C.

2. There is at least one Si-colored edge.

3. If D is Si-colored and D′ is Sj-colored then (D \ C) ∩
(D′ \ C) = ∅.

In what follows, we first define a set F = {S1, S2, . . .} that
satisfies the above properties. We then argue that |F| ≥ k+ 1
with probability at least 1/2. By repeating the process
O(log k) times will ensure that such a family exists with
high probability. The lemma follows by taking the union
bound over all C ∈ U ′ since |U ′| = O(kd−1) by Lemma 3.5.

Property 1. We first define a set of vertices A such that any
edge that does not intersect A must include C. Then, for
any S ⊂ [b] that is disjoint from c(A), we may infer that all
S-colored edges contain C. This follows since if S = c(D)
for some edge D, then c(D) ∩ c(A) = ∅ which implies that
D ∩A = ∅, and so C ⊆ D. Let

A = (HS(G) \ C) ∪
(⋃

C′⊂C HS(MC′,C)

)
.

All edges that do not intersect HS(G) \C must intersect with
C. But all edges that intersect with only a subset of C, say C ′,
must intersect with HS(MC′,C). Hence A has the claimed
property. We will say thatC is a good core if c(C)∩c(A) = ∅
and |c(C)| = |C|.

Property 2. Next, let P be a set of petals in a sunflower with
core C that do not intersect with A. We may choose a set of
|P| = ak − |A| such petals. For each P ∈ P , define the set:

AP = A ∪ C ∪
(⋃

Q∈P\PQ

)
.

If C is a good core, let P ′ contain all P ∈ P such that
c(P)∩ c(AP) = ∅ and |c(P)| = |P |. If C is not a good core,
let P ′ = ∅. Then the family F = {c(P ∪ C)}P∈P′ satisfies
Properties 1 and 2. Note that no two petals in P ′ share the
same color and hence |F| = |P ′| assuming C is a good core.

Property 3. Assume C is a good core since otherwise F = ∅
and Property 3 is trivially satisified. Let S1, S2 ∈ F and
suppose S1 = c(C ∪ P1) and S2 = c(C ∪ P2) for some
P1, P2 ∈ P ′. Suppose edges C ∪ Q1 and C ∪ Q2 are S1-
colored and S2-colored respectively. Then c(Q1) = c(P1)
and c(Q2) = c(P2) because |c(C)| = |C|, |c(P1)| = |P1|,
|c(P2)| = |P2|, and all edges have the same cardinality.
But c(P1) ∩ c(P2) = ∅ implies c(Q1) ∩ c(Q2) = ∅ and
so Q1 ∩Q2 = ∅ as required.

Size of F . We need to show that |P ′| ≥ (k + 1) with
probability 1/2. Recall that c : V → [b] is chosen randomly
from a family of pairwise independent hash functions and
suppose b = 8 max(d|A| + d2, d|AP | + d2). Note that
b = O(k) since, by appealing to Lemma 3.6,

|A| ≤ |AP | ≤ |A|+ |C|+ d|P|
≤ hs(G) +

∑
C′⊂C

hs(MC,C′) + |C|+ d|P|

≤ k + 2ddk + d+ dak = O(k) .

Then,

P [C is not a good core]

= P [c(C) ∩ c(A) 6= ∅ or |c(C)| 6= |C|]
≤ (d|A|+ d2)/b ≤ 1/8 .

For each P ∈ P , let XP = 1 if P 6∈ P ′ or C is not a good
core. Let XP = 0 otherwise. Then

E
[∑

XP

]
≤ |P|

(
d|AP |+ d2)/b+ 1/8

)
≤ |P|/4 ,

and so
P
[∑

XP ≥ |P|/2
]
≤ 1/2

by the Markov inequality. Hence,

|P ′| = |P| −
∑

XP ≥ |P|/2 = ak/2− |A|/2 ≥ k + 1

for sufficiently large a with probability at least 1/2.
�

LEMMA 3.8. P [F ⊆ E′] ≥ 1− 1/ poly(k).

Proof. Pick an arbitrary edge D ∈ F . Consider H ∼
Sampleb,d,1 and let c : [n]→ [b] be the coloring that defined
H . It suffices to show that there is a unique edge that is
c(D)-colored since then D is necessarily an edge in H . It
suffices to show that this is the case with probability at least
1/2 because repeating the process O(log k) times will ensure
that such a family exists with high probability. The result
then follows by taking the union bound over all D ∈ F since
|F | = O(kd) by Lemma 3.5.

Let S = c(D). We first define a set A of vertices such
that the only edge that is disjoint from A is D. It follows that
D is the unique S-colored edge if S ∩ c(A) = ∅, since every
other edge intersects A and hence must share a color with it.
We define A as follows:

A = (HS(G) \D) ∪
(⋃

C⊂D HS(MC,D)
)
.

Note D itself is disjoint from A since each HS(MC,D) does
not include vertices from D. If an edge is disjoint from
(HS(G) \D) then it must intersect D. Suppose there exists
an edge D′ such that D ∩D′ = C 6= D, then D′ intersects
HS(MC,D). Hence, the only edge that is disjoint from
A includes the vertices in D and so is equal to D on the
assumption that all edges have the same number of vertices.

It remains to show that S ∩ c(A) = ∅ with probability at
least 1/2. If b ≥ 2d|A| then we have

P [S ∩ c(A) = ∅] ≥ 1− d|A|/b ≥ 1/2 .

Finally, note that b = O(k) since |A| ≤ hs(G) +∑
C⊂D hs(MC,D) ≤ k + 2dakd = O(k) by appealing to

Lemma 3.6 and using the fact that sG(C) ≤ ak for allC ⊂ D
since D ∈ F . �

A result for hypergraph matching follows along similar
lines.

THEOREM 3.3. Suppose match(G) ≤ k′ = k/d. With
probability 1− 1/ poly(k), match(G′) = match(G).

Proof. hs(G) ≤ dk′ = k. Let M be the matching. F ∩M is
preserved in G′. Consider an edge D ∈M such that C ⊆ D
for some C ∈ U . Then in G′ we can find (by Lemma 3.7)
at least k + 1 petals in a sunflower with core either C itself
or some C ′ ⊂ C. At most k of those intersect M \ {D}.
Therefore, there is still at least one edge we can pick for the
matching. �

4 Approximating Large Matchings
The problem of approximating large matchings in the dy-
namic graph stream model has seen a flurry of recent activity.
Four sets of related results were disclosed almost simultane-
ously [9,11,12,36] (including a version of this paper). Assadi
et al. [9] present a different α-approximation algorithm for
maximum matching that uses the same space as our algorithm

(which they show is optimal). Konrad [36] proves slightly
weaker bounds. Bury and Schwiegelshohn [11] present an
algorithm for estimating the size of the maximum matching
in graphs of bounded arboricity. Our second algorithm in this
section is similar (the difference is that we can find the edges
of an exact matching when it is small whereas they approx-
imate the cardinality in this case by guessing and verifying
the rank of a related matrix).

4.1 Approximating Matching in Arbitrary Graphs

Intuition and Preliminaries. Given a hash function c : V →
[b], we say an edge uv is colored i if c(u) = c(v) = i. If the
endpoints have different colors, we say the edge is uncolored.
The basic idea behind our algorithm is to repeatedly sample
a set of colored edges with distinct colors. Note that a set of
colored edges disjoint colors is a matching. We use the edges
in this matching to augment the matching already constructed
from previous rounds. In this section we require the hash
functions to be O(k)-wise independent and, in the context of
dynamic data streams, this will increase the update time by a
O(k) factor.

THEOREM 4.1. Suppose match(G) ≥ k. For any 1 ≤ α ≤√
k and 0 < ε ≤ 1, with probability 1− 1/ poly(k),

match(G′) ≥
(

1− ε
2α

)
· k ,

where G′ ∼ Sample2k/α,1,r where r = O(kα−2ε−2 log k).

Note that if match(G) ≥ 10k, ε = 0.1, and α = 3, then
the theorem above implies that we can find a matching of
size strictly greater that k using Õ(k2) space in the dynamic
graph stream model. If match(G) ≤ 10k then if we run
the algorithm used for Theorem 3.1, we can find the exact
matching using Õ(k2) space. Hence, we can distinguish
between the case match(G) ≤ k and match(G) > k using
Õ(k2) space.

Proof. [Proof of Theorem 4.1] Let H1, . . . ,Hr ∼
Sample2k/α,1,1 and let G′ be the union of these graphs. Con-
sider the greedy matching Mr where M0 = ∅ and for t ≥ 1,
Mt is the union of Mt−1 and additional edges from Ht. We
will show that if Mt−1 is small, then we can find many edges
in Ht that can be used to augment Mt−1.

Consider Ht and suppose |Mt−1| < 1−ε
2α · k. Let

c : V → [b] be the hash-function used to define Ht where
b = 2k

α . Let U be the set of colors that are not used to color
the endpoints of Mt−1, i.e.,

U = {c ∈ [b] : there does not exist a matched vertex
u in Mt−1 with c(u) = c} .

and note that |U | ≥ b−2|Mt−1| ≥ k
α . For each c ∈ U , define

the indicator variableXc whereXc = 1 if there exists an edge

uv with c(u) = c(v) = c. We will findX =
∑
c∈U Xc edges

to add to the matching.
Since match(G) ≥ k, there exists a set k − 2|Mt−1| >

kε vertex disjoint edges that can be added to Mt−1. Let
p = α

2k and observe that E [Xc] ≥ kεp2 −
(
kε
2

)
p4 >

kεp2/2 = ε · α
2

8k . Therefore, E [X] ≥ (kα) · ε · α
2

8k = εα
8 . Since

Xc and Xc′ are negative correlated, P [X ≥ E[X]/2] ≥
1 − exp (−Ω (εα)) ≥ Ω(ε). Hence, with each repetition
we may increase the size of the matching by at least εα/2
with probability Ω(ε). After O(kα−2ε−2 log k) repetitions
the matching has size at least 1−ε

2α · k. �

By applying Theorem 4.1 for all k ∈ {1, 2, 4, 8, 16, . . .}
and appealing to Theorem 2.1, we establish:

COROLLARY 4.1. There exists a O(n polylog n)-space al-
gorithm that returns an O(n1/3)-approximation to the size of
the maximum matching in the dynamic graph stream model.

Proof. For 1 ≤ i ≤ log n, let G′i ∼ Sampleb,1,r where
r = O(2iα−2 log k) and b = 2i+1/α. These graphs can be
generated in Õ(n2α−3) space. For some i,

2i ≤ match(G) < 2i+1

and hence match(G′i) = Ω(match(G)/α). �

This result generalizes to the weighted case using the
Crouch-Stubbs technique [15]. They showed that if we can
find a β-approximation to the maximum cardinality matching
amongst all edges of weight greater than (1 + ε)i for each i,
then we can find a 2(1 + ε)β-approximation to the maximum
weighted matching.

4.2 Matchings in Planar and Bounded-Arboricity
Graphs

In this section, we present an algorithm for estimating the
size of the matching in a graph of bounded arboricity. Recall
that a graph has arboricity ν if its edges can be partitioned
into at most ν forests. In particular, it can be shown that a
planar graph has arboricity at most 3. We will make repeated
use of the fact that the average degree of every subgraph of a
graph with arboricity ν is at most 2ν.

Our algorithm is based on an insertion-only streaming
algorithm due to Esfandiari et al. [21]. They first proved upper
and lower bounds on the size of the maximum matching in a
graph of arboricity ν.

LEMMA 4.1. (ESFANDIARI ET AL. [21]) For any graph G
with arboricity ν, define a vertex to be heavy if its degree is
at least 2ν + 3 and define an edge to be shallow if it is not
incident to a heavy vertex. Then,

max{h, s}
2.5ν + 4.5

≤ match(G) ≤ 2 max{h, s} .

where h is the number of heavy vertices and s is the number
of shallow edges.

To estimate max{h, s}, Esfandiari et al. sampled a set of
vertices Z and (a) computed the exact degree of these vertices,
then (b) found the set of all edges in the induced subgraph on
these vertices. The fraction of heavy vertices in Z and shallow
edges in the induced graph are then used to estimate h and s.
By choosing the size of Z appropriately, they showed that the
resulting estimate was sufficiently accurate on the assumption
that max{h, s} is large. In the case where max{h, s} is small,
the maximum matching is also small and hence a maximal
matching could be constructed in small space using a greedy
algorithm.

Algorithm for Dynamic Graph Streams. In the dynamic
graph stream model, it is not possible to construct a maximal
matching. However, we may instead use the algorithm of
Theorem 3.1 to find the exact size of the maximum matching.
Furthermore we can still recover the induced subgraph on
sampled vertices Z via a sparse recovery sketch [25]. This
can be done space-efficiently because the number of edges
is at most 2ν|Z|. Lastly, rather than fixing the size of Z, we
consider sampling each vertex independently with a fixed
probability as this simplifies the analysis significantly. The
resulting algorithm is as follows:

1. Invoke algorithm of Theorem 3.1 for k = 2n2/5 and let
r be the reported matching size.

2. In parallel, sample vertices with probability p =
8ε−2n−1/5 and let Z be the set of sampled vertices.
Find the degrees of vertices in Z in G and maintain a
2ν|Z|-sparse recovery sketch of the edges in the induced
graph on Z. Let sZ be the number of shallow edges
in the induced graph on Z and let sZ be the number of
heavy vertices in Z. Return max{r, hZ/p, sZ/p2}.

Analysis. Our analysis relies on the following lemma that
shows that max{hZ/p, sZ/p2} is a 1 + ε approximation for
max{s, h} on the assumption that max{s, h} ≥ n2/5.

LEMMA 4.2. With probability at least 4/5,

|max{hZ/p, sZ/p2} −max{s, h}| ≤ ε ·max{n2/5, s, h} .

Proof. First we show sZ/p
2 is a sufficiently good estimate

for s. Let S be the set of shallow edges in G and let EZ be
the set of edges in the induced graph on Z. For each shallow
edge e ∈ S, define an indicator random variable Xe where
Xe = 1 iff e ∈ EZ and note that sZ =

∑
e∈S Xe. Then,

E [sZ] = sp2

and

V [sZ] =
∑
e∈S

∑
e′∈S

E [XeXe′]− E [Xe]E [Xe′] .

Note that∑
e′∈S

E [XeXe′]− E [Xe]E [Xe′]

=

p2 − p4 if e = e′

p3 − p4 if e and e′ share exactly one endpoint
0 if e and e′ share no endpoints

.

and since there are at most 2ν+3 edges that share an endpoint
with a shallow edge,

V [sZ] ≤ s(p2 − p4 + (2ν + 3)p3 − p4) ≤ 2sp2

on the assumption that (2ν + 3) ≤ 1/p. We then use
Chebyshev’s inequality to obtain

P
[
|sZ − sp2| ≤ p2ε ·max{n2/5, s}

]
≤ 2sp2

(p2ε ·max{n2/5, s})2
≤ 9/10

.(4.2)

Next we show that hZ/p is a sufficiently good estimate
for h. Let H denote the set of h heavy vertices in G and
define an indicator random variable Yv for each v ∈ H ,
where Yv = 1 iff v ∈ Z. Note that hZ =

∑
v∈H Yv and

E [hZ] = hp. Then, by an application of the Chernoff-
Hoeffding bound,

P
[
|hZ − hp| ≥ εpmax{h, n2/5}

]
≤ exp(−ε2pn2/5/3) ≤ 9/10

.(4.3)

Therefore, it follows from Eq. 4.2 and 4.3 that with
probability at least 4/5,

|max{hZ/p, sZ/p2} −max{s, h}| ≤ ε ·max{n2/5, s, h} .

�

THEOREM 4.2. There exists a Õ(νε−2n4/5 log δ−1)-space
dynamic graph stream algorithm that returns a (5ν + 9)(1 +
ε)2 approximation of match(G) with probability at least 1−δ
where ν is the arboricity of G.

Proof. To argue the approximation factor, first suppose
match(G) ≤ 2n2/5. In this case r = match(G) and
max{s, h} ≤ (2.5ν+4.5) match(G) by appealing to Lemma
4.1. Hence,

match(G) ≤ max{r, hZ/p, sZ/p2} ≤ (2.5ν+4.5) match(G)

Next suppose match(G) ≥ 2n2/5. In this case,
max{s, h} ≥ n2/5 by Lemma 4.1. Therefore, by Lemma
4.2, max{hZ/p, sZ/p2} = (1± ε) max{s, h}, and so

match(G)

2(1 + ε)
≤ max{r, hZ/p, sZ/p2}

≤ (1 + ε) max{s, h}
≤ (1 + ε)(2.5ν + 4.5) match(G) .

To argue the space bound, recall that the algorithm
used in Theorem 3.1 requires Õ(n4/5) space. Note that
|Z| ≤ 2np = Õ(ε−2n4/5) with high probability. Hence, to
sample the vertices Z and maintain a 2ν|Z|-sparse recovery
data structure requires Õ(n4/5ν) space. �

5 Sampling Kernels for Subgraph Search Problems
We extend our parameterized results to a class of problems
where the objective is to search for a subgraph H of G(V,E)
which satisfies some property P . In the parameterized setting,
we typically search for the largest H which satisfies this
property, subject to the promise that the size of any H
satisfying P is at most k. For concreteness, we assume
the size is captured by the number of vertices in H , and
our objective is to find a maximum cardinality satisfying
subgraph. The sampling primitive Sampleb,2,1 can be used
here when P is preserved under vertex contraction: if G′ is a
vertex contraction ofG, then any subgraphH ofG′ satisfying
P also satisfies P for G (with vertices suitably remapped).
Here, the vertex contraction of vertices u and v creates a new
vertex whose neighbors are Γ(u) ∪ Γ(v). Many well-studied
problems possess the required structure, including:

— b-matching, finding a maximum cardinality subgraphH of
G such that the degree of each vertex inH is at most b. Hence,
the standard notion of matching in Section 2 is equivalent to
1-matching.

— k-colorable subgraph, finding a subgraph H that is k-
colorable. The maximum cardinality 2-colorable subgraph
forms a max-cut, and more generally the maximum cardinal-
ity k-colorable subgraph is a max k-cut.

— other maximum subgraph problems, such as finding the
largest subgraph that is a forest, has at least c connected
components, or is a collection of vertex disjoint paths.

THEOREM 5.1. Let P be a graph property preserved under
vertex contraction. Suppose that the number of vertices in
some optimum solution opt(G) is at most k. Let G′ ∼
Sample4k2,2,1(G). With constant probability, we can compute
a solution H for P from G′ that achieves |H| = | opt(G)|.

Proof. We construct a contracted graphG′′ fromG′ based on
the color classes used in the Sample operator: we contract all
vertices that are assigned the same color by the hash function
c(). Fix an optimum solution opt(G) with at most k vertices.
Lemma 2.1 shows that for b = 4k2, all vertices involved
in opt(G) are hashed into distinct color values. Hence,
the subgraph opt(G) is a subgraph of G′′: for any edge
e = (u, v) ∈ opt(G), the edge itself was sampled from
the data structure, or else a different edge with the same color
values was sampled, and so can be used interchangeably in
G′′. Hence, (the remapped form of) opt(G) persists in G′′.
By the vertex contraction property of P , this means that a

maximum cardinality solution for P in G′′ is a maximum
cardinality solution in G.

Note that for this application of the subgraph sampling
primitive, it suffices to implement the sampling data structure
with a counter for each pair of colors: any non-zero count
corresponds to an edge in G′′. �

Note that the generality of the result comes at the cost
of increasing the number of colors, and hence the space
of the stream algorithms. To generalize the result to the
weighted case (e.g., where the objective is to find the subgraph
satisfying P with the greatest total weight), we take the
approach used in Section 3.1. We perform the sampling
in parallel for each distinct weight value, and then round each
edge weight to the closest power of (1 + ε) to reduce the
number of weight classes to O(ε−1 logW), with a loss factor
of (1 + ε).

6 Lower Bounds
6.1 Matching and Hitting Set Lower Bounds
The following theorem establishes that the space-use of
our matching, vertex cover, hitting set, and hyper matching
algorithms is optimal up to logarithmic factors.

THEOREM 6.1. Any (randomized) parameterized stream-
ing algorithm for the minimum d-hitting set or maximum
(hyper)matching problem with parameter k requires Ω(kd)
space.

Proof. We reduce from the MEMBERSHIP problem in com-
munication complexity:

MEMBERSHIP
Input: Alice has a set X ⊆ [n], and Bob has an element
1 ≤ x ≤ n.
Question: Bob wants to check whether x ∈ X .

There is a lower bound of Ω(n) bits of communication
from Alice to Bob, even allowing randomization [2].

Let S = s1s2...sn be the characteristic string of X , i.e.
a binary string such that si = 1 iff i ∈ X . Let k = d

√
n. Fix

a canonical mapping h : [n]→ [k]d. This way we can view
an n bit string as an adjacency matrix of a d-partite graph.
Construct the following graph G with d vertex partitions
V1, V2, ..., Vd:

• Each partition Vi has dk vertices: for each j ∈ [k] create
vertices v∗i,j , v

1
i,j , v

2
i,j ,..., v

d−1
i,j .

• Alice inserts a hyperedge (v∗1,j1 , v
∗
2,j2

, ..., v∗d,jd) iff the
corresponding bit in the string S is 1, i.e., sa = 1 where
h(a) = (j1, j2, ..., jd).

• Let h(x) = (J1, J2, ..., Jd). Bob inserts edge
(v∗i,j , v

1
i,j , v

2
i,j , ..., v

d−1
i,j) iff j 6= Ji.

Alice runs the (assumed) hitting set algorithm on the edges
she is inserting using space f(k). Then she sends the memory
contents of the algorithm to Bob, who finishes running the
algorithm on his edges.

The minimum hitting set should include vertices v∗i,j
such that j 6= Ji. If edge (v∗1,J1 , v

∗
2,J2

, ..., v∗d,Jd) is in the
graph, we also need to include one of its vertices. Therefore,

x ∈ X ⇐⇒ sx = 1

⇐⇒ (v∗1,J1 , v
∗
2,J2 , ..., v

∗
d,Jd

) is in G

⇐⇒ hs(G) = dk − d+ 1 .

On the other hand,

x 6∈ X ⇐⇒ sx = 0

⇐⇒ (v∗1,J1 , v
∗
2,J2 , ..., v

∗
d,Jd

) is not in G

⇐⇒ hs(G) = dk − d .

Alice only sends f(k) bits to Bob. Therefore, f(k) =
Ω(n) = Ω(kd).

For the lower bound on matching we use the same
construction. For each vertex v∗i,j such that j 6= Ji maximum
matching should include (v∗i,j , v

1
i,j , v

2
i,j , ..., v

d−1
i,j). If edge

(v∗1,J1 , v
∗
2,J2

, ..., v∗d,Jd) is in the graph, we include it in the
matching as well. Therefore,

x ∈ X ⇐⇒ sx = 1

⇐⇒ (v∗1,J1 , v
∗
2,J2 , ..., v

∗
d,Jd

) is in G

⇐⇒ match(G) = dk − d+ 1 .

And

x 6∈ X ⇐⇒ sx = 0

⇐⇒ (v∗1,J1 , v
∗
2,J2 , ..., v

∗
d,Jd

) is not in G

⇐⇒ match(G) = dk − d .

�

6.2 Lower Bounds for Problems considered by Fafianie
and Kratsch [22]

Comparison with Lower Bounds for Streaming Kernels:
Fafianie and Kratsch [22] introduced the notion of kerneliza-
tion in the streaming setting as follows:

DEFINITION 6.1. A 1-pass streaming kernelization algo-
rithm receives an input (x, k) and returns a kernel, with the
restriction that the space usage of the algorithm is bounded
by p(k) · log |x| for some polynomial p.

Fafianie and Kratsch [22] gave deterministic lower
bounds for several parameterized problems. In particular,
they showed that:

• Any 1-pass kernel for EDGE DOMINATING SET(k)
requires Ω(m) bits, where m is the number of edges.
However, there is a 2-pass kernel which uses O(k3 ·
log n) bits of local memory and O(k2) time in each step
and returns an equivalent instance of size O(k3 · log k).

• The lower bound of Ω(m) bits for any 1-pass kernel
also holds for several other problems such as CLUS-
TER EDITING(k), CLUSTER DELETION(k), CLUSTER
VERTEX DELETION(k), COGRAPH VERTEX DELE-
TION(k), MINIMUM FILL-IN(k), EDGE BIPARTIZA-
TION(k), FEEDBACK VERTEX SET(k), ODD CYCLE
TRANSVERSAL(k), TRIANGLE EDGE DELETION(k),
TRIANGLE VERTEX DELETION(k), TRIANGLE PACK-
ING(k), s-STAR PACKING(k), BIPARTITE COLORFUL
NEIGHBORHOOD(k).

• Any t-pass kernel for CLUSTER EDITING(k) and MINI-
MUM FILL-IN(k) requires Ω(n/t) space.

In this section, we give Ω(n) randomized lower bounds
for the space complexity of all the problems considered by
Fafianie and Kratsch. In addition, we also consider some
other problems such as PATH(k) which were not considered
by Fafianie and Kratsch. A simple observation shows that
any lower bound for parameterized streaming kernels also
transfers for the parameterized streaming algorithms. Thus
the results of Fafiane and Kratsch [22] also give lower
bounds for the parameterized streaming algorithms for these
problems. However, our lower bounds have the following
advantage over the results of [22]:

• All our lower bounds also hold for randomized algo-
rithms, whereas the kernel lower bounds were for deter-
ministic algorithms.

• With the exception of EDGE DOMINATING SET(k), all
our lower bounds also hold for any constant number of
passes.

6.2.1 Lower Bound for EDGE DOMINATING SET
We now show a lower bound for the EDGE DOMINATING
SET(k) problem.

DEFINITION 6.2. Given a graph G = (V,E) we say that a
set of edges X ⊆ E is an edge dominating set if every edge
in E \X is incident on some edge of X .

EDGE DOMINATING SET(k) Parameter: k
Input: An undirected graphs G and an integer k
Question: Does there exist an edge dominating set X ⊆ E
of size at most k?

THEOREM 6.2. For the EDGE DOMINATING SET(k) prob-
lem, any (randomized) streaming algorithm needs Ω(n)
space.

Proof. Given an instance of MEMBERSHIP, we create a graph
G on n+ 2 vertices as follows. For each i ∈ [n] we create a
vertex vi. Also add two special vertices a and b. For every
y ∈ X , add the edge (a, y). Finally add the edge (b, x).

Now we will show that G has an edge dominating set of
size 1 iff MEMBERSHIP answers YES. In the first direction
suppose that G has an edge dominating set of size 1. Then it
must be the case that x ∈ X: otherwise for a minimum edge
dominating set we need one extra edge to dominate the star
incident on a, in addition to the edge (b, x) dominating itself.
Hence MEMBERSHIP answers YES. In reverse direction,
suppose that MEMBERSHIP answers YES. Then the edge
(a, x) is clearly an edge dominating set of size 1.

Therefore, any (randomized) streaming algorithm that
can determine whether a graph has an edge dominating set
of size at most k = 1 gives a communication protocol for
MEMBERSHIP, and hence requires Ω(n) space. �

6.2.2 Lower Bound for G-FREE DELETION

DEFINITION 6.3. Let G be a set of graphs such that each
graph in G is connected. We say that G is bad if there is graph
H ∈ G such that

• H is a minimal element of G under the operation of
taking subgraphs, i.e., no proper subgraph of H is in G

• H has at least two distinct edges

Note that G = {P2} is not bad (where P2 is the path on
two vertices) since the only minimal graph in G is P2 which
does not have two edges. On the other hand, the class of
graphs G = {P3, P4, P5, . . .} is bad since P3 is a minimal
graph (under operation of taking subgraphs) of G and P3

contains two edges.
For any bad set of graphs G, we now show a lower bound

for the following general problem:

G-FREE DELETION(k) Parameter: k
Input: A bad set of graphs G, an undirected graph G =
(V,E) and an integer k
Question: Does there exist a set X ⊆ V such that G \X
contains no graph from G?

We reduce from the DISJOINTNESS problem in commu-
nication complexity.

DISJOINTNESS
Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn.
Bob has a string y ∈ {0, 1}n given by y1y2 . . . yn.
Question: Bob wants to check if ∃ i ∈ [n] such that
xi = yi = 1.

There is a lower bound of Ω(n/p) bits of communication
between Alice and Bob, allowing p-rounds and randomiza-
tion [39].

THEOREM 6.3. For a bad set of graphs G, any p-pass (ran-
domized) streaming algorithm for the G-FREE DELETION
problem needs Ω(n/p) space .

Proof. Since G is a bad set of graphs, there is a minimal graph
H ∈ G which has at least two distinct edges, say e1 and e2.
LetH ′ := H \{e1, e2}. Given an instance of DISJOINTNESS,
we create a graph G which consists of n disjoint copies say
G1, G2, . . . , Gn of H ′. For each i ∈ [n], to the copy Gi of
H ′ we add the edge e1 iff xi = 1 and the edge e2 iff yi = 1.
We now show that the resulting graph G contains a copy of
H if and only if it is a YES instance of DISJOINTNESS.

Suppose that it is a YES instance of DISJOINTNESS. So
there is a j ∈ [n] such that xj = 1 = yj . Therefore, to
the copy Gj of H ′ we would have added the edges e1 and
e2 which would produce an instance of H . So G contains
a copy of H . In other direction, suppose that G contains a
copy of H . Note that since we add n disjoint copies of H ′

and add at most two edges (e1 and e2) to each copy, it follows
that each connected component of G is in fact a subgraph of
H = H ′ ∪ (e1 + e2). Since H is connected and G contains a
copy of H , some connected component of G must exactly be
the graph H , i.e, to some copy Gi of H ′ we must have added
both the edges e1 and e2. This implies xi = 1 = yi, and so
DISJOINTNESS answers YES.

Since each connected component of G is a subgraph
of H , the minimality of H implies that G contains a graph
from G iff G contains a copy of H , which in turn is true
iff DISJOINTNESS answers YES. Therefore, any p-pass
(randomized) streaming algorithm that can determine whether
a graph is G-free (i.e., answers the question with k = 0) gives
a communication protocol for DISJOINTNESS, and hence
requires Ω(n/p) space. �

This implies lower bounds for the following set of
problems:

THEOREM 6.4. For each of the following problems,
any p-pass (randomized) algorithm requires Ω(n/p)
space: FEEDBACK VERTEX SET(k), ODD CYCLE
TRANSVERSAL(k), EVEN CYCLE TRANSVERSAL(k) and
TRIANGLE DELETION(k).

Proof. We first define the problems below:

FEEDBACK VERTEX SET(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no cycles?

ODD CYCLE TRANSVERSAL(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no odd cycles?

EVEN CYCLE TRANSVERSAL(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no even cycles?

TRIANGLE DELETION(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no triangles?

Now we show how each of these problems can be viewed
as a G-FREE DELETION problem for an appropriate choice
of bad G.

• FEEDBACK VERTEX SET(k): Take G =
{C3, C4, C5, . . .} and H = C3

• ODD CYCLE TRANSVERSAL(k): Take G =
{C3, C5, C7, . . .} and H = C3

• EVEN CYCLE TRANSVERSAL(k): Take G =
{C4, C6, C8, . . .} and H = C4

• TRIANGLE DELETION(k): Take G = {C3} and H =
C3

We verify the conditions for FEEDBACK VERTEX SET(k);
the proofs for other problems are similar. Note that the choice
of G = {C3, C4, C5, . . .} and H = C3 implies that G is bad
since each graph in G is connected, the graph H belongs to G,
has at least two distinct edges and is a minimal element of G
(under operation of taking subgraphs). Finally, finding a set
X such that the graph G \X is G-free implies that it has no
cycles, i.e., X is a feedback vertex set for G. �

It is easy to see that the same proofs also work for
the edge deletion versions of the ODD CYCLE TRANSVER-
SAL(k), EVEN CYCLE TRANSVERSAL(k) and the TRIAN-
GLE DELETION(k) problems.

6.2.3 G-EDITING

DEFINITION 6.4. We say that a set of graphs G is good if
there is graph H ∈ G such that

• H is a minimal element of G under the operation of
taking subgraphs, i.e., no proper subgraph of H is in G

• H is connected and has at least two distinct edges

Definition 6.4 looks very similar to Definition 6.3:
however there is a subtle difference. Each graph in a bad
set of graphs must be connected while only a minimal graph
in a good set of graphs is required to be connected. This
difference is used crucially in the proofs of Theorem 6.3 and
Theorem 6.5.

For any good set of graphs G, we now show a lower
bound for the following general problem:

G-EDITING(k) Parameter: k
Input: A graph class G, an undirected graph G = (V,E)
and an integer k
Question: Does there exist a set X of k edges such that
(V,E ∪X) contains a graph from G?

THEOREM 6.5. For a good set of graphs G, any p-pass
(randomized) streaming algorithm for the G-EDITING(k)
problem needs Ω(n/p) space.

Proof. We reduce from the DISJOINTNESS problem in com-
munication complexity. Since G is a good set of graphs,
there is a minimal graph H ∈ G such that H is connected
and has at least two distinct edges, say e1 and e2. Let
H ′ := H \ {e1, e2}. Given an instance of DISJOINTNESS,
we create a graph G which consists of n disjoint copies say
G1, G2, . . . , Gn of H ′. By minimality of H , it follows that
H ′ /∈ G. For each i ∈ [n] we add to Gi the edge e1 iff xi = 1
and the edge e2 iff yi = 1. Let the resulting graph be G.

We now show that G contains a copy of H if and only
if DISJOINTNESS answers YES. Suppose that G contains
a copy of H . Note that since we add n disjoint copies of
H ′ and add at most two edges (e1 and e2) to each copy, it
follows that each connected component of G is in fact a
subgraph of H = H ′ ∪ (e1 + e2). Since H is connected
and G contains a copy of H , some connected component of
G must exactly be the graph H , i.e, to some copy Gi of H ′

we must have added both the edges e1 and e2. This implies
xi = 1 = yi, and so DISJOINTNESS answers YES. Now
suppose that DISJOINTNESS answers YES, i.e., there exists
j ∈ [n] such that xj = 1 = yj . Therefore, to the copy Gj of
H ′ we would have added the edges e1 and e2 which would
complete it into H . So G contains a copy of H .

Otherwise, due to minimality of H , the graph G does
not contain any graph from G. Therefore, any p-pass
(randomized) streaming algorithm that can determine whether
a graph G contains a graph from G (i.e., answers the
question with k = 0) gives a communication protocol for
DISJOINTNESS, and hence requires Ω(n/p) space. �

This implies lower bounds for the following set of
problems:

THEOREM 6.6. For each of the following problems, any p-
pass (randomized) algorithm requires Ω(n/p) space: TRI-
ANGLE PACKING(k), s-STAR PACKING(k) and PATH(k).

Proof. We first define the problems below:

TRIANGLE PACKING(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Do there exist at least k vertex disjoint triangles
in G?

s-STAR PACKING(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Do there exist at least k vertex disjoint instances
of K1,s in G (where s ≥ 3)?

PATH(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a path in G of length ≥ k?

Now we show how each of these problems can be viewed as
a G-EDITING problem for an appropriate choice of good G.

• TRIANGLE PACKING(k) with k = 1: Take G = {C3}
and H = C3

• s-STAR PACKING(k) with k = 1: Take G = {K1,s}
and H = K1,s

• PATH(k) with k = 3: Take G = {P3, P4, P5, . . .} and
H = P3

We verify the conditions for TRIANGLE PACKING(k) with
k = 1; the proofs for other problems are similar. Note that
the choice of G = {C3} and H = C3 implies that G is good
since G only contains one graph H which is connected and
has at least two distinct edges. Finally, finding a set of edges
X such that the graph (V,E ∪X) contains a graph from G
implies that it has at least one C3, i.e., X is a solution for
TRIANGLE PACKING(k) with k = 1. �

6.2.4 Lower Bound for CLUSTER VERTEX DELETION
We now show a lower bound for the CLUSTER VERTEX
DELETION(k) problem.

DEFINITION 6.5. We say that G is a cluster graph if each
connected component of G is a clique.

CLUSTER VERTEX DELETION(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X is a cluster graph?

THEOREM 6.7. For the CLUSTER VERTEX DELETION(k)
problem, any p-pass (randomized) streaming algorithm needs
Ω(n/p) space .

Proof. Given an instance of DISJOINTNESS, we create a
graph G on 3n vertices as follows. For each i ∈ [n] we create
three vertices ai, bi, ci. Insert the edge (ai, ci) iff xi = 1 and
the edge (bi, ci) iff yi = 1 This is illustrated in Figure 2.

Now we will show that each connected component of
G is a clique iff DISJOINTNESS answers NO. In the first
direction suppose that each connected component of G is a
clique. Then there cannot exist i ∈ [n] such that xi = 1 = yi

because then the vertices ai, bi, ci will form a connected
component which is a P3; this contradicts the assumption
that each connected component of G is a clique. In reverse
direction, suppose that DISJOINTNESS answers NO. Then it
is easy to see that each connected component of G is either
P1 or P2, both of which are cliques.

Therefore, any p-pass (randomized) streaming algorithm
that can determine whether a graph is a cluster graph (i.e.,
answers the question with k = 0) gives a communication
protocol for DISJOINTNESS, and hence requires Ω(n/p)
space. 2 �

6.2.5 Lower Bound for MINIMUM FILL-IN We now
show a lower bound for the MINIMUM FILL-IN(k) problem.

DEFINITION 6.6. We say that G is a chordal graph if it does
not contain an induced cycle of length ≥ 4.

MINIMUM FILL-IN(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X of at most k edges such
that (V,E ∪X) is a chordal graph?

THEOREM 6.8. For the MINIMUM FILL-IN(k) problem,
any p-pass (randomized) streaming algorithm needs Ω(n/p)
space .

Proof. We reduce from the DISJOINTNESS problem in com-
munication complexity. Given an instance of DISJOINTNESS,
we create a graph G on 4n vertices as follows. For each
i ∈ [n] we create vertices ai, bi, ci, di and insert edges (ai, bi)
and (ci, di). Insert the edge (ai, ci) iff xi = 1 and the edge
(bi, di) iff yi = 1. This is illustrated in Figure 3.

Now we will show that G is chordal iff DISJOINTNESS
answers NO. In the first direction suppose that G is chordal.
Then there cannot exist i ∈ [n] such that xi = 1 = yi
because then the vertices ai, bi, ci, di will form an induced
C4; contradicting the assumption that G is chordal. In reverse
direction, suppose that DISJOINTNESS answers NO. Then it
is easy to see that each connected component of G is either
P2 or P3. Hence, G cannot have an induced cycle of length
≥ 4, i.e., G is chordal.

Therefore, any p-pass (randomized) streaming algorithm
that can determine whether a graph is a chordal graph (i.e.,
answers the question with k = 0) gives a communication
protocol for DISJOINTNESS, and hence requires Ω(n/p)
space. �

2It is easy to see that the same proof also works for the problems of
CLUSTER EDGE DELETION(k) where we can delete at most k edges and
CLUSTER EDITING(k) where we can delete/add at most k edges

𝑎𝑖 𝑏𝑖 𝑏𝑖

𝑐𝑖

𝑎𝑖 𝑎𝑖 𝑏𝑖 𝑏𝑖𝑎𝑖

𝑐𝑖𝑐𝑖 𝑐𝑖

0 0 0 01 1 1 1

Figure 2: Gadget for reduction from DISJOINTNESS to CLUSTER VERTEX DELETION

𝑎𝑖 𝑏𝑖 𝑏𝑖

𝑐𝑖

𝑎𝑖 𝑎𝑖 𝑏𝑖 𝑏𝑖𝑎𝑖

𝑐𝑖𝑐𝑖 𝑐𝑖

0 0 0 01 1 1 1

𝑑𝑖 𝑑𝑖 𝑑𝑖 𝑑𝑖

Figure 3: Gadget for reduction from DISJOINTNESS to MINIMUM FILL-IN

6.2.6 Lower Bound for COGRAPH VERTEX DELETION
We now show a lower bound for the COGRAPH VERTEX
DELETION(k) problem.

DEFINITION 6.7. We say that G is a cograph if it does not
contain an induced P4.

COGRAPH VERTEX DELETION(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X is a cograph?

THEOREM 6.9. For the COGRAPH VERTEX DELETION(k)
problem, any p-pass (randomized) streaming algorithm needs
Ω(n/p) space.

Proof. We reduce from the DISJOINTNESS problem in com-
munication complexity. Given an instance of DISJOINTNESS,
we create a graph G on 4n vertices as follows. For each
i ∈ [n] we create vertices ai, bi, ci, di and insert edges (ai, bi).
Insert the edge (ai, ci) iff xi = 1 and the edge (bi, di) iff
yi = 1. This is illustrated in Figure 4.

Now we will show that G has an induced P4 if and only
if DISJOINTNESS answers YES. In the first direction suppose

that G has an induced P4. Since each connected component
of G can have at most 4 vertices, it follows that the P4 is
indeed given by the path ci − ai − bi − di for some i ∈ [n].
By construction of G, this implies that xi = 1 = yi, i.e.,
DISJOINTNESS answers YES. In reverse direction, suppose
that DISJOINTNESS answers YES. Then there exists j ∈ [n]
such that the edges (aj , cj) and (bj , dj) belong to G. Then G
has the following induced P4 given by cj − aj − bj − dj .

Therefore, any p-pass (randomized) streaming algorithm
that can determine whether a graph is a cograph (i.e., answers
the question with k = 0) gives a communication protocol for
DISJOINTNESS, and hence requires Ω(n/p) space. �

6.2.7 BIPARTITE COLORFUL NEIGHBORHOOD We
now show a lower bound for the BIPARTITE COLORFUL
NEIGHBORHOOD(k) problem.

BIPARTITE COLORFUL NEIGHBORHOOD(k)
Parameter: k
Input: A bipartite graph G = (A,B,E) and an integer k
Question: Is there a 2-coloring of B such that there exists
a set S ⊆ A of size at least k such that each element of S
has at least one neighbor in B of either color?

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑏𝑏𝑖𝑖

𝑐𝑐𝑖𝑖

𝑎𝑎𝑖𝑖 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑏𝑏𝑖𝑖𝑎𝑎𝑖𝑖

𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖 𝑐𝑐𝑖𝑖

0 0 0 01 1 1 1

𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

Figure 4: Gadget for reduction from DISJOINTNESS to COGRAPH VERTEX DELETION

𝑏 𝑏

𝑣𝑖

𝑏 𝑏

0

0

0

01

1 1

1

𝑎 𝑎 𝑎 𝑎

𝑣𝑖𝑣𝑖𝑣𝑖

Figure 5: Gadget for reduction from DISJOINTNESS to BIPARTITE COLORFUL NEIGHBORHOOD

THEOREM 6.10. For the BIPARTITE COLORFUL
NEIGHBORHOOD(k) problem, any p-pass (randomized)
streaming algorithm needs Ω(n/p) space.

Proof. We reduce from the DISJOINTNESS problem in com-
munication complexity. Given an instance of DISJOINTNESS,
we create a graph G on n + 2 vertices as follows. For
each i ∈ [n] we create a vertex vi. In addition, we have
two special vertices a and b. For each i ∈ [n], insert the
edge (a, vi) iff xi = 1 and the edge (b, vi) iff yi = 1. Let
A = {v1, v2, . . . , vn} and B = {a, b}. This is illustrated in
Figure 5.

Now we will show that G answers YES for BIPARTITE
COLORFUL NEIGHBORHOOD(k) with k = 1 iff DISJOINT-
NESS answers YES. In the first direction suppose that G an-
swers YES for BIPARTITE COLORFUL NEIGHBORHOOD(k)
with k = 1. Let vi be the element in A which has at least one
neighbor in B of either color. Since |B| = 2, this means that
vi is adjacent to both a and b, i.e., xi = 1 = yi and hence
DISJOINTNESS answers YES. In reverse direction, suppose
that DISJOINTNESS answers YES. Hence, there exists j ∈ [n]
such that xj = 1 = yj . This implies that vj is adjacent to
both a and b. Consider the 2-coloring ofB by giving different
colors to a and b. Then S = {vj} satisfies the condition of

having a neighbor of each color in B, and hence G answers
YES for BIPARTITE COLORFUL NEIGHBORHOOD(k) with
k = 1.

Therefore, any p-pass (randomized) streaming algorithm
that can solve BIPARTITE COLORFUL NEIGHBORHOOD(k)
with k = 1 gives a communication protocol for DISJOINT-
NESS, and hence requires Ω(n/p) space. �

References
[1] List of open problems in sublinear algorithms: Problem 64.

http://sublinear.info/64.
[2] F. M. Ablayev. Lower bounds for one-way probabilistic

communication complexity and their application to space
complexity. Theor. Comput. Sci., 157(2):139–159, 1996.

[3] K. J. Ahn, G. Cormode, S. Guha, A. McGregor, and A. Wirth.
Correlation clustering in data streams. In Proceedings of the
32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 2237–2246, 2015.

[4] K. J. Ahn and S. Guha. Laminar families and metric
embeddings: Non-bipartite maximum matching problem
in the semi-streaming model. Manuscript, available at
http://arxiv.org/abs/1104.4058, 2011.

[5] K. J. Ahn and S. Guha. Linear programming in the semi-
streaming model with application to the maximum matching

http://sublinear.info/64

problem. In ICALP (2), pages 526–538, 2011.
[6] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph

structure via linear measurements. In Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
pages 459–467, 2012.

[7] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: spar-
sification, spanners, and subgraphs. In 31st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pages 5–14, 2012.

[8] K. J. Ahn, S. Guha, and A. McGregor. Spectral sparsification
in dynamic graph streams. In APPROX, pages 1–10, 2013.

[9] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. Tight bounds
for linear sketches of approximate matchings. (To appear at
SODA 2016) CoRR, abs/1505.01467, 2015.

[10] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E.
Tsourakakis. Space and time-efficient algorithm for main-
taining dense subgraphs on one-pass dynamic streams. In
STOC, 2015.

[11] M. Bury and C. Schwiegelshohn. Sublinear estimation of
weighted matchings in dynamic data streams. (To appear at
ESA 2015) CoRR, abs/1505.02019, 2015.

[12] R. H. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi,
A. McGregor, M. Monemizadeh, and S. Vorotnikova. Ker-
nelization via sampling with applications to dynamic graph
streams. CoRR, abs/1505.01731, 2015.

[13] R. H. Chitnis, G. Cormode, M. T. Hajiaghayi, and M. Mone-
mizadeh. Parameterized streaming: Maximal matching and
vertex cover. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 1234–1251, 2015.

[14] G. Cormode and D. Firmani. A unifying framework for `0-
sampling algorithms. Distributed and Parallel Databases,
32(3):315–335, 2014.

[15] M. Crouch and D. S. Stubbs. Improved streaming algorithms
for weighted matching, via unweighted matching. In Approxi-
mation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2014, Septem-
ber 4-6, 2014, Barcelona, Spain, pages 96–104, 2014.

[16] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Springer, New York, 1999.

[17] Y. Emek and A. Rosén. Semi-Streaming Set Cover - (Extended
Abstract). In ICALP, pages 453–464, 2014.

[18] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved
approximation guarantees for weighted matching in the semi-
streaming model. SIAM J. Discrete Math., 25(3):1251–1265,
2011.

[19] P. Erdos and R. Rado. Intersection theorems for systems of
sets. J. London Math. Soc., 35:85–90, 1960.

[20] H. Esfandiari, M. Hajiaghayi, and D. P. Woodruff. Appli-
cations of uniform sampling: Densest subgraph and beyond.
CoRR, abs/1506.04505, 2015.

[21] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat, M. Monemizadeh,
and K. Onak. Streaming algorithms for estimating the
matching size in planar graphs and beyond. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015, pages 1217–1233, 2015.

[22] S. Fafianie and S. Kratsch. Streaming kernelization. In

Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary,
August 25-29, 2014. Proceedings, Part II, pages 275–286,
2014.

[23] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang.
On graph problems in a semi-streaming model. Theor. Comput.
Sci., 348(2):207–216, 2005.

[24] J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer, 2006.

[25] A. C. Gilbert and P. Indyk. Sparse recovery using sparse
matrices. Proceedings of the IEEE, 98(6):937–947, 2010.

[26] A. Goel, M. Kapralov, and S. Khanna. On the communication
and streaming complexity of maximum bipartite matching.
In Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 468–485, 2012.

[27] A. Goel, M. Kapralov, and I. Post. Single pass sparsifi-
cation in the streaming model with edge deletions. CoRR,
abs/1203.4900, 2012.

[28] S. Guha, A. McGregor, and D. Tench. Vertex and hypergraph
connectivity in dynamic graph streams. In PODS, 2015.

[29] B. V. Halldórsson, M. M. Halldórsson, E. Losievskaja, and
M. Szegedy. Streaming algorithms for independent sets. In
Automata, Languages and Programming, 37th International
Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010,
Proceedings, Part I, pages 641–652, 2010.

[30] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for Lp

samplers, finding duplicates in streams, and related problems.
In Proceedings of the 17th ACM SIGMOD Symposium on
Principles of Database Systems (PODS), pages 49–58, 2011.

[31] M. Kapralov. Better bounds for matchings in the streaming
model. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–
1697, 2013.

[32] M. Kapralov, S. Khanna, and M. Sudan. Approximating
matching size from random streams. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014, pages 734–751, 2014.

[33] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford.
Single pass spectral sparsification in dynamic streams. In
55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 561–570, 2014.

[34] M. Kapralov and D. P. Woodruff. Spanners and sparsifiers
in dynamic streams. In ACM Symposium on Principles of
Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 272–281, 2014.

[35] D. Kogan and R. Krauthgamer. Sketching cuts in graphs
and hypergraphs. In Proceedings of the 2015 Conference
on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, January 11-13, 2015, pages 367–376, 2015.

[36] C. Konrad. Maximum matching in turnstile streams. (To
appear at ESA 2015) CoRR, abs/1505.01460, 2015.

[37] C. Konrad, F. Magniez, and C. Mathieu. Maximum match-
ing in semi-streaming with few passes. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms

and Techniques - 15th International Workshop, APPROX 2012,
and 16th International Workshop, RANDOM 2012, Cambridge,
MA, USA, August 15-17, 2012. Proceedings, pages 231–242,
2012.

[38] C. Konrad and A. Rosén. Approximating semi-matchings
in streaming and in two-party communication. In Automata,
Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
I, pages 637–649, 2013.

[39] E. Kushilevitz and N. Nisam. Commmunication Complexity.
Cambridge University Press, 1997.

[40] K. Kutzkov and R. Pagh. Triangle counting in dynamic graph
streams. In Algorithm Theory - SWAT 2014 - 14th Scandina-
vian Symposium and Workshops, Copenhagen, Denmark, July
2-4, 2014. Proceedings, pages 306–318, 2014.

[41] A. McGregor. Finding graph matchings in data streams.
APPROX-RANDOM, pages 170–181, 2005.

[42] A. McGregor. Graph stream algorithms: a survey. SIGMOD
Record, 43(1):9–20, 2014.

[43] A. McGregor, D. Tench, S. Vorotnikova, and H. Vu. Dens-
est subgraph in dynamic graph streams. In Mathematical
Foundations of Computer Science 2015 - 40th International
Symposium, MFCS 2015, Milano, Italy, August 24-28, 2015.
Proceedings, Part I, 2015.

[44] S. Muthukrishnan. Data Streams: Algorithms and Applica-
tions. Now Publishers, 2006.

[45] J. Radhakrishnan and S. Shannigrahi. Streaming algorithms
for 2-coloring uniform hypergraphs. In Algorithms and Data
Structures - 12th International Symposium, WADS 2011, New
York, NY, USA, August 15-17, 2011. Proceedings, pages 667–
678, 2011.

[46] B. Saha and L. Getoor. On maximum coverage in the
streaming model & application to multi-topic blog-watch. In
SIAM International Conference on Data Mining, SDM 2009,
April 30 - May 2, 2009, Sparks, Nevada, USA, pages 697–708,
2009.

[47] H. Sun. Counting hypergraphs in data streams. CoRR,
abs/1304.7456, 2013.

[48] M. Zelke. Weighted matching in the semi-streaming model.
Algorithmica, 62(1-2):1–20, 2012.

	Introduction
	Basic Subgraph Sampling Technique
	Application to Data Streams and MapReduce

	Parameterized Matching, Vertex Cover, and Hitting Set
	Finding Maximum Matchings and Minimum Vertex Covers Exactly
	Finding Minimum Hitting Set Exactly

	Approximating Large Matchings
	Approximating Matching in Arbitrary Graphs
	Matchings in Planar and Bounded-Arboricity Graphs

	Sampling Kernels for Subgraph Search Problems
	Lower Bounds
	Matching and Hitting Set Lower Bounds
	Lower Bounds for Problems considered by Fafianie and Kratsch kratsch
	Lower Bound for Edge Dominating Set
	Lower Bound for G-Free Deletion
	G-Editing
	Lower Bound for Cluster Vertex Deletion
	Lower Bound for Minimum Fill-In
	Lower Bound for Cograph Vertex Deletion
	Bipartite Colorful Neighborhood

