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Abstract
We consider the maximal and maximum independent set problems in three models of graph streams:

In the edge model we see a stream of edges which collectively define a graph; this model is
well-studied for a variety of problems. We show that the space complexity for a one-pass
streaming algorithm to find a maximal independent set is quadratic (i.e. we must store all edges).
We further show that it is not much easier if we only require approximate maximality. This
contrasts strongly with the other two vertex-based models, where one can greedily find an exact
solution in only the space needed to store the independent set.
In the “explicit” vertex model, the input stream is a sequence of vertices making up the graph.
Every vertex arrives along with its incident edges that connect to previously arrived vertices.
Various graph problems require substantially less space to solve in this setting than in edge-
arrival streams. We show that every one-pass c-approximation streaming algorithm for maximum
independent set (MIS) on explicit vertex streams requires Ω(n

2

c6 ) bits of space, where n is the
number of vertices of the input graph. It is already known that Θ̃(n

2

c2 ) bits of space are necessary
and sufficient in the edge arrival model (Halldórsson et al. 2012), thus the MIS problem is not
significantly easier to solve under the explicit vertex arrival order assumption. Our result is
proved via a reduction from a new multi-party communication problem closely related to pointer
jumping.
In the “implicit” vertex model, the input stream consists of a sequence of objects, one per vertex.
The algorithm is equipped with a function that maps pairs of objects to the presence or absence
of edges, thus defining the graph. This model captures, for example, geometric intersection
graphs such as unit disc graphs. Our final set of results consists of several improved upper and
lower bounds for interval and square intersection graphs, in both explicit and implicit streams.
In particular, we show a gap between the hardness of the explicit and implicit vertex models for
interval graphs.
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1 Introduction

The streaming model supposes that, rather than being loaded into memory all at once, the
input is received piece-by-piece over a period of time. Only a sublinear amount of memory
(in the input size) is made available, preventing any algorithm from “seeing” even a constant
fraction of the whole input at once.

In graph streams (see [19] for an excellent survey), we distinguish between the “edge-
arrival” model, where the stream consists of individual edges arriving in any order, and the
“vertex-arrival” model, where the stream consists of batches of edges incident to a particular
vertex – as each vertex “arrives” we are given all the edges from the new vertex to previously
arrived vertices. We will shorten the names to edge streams and vertex streams, respectively.
Problems are always at least as hard on edge streams as on vertex streams (as any vertex
stream is also a valid edge stream).

There is a further variant which we will call “implicit” vertex streams (as opposed to
the normal explicit representation). In this model, the stream consists of a series of small
(polylog(n)-sized) identifiers – one per vertex. We are additionally provided with some
symmetric function or oracle which maps a pair of identifiers to a Boolean output indicating
whether the two vertices are connected or not. This implicitly defines a graph over the list of
identifiers received. Geometric intersection graphs, received as a stream of geometric objects,
are the most natural members of this class. For example, a unit interval intersection graph
can be given by a set of points in R. Then a pair of vertices x, y are adjacent if and only if
|x− y| ≤ 1.

Explicit and implicit vertex streams are closely related but distinct, with neither being
strictly “harder” than the other. For example: it is easy to count exactly the number of
edges in Õ(1) space1 for an explicit vertex stream, however, doing so for an implicit stream
requires linear space – otherwise we cannot hope to know how many edges are incident to
the final vertex. On the other hand: implicit vertex streams can be stored entirely in Õ(n)
space, whereas explicit vertex streams require Ω(n2) space to store the full structure.

Maximum Independent Set (MIS) is an important problem on graphs. The task is to
find a largest subset of vertices which have no edges between them. The size of a MIS in
a graph G is denoted α(G), the independence number of G. Unfortunately, it is NP-hard
to find a maximum independent set in a general graph [16], and even hard to approximate
within a factor of n1−ε, for any ε > 0 [20]. It is also known to be hard in the edge-arrival
streaming model: Halldórsson et al. [15] showed that space Θ̃(n

2

c2 ) is necessary (and sufficient)
for computing a c-approximation on an n-vertex graph, despite being allowed unlimited
computation.

Our Results. In this paper, we study the hardness of approximate MIS in the explicit
and implicit vertex streaming models. Since many problems are significantly easier to solve
in vertex streams than in edge streams, we ask whether this is also the case for the MIS
problem. As our main result, we answer this question in the negative:

I Theorem 1. Any constant error one-pass c-approximation streaming algorithm for MIS
(or the size of a MIS) in the explicit vertex stream model requires Ω

(
n2

c6

)
bits of space.

1 All space bounds in this paper are given as number of bits. We use Õ, Θ̃, and Ω̃ to mean O, Θ, and Ω
(respectively) with log factors suppressed.
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Approx. MIS Approx. α(G)
Space Bound Õ(α(G)) poly(logn) Ω(n)

Unit Interval 2 (Greedy alg.) O
(

log2 n
log logn

)
[9] < 5/3

Figure 1 Approximation factors for explicit vertex streams.

Approx. MIS Approx. α(G)
Space Bound Õ(α(G)) poly(logn, ε−1) Ω(n)
Unit Interval 3/2 [11] 3/2 + ε [7] < 3/2 [11]

Interval 2 [11] 2 + ε [7] < 2 [11]
Unit Square 3 3 + ε < 5/2

Figure 2 Approximation factors for implicit vertex streams. The first column concerns algorithms
that output independent sets themselves, while the second columns concerns algorithms that output
estimations of the maximum independent set size. Results from this paper are highlighted.

Our lower bound also holds for the Minimum Vertex Coloring (MVC) problem,
where the objective is to color the vertices of the input graph such that adjacent vertices
have different colors, using the fewest colors possible. This quantity is the chromatic number
and denoted by χ(G). Our result is the first lower bound known for this problem, even for
edge streams (in particular, the work by Halldórsson et al. [15] does not imply such a result).

Next, we show that the situation is very different for the related maximal independent
set problem, where we need to find a subset of non-adjacent vertices that cannot be enlarged.
While it is easy to maintain a maximal independent set in vertex arrival streams (both
explicit and implicit) using space Õ(α(G)) = Õ(n), we prove that Ω(n2) space is required in
the edge-arrival model. We further show that even if we relax the maximality constraint to
approximate maximality and allow for a slightly sublinear number of vertices that are not
adjacent to vertices of the independent set then space Ω(n2−o(1)) is still required.

Finally, we show various improved upper and lower bounds for certain geometric intersec-
tion graph classes in both vertex streaming models: unit interval intersection graphs given
as explicit vertex streams require Ω(n) space to get a better than 5

3 -approximation to α(G),
making them harder than their implicit vertex stream equivalents; and we can 3-approximate
MIS for a stream of unit squares in the plane using Õ(α(G)) space, but achieving better
than a 5

2 -approximation to α(G) requires Ω(n) space. Figures 2 and 1 shows these results in
the context of previously known bounds.

Techniques. Halldórsson et al. [15] proved their space lower bound for MIS in edge streams
via the one-way two-party communication framework. Two parties, denoted Alice and Bob,
each hold a subset of the edges of the input graph. Alice sends a single message to Bob,
who, upon receipt, outputs a large independent set. Via a reduction from a well-known
communication problem, they showed that if Bob outputs a c-approximate MIS then Alice
must send a message of size Ω̃(n

2

c2 ) to Bob. A common reduction then implies that the same
lower bound holds for the space complexity of one-pass streaming algorithms.

Proving a similar result in vertex streams is significantly harder since the two-party
communication abstraction cannot yield the desired result. When partitioning the vertices
of a vertex stream between Alice and Bob both parties hold vertex-induced subgraphs, as

ICALP 2019
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opposed to the spanning subgraphs obtained when partitioning the edges of an edge stream.
Since an independent set in an induced subgraph is also an independent set in the whole
graph, and since either Alice or Bob holds at least half the vertices of any MIS, one of them
must already know a 2-approximation to the MIS. Using the same reasoning, it is trivial
to compute a p-approximation in the one-way p-party communication setting. To obtain
our lower bound result, we therefore need to consider multi-party communication with Ω(c)
parties.

To this end, we define a new k-party communication problem denoted Chaink – which
can be seen as chaining together multiple two-party instances of the well-known Index
problem (see Definition 2) that are guaranteed to have the same answer. We first give a
Ω( nk2 ) lower bound for Chaink by showing a reduction from a multi-party pointer jumping
problem [8]. We then improve this lower bound to Ω(nk ) for k up to Õ ( 4

√
n) using the same

party elimination techniques described in [8]. The actual reduction from Chaink to MIS
relies on an involved graph construction using erasure codes based on affine planes.

Our lower bound for the computation of a maximal independent set in edge streams
is obtained via a reduction from the Index problem in the two-party communication
framework. This construction is then extended to yield results for approximate maximality
via a construction involving Ruzsa-Szemerédi graphs.

Our upper bound results on 2D geometric intersection graphs are obtained by generalizing
1D bounds, with more work to cover the increased number of cases that occur in 2D. The
lower bounds involve intricate packing arguments to show that knowledge of α(G) can be used
to recover encoded information, which is used in conjunction with our multiparty Chaink
problem to demonstrate approximation hardness.

Further Related Work. Grouping the three streaming models:
Edge Streams. As previously mentioned, Halldórsson et al. [15] showed that for general
graphs in the edge-arrival model Ω̃

(
n2

c2

)
space is required to obtain a c-approximation to

the maximum independent set size (or maximum clique size). A corresponding Õ
(
n2

c2

)
space random sampling algorithm shows that this is tight up to logarithmic factors.
Braverman et al. [6] showed that space Ω(mc2 ) is needed, even if c = o(logn), where m is
the number of edges of the input graph, though this bound only holds for small m.
Explicit Vertex Streams. The work of Halldórsson et al. [13] gives an O(n logn) space
streaming algorithm which can find an independent set of expected size at least β(G) =∑
v∈V

1
deg(v)+1 . On general graphs, this only gives a Θ(n)-approximation, but for poly-

nomially bounded independence graphs, this gives a polylog(n)-approximation [14]. In
our prior work, we showed how to return an estimate γ ∈ Ω

(
β(G)
logn

)
with γ ≤ α(G) from

an explicit vertex arrival stream using only O(log3 n) space [9]. This result, for example,
gives a O( log2 n

log logn )-approximation on unit interval graphs (see Figure 1). However, the
technique samples vertices based on their degree and does not extend to implicit vertex
streams.
Braverman et al. [6] showed that in a variant of the vertex arrival model, where every
vertex arrives together with all its incident edges (as opposed to only the edges incident
to previously arrived vertices), space Ω(mc3 ) is required for computing a c-approximate
MIS. In their construction the input graph has Θ(nc) edges, which thus yields a lower
bound of Ω( nc2 ). Observe that our lower bound for explicit vertex streams is Ω(n

2

c6 ), a
quadratic improvement for constant c.
Implicit Vertex Streams. In [11], it was shown that it is possible to 3

2 -approximate MIS



Cormode Dark Konrad 40:5

for the intersection graph of a unit interval stream using Õ(α(G)) space. In the same
space, a 2-approximation is possible for arbitrary interval streams. Both are shown to
be tight: any ( 3

2 − ε)-approximation for unit intervals, or (2 − ε) for general intervals,
requires Ω(n) space. By clever use of sampling, the result can be adapted to provide an
approximation of α(G) of 3

2 + ε for unit intervals and 2 + ε for general intervals with only
polylog(n, ε−1) space [7].

Concurrent Work. Independently of, and concurrently with, an earlier version of this
paper [10, v1], Assadi et al. [3] also gave an Ω(n2) lower bound for maximal independent set
in edge streams using a similar construction.

Outline. We present our main result, the lower bound for MIS in vertex streams, in
Section 2. Our lower bounds for maximal and approximately maximal independent sets in
edge streams are given in Section 3. Section 4 covers our results on interval and square
graphs, and we give a brief conclusion in Section 5.

2 Maximum Independent Set in Explicit Vertex Streams

We first introduce and show the hardness of a “chained index” problem, which we then
use to show the hardness of approximating the size α(G) – and hence also for finding an
approximate MIS.

2.1 Chained Index Communication Problem
We define a multi-party communication problem Chaink, which allows us to prove new lower
bounds on several streaming problems. The problem is closely related to pointer jumping and
generalizes the classic two-party Index communication problem to more parties by “chaining”
together multiple instances which have the same answer but are otherwise independent.
Index is defined as follows:

I Definition 2. In the two-party communication problem Index, Alice holds an n-bit string
X ∈ {0, 1}n and Bob holds an index σ ∈ [n]. Alice sends a single message to Bob who, upon
receipt, outputs Xσ.

It is well known that Alice essentially needs to send all n bits to Bob (see [18]):

I Theorem 3. The randomized constant error communication complexity of Index is Ω(n).

In Chaink, each party (except the last) holds a binary vector that contains a special bit
which is the answer to the instance. Each party (except the first) knows where the answer
bit is located in the previous party’s vector. Communication is one-way and private, with
each player receiving a message from the previous player and then sending a message to the
next player. Formally:

I Definition 4. The k-party chained index problem Chaink consists of (k − 1) n-bit binary
vectors {X(i)}k−1

i=1 , along with corresponding indices {σi}k−1
i=1 from the range [n]. We have

the promise that the entries {X(i)
σi }k−1

i=1 are all equal to the desired answer bit z ∈ {0, 1}. The
input is initially allocated as follows:

The first party P1 knows X(1)

Each intermediate party Pp for 1 < p < k knows X(p) and σp−1
The final party Pk knows just σk−1

ICALP 2019
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Communication proceeds as follows: P1 sends a single message to P2, then P2 communicates
to P3, and so on, with each party sending exactly one message to its immediate successor.
After all messages are sent, Pk must correctly output z, succeeding with probability at least
2/3. If the promise condition is violated, any output is considered correct.

There is a trivial communication upper bound of O(n) bits: for instance, simply have the
penultimate party send X(k−1) to the final party who can then return X(k−1)

σk−1 .
We claim two bounds on the communication complexity of this problem.

I Theorem 5. Any communication scheme B which solves Chaink must communicate at
least Ω( nk2 ) bits in total.

This first bound is shown by reducing instances of another problem (conservative pointer
jumping [8]) to instances of our problem.

I Theorem 6. There is a constant C > 0 such that any communication scheme B which

solves Chaink for k ≤ C
(

n
logn

) 1
4 must communicate at least Ω(nk ) bits in total.

This second bound is shown by a lengthy and technical proof based on the structure of
the pointer jumping bound given in [8]. Due to space restrictions we omit both proofs here –
they can be found in the full paper.

In particular, for constant k, we have a tight bound on the communication complexity of
the k-party chained index problem of Θ(n). We conjecture that a dependence on k is not
necessary.

B Conjecture 1. Any communication scheme for Chaink requires Ω(n) communication.

2.2 MIS Hardness in Explicit Vertex Streams
We show a new lower bound for the vertex streaming space complexity of approximate MIS.

I Theorem 1 (restated). Any algorithm for the explicit vertex stream model which finds a
c-approximation to α(G) with probability at least 2/3 requires Ω

(
n2

c6

)
space.

For ease of argument, we will actually prove an equivalent result for the problem of clique
number approximation, and then note that the complement of the constructed graph can be
used with the same arguments to prove Theorem 1. To see this equivalence, note that an
MIS of a graph is a maximum clique in its complement.

I Theorem 7. Any algorithm for the explicit vertex stream model which finds a c-approximation
to the size of the largest clique ω(G) with probability at least 2/3 requires Ω

(
n2

c6

)
space.

The heart of our construction is to use an erasure code to encode a length Θ(n
2

c4 ) binary
vector on Θ(nc ) vertices, with each bit corresponding to the presence or absence of a clique
of size 2c. The use of the erasure code is to ensure that no pair of these cliques can share an
edge. We can then chain together 2c such gadgets to encode an instance of Chain2c such
that if the correct answer is 1, the resulting graph has an independent set of size 4c2, while if
the correct answer is 0 the graph has no independent set larger than 4c− 1. Any (one-sided)
c-approximation algorithm could distinguish these two cases, which proves the result.

First we define our clique gadget.

I Lemma 8. For any positive integers n and c2 < n
8 , there exists a graph on n vertices

containing n2

16c2 edge-disjoint cliques of size 2c and no cliques of size larger than 2c.
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V1

V2

V3

V2c

... ... ...

p

(a) Select an edge.

V1

V2

V3

V2c

... ... ...

p

(b) Extend linearly to size 2c.

V1

V2

V3

V2c

... ... ...

p

(c) Can make p2 such cliques.

Figure 3 Clique gadget construction in Lemma 8.

V1

V2

V3

V4

p

(a) No edge belongs to two dif-
ferent lines (cliques).

V1

V2

V3

V4

p

×

(b) No edges within layers, so
no cliques larger than 2c.

Figure 4 Clique gadget proof sketch for Theorem 7.

Proof. We construct the sets from an erasure code with block size 2c and message size 2.
Choose a prime p such that n

4c ≤ p ≤ n
2c (which is guaranteed to exist). Now take 2c < p

groups of vertices, each of size p. Label the groups Vi (for i ∈ [2c]) and label the items in
each group Vi as vij (for j ∈ [p]). Leftover vertices are added to the final graph as isolated
vertices.

For each polynomial P ∈ GF(p2) we define KP to be the clique over vertices {viP(i)|i ∈
[2c]}. This can be viewed as taking each of the p2 possible edges between V1 and V2 and
extending them “linearly” to the other layers (see Figure 3). In other words, the cliques
correspond to non-horizontal lines in the affine plane of order p. Clearly K = {KP |P ∈
GF(p2)} consists of p2 > n2

16c2 cliques, each of size 2c. We next show that they are pairwise
edge-disjoint and that their union contains no larger cliques.

Each clique contains exactly one vertex from each group Vi, so for two cliques to share
an edge there must be distinct polynomials P,Q ∈ GF (p2) that have the same value at two
different points: P(i) = Q(i) and P(j) = Q(j) for i 6= j – a contradiction. Finally, because
no clique contains a pair of vertices from a single Vi, their union can contain no internal
edges on any Vi. So any clique can contain at most 1 vertex from each Vi, giving a maximum
size of 2c. Hence,

⋃
P∈GF(p2)KP is a graph with the required properties. J

Proof of Theorem 7. Suppose we have an algorithm C for explicit vertex streams which can,
with probability at least 2

3 , produce a c-approximation to ω(G), the size of the largest clique.
We will show that such an algorithm can be used to solve Chain2c, by communicating its
state 2c− 1 times.

Fix an instance of Chain2c with vectors of length b = n2

64c4 . Our lower bound in
Theorem 6 implies that any algorithm that can solve this must send at least one message of

ICALP 2019
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P1 P2 P3 P4

Figure 5 Example lower bound instance with 4 players for Theorem 7. Cliques corresponding to
σ1, σ2, and σ3 are shown in bold red—other cliques are omitted.

size Ω
(
b
c2

)
= Ω

(
n2

c6

)
bits. Take n vertices and partition the nodes into 2c groups of size n

2c .
Each group will be added to the stream by one of the parties.
Intra-party edges. First, consider the group of nodes associated with party Pi. We will
encode the bits of X(i) onto the internal edges of this group using the construction from
Lemma 8. The size n

2c sub-graph can fit b cliques of size 2c. We include the edges of clique
j if and only if X(i)

j = 1. This is well defined as the cliques are edge-disjoint. Label the
clique in party Pi corresponding to bit j of X(i) as Kij . The final party P2c has no associated
vector. Instead, it constructs a single clique of size 2c and leaves the other vertices isolated.
Inter-party edges. We also need edges between the sub-graphs associated with different
parties. Each party Pi will connect all its vertices to some of the vertices belonging to
previous parties (Pj for j < i). These edges are considered to belong to party Pi, as they will
be added by this party in the vertex streaming model. For each j < i the party Pi connects
every one of its vertices to all of Kjσj (the clique corresponding to index σj). For this to
happen, Pi must know all σj for j < i. This information is not known initially, but can be
appended to the communications between players with only O(c) overhead.

Now that we have our construction, we need to show bounds on ω(G) for the two cases.
First, consider when every X(i)

σi = 1. In this case we have each of the cliques Kiσi present and
connected together, forming a clique of size 4c2. Now consider the case when every X(i)

σi = 0.
Consider a clique K in the graph. If K contains multiple vertices belonging to one party Pi,
then it can contain none from any subsequent party Pj (j > i), and at most one from each
preceding party Pl (l < i). Hence the size of any clique is bounded by 4c− 1. To see why
this holds, observe that for any i < 2c, our clique can contain only one vertex from Kiσi , as
none of its edges are included in the graph. So to contain multiple vertices from party Pi,
the clique K must contain a vertex v from some Kij with j 6= σi. But then all subsequent
parties Pj (j > i) will have no vertices adjacent to v, so cannot contribute anything to K.
So the best we can do is include one vertex from each Kiσi and then 2c from party P2c giving
a clique of size 4c− 1.

To complete the proof, observe that this gap in clique sizes can be distinguished by a
c-approximation algorithm, and any streaming algorithm gives a communication protocol by
having each party update the algorithm state with their information and then pass it to the
next party. J

Interestingly, the same construction gives us hardness for approximating the chromatic
number of a graph. This is notably not possible in the 2-party edge stream construction in
[15], as the random graphs used as gadgets have large chromatic number w.h.p. (see [5]).
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I Corollary 9. Any explicit vertex streaming algorithm to find a c-approximation to χ(G)
(the chromatic number), succeeding with probability at least 2/3 requires Ω

(
n2

c6

)
space.

Proof. Consider the construction in the proof of Theorem 1. In the case of all X(i)
σi = 1, the

graph contains a clique of size 4c2, so it requires at least as many colours.
Conversely, in the case of every X(i)

σi = 0, we can construct a 4c-coloring of the graph.
First color each of the nodes in each Kiσi with the ith color (this is allowed, as they have no
internal edges). The remaining vertices in each party are then not adjacent to any uncolored
vertices from other parties, so we simply need to be able to complete the coloring of each
party in isolation with 2c new colors and we are finished. This is easily done, as each party’s
sub-graph is 2c-partite by construction. J

3 Maximal Independent Set in Edge Streams

In this section, we consider streaming algorithms for the maximal independent set problem.
Vertex streams (both explicit and implicit) are well-suited to the maximal independent set
problem, since they allow the implementation of the Greedy algorithm for independent sets,
which greedily adds every incoming vertex v to an initially empty independent set I if this
is possible, i.e., if I ∪ {v} is an independent set. The algorithm only stores the computed
independent set. This yields the following result:

B Fact 1. The Greedy algorithm for independent sets is a one-pass Õ(α(G)) = Õ(n) space
maximal independent set algorithm in vertex streams (both implicit and explicit).

This raises the question of how well we can solve the maximal independent set problem
in edge streams. We show that computing a maximal independent set in one pass in the
edge-arrival model is not possible using sublinear space, i.e., space Ω(n2) is required. This
result is obtained through a reduction from the Index problem in two-party communication
complexity. This proof is available in the full version of the paper.

I Theorem 10. Every randomized constant error one-pass streaming algorithm in the edge-
arrival model that computes a maximal independent set requires Ω(n2) space.

Since computing a maximal independent set with sublinear space is impossible in edge
streams, we ask whether we can compute an approximately maximal independent set instead:

I Definition 11 (Approximate Maximality). Let G = (V,E) be an n-vertex graph, and let
I ⊆ V be an independent set. Then I is δ-maximal, if |I ∪ ΓG[I]| ≥ δn.

A δ-maximal independent set I covers a δ-fraction of the vertices, or, in other words,
when removing I and its neighbors ΓG[I] from the graph, then at most (1− δ)n vertices are
remaining. We will next show that establishing approximate maximality in edge streams
requires strictly more space than computing a maximal independent set in vertex streams
(i.e., ω(n) space), even if δ = 24

25 . Regarding stronger approximate maximality, our lower
bound yields that computing a (1− 1

nε )-maximal independent set requires space Ω(n2−o(1)),
for every ε > 0.

Central to our construction are Ruzsa-Szemerédi graphs, which have previously been used
for the construction of streaming space lower bounds for maximum matching [12, 17, 4]:

I Definition 12 (Ruzsa-Szemerédi graph). A bipartite graph G is an (r, s)-Ruzsa-Szemerédi
graph if its edge set can be partitioned into r induced matchings each of size s.

ICALP 2019
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Recall that a matching M ⊆ E in a graph G = (V,E) is induced, if the edge set of the
vertex-induced subgraph G[V (M)] equals M , i.e., there are no other edges interconnecting
V (M) different from M .

Our lower bound for approximate maximality is obtained by a reduction from the two-party
communication problem RS-Index, defined as follows:

I Definition 13 (RS-Index). Let H be an (r, s)-Ruzsa-Szemerédi graph with induced match-
ings M1,M2, . . . ,Mr. For each induced matching Mi, let M ′i ⊆ Mi be a uniform random
subset of size s/2 (we assume that s is even). The RS-Index problem is a one-way two-party
communication problem, where H, and, in particular, M1,M2, . . . ,Mr are known by both
parties. In addition, Alice holds the graph G = H[∪iM ′i ], and Bob holds a uniform random
index i ∈ {1, 2, . . . , r}. Alice sends a single message to Bob, who, upon receipt, outputs at
least C · s edges of M ′i , for an arbitrary small constant C.

Observe that this problem is similar in spirit to Index: In Index, Bob needs to learn
one uniform random bit, while in RS-Index, Bob needs to learn the presence of many edges
of M ′i . A lower bound on the communication complexity of RS-Index is implicit in [12] 2:

I Theorem 14 ([12]). The randomized constant error communication complexity of RS-
Index is Ω(r · s).

Equipped with the RS-Index problem, we now give a reduction to approximate maxim-
ality from RS-Index, which yields our lower bound for streaming algorithms:

I Lemma 15. Let r, s, n be integers such that there is an n-vertex (r, s)-Ruzsa-Szemerédi
graph. Then, every randomized constant error one-pass streaming algorithm in the edge-arrival
model that computes a (1− s

6n )-maximal independent set requires Ω(r · s) space.

Proof. Let H be an n-vertex (r, s)-Ruzsa-Szemerédi graph, and let G be Alice’s input
graph for the RS-Index problem derived from H. Let M1,M2, . . . ,Mr denote the induced
matchings in H, let Vi = V (Mi), and let M ′i ⊆Mi denote the subset of edges of matching
Mi that is included in G. Let i be Bob’s input. Furthermore, let A be a constant error
randomized one-pass streaming algorithm for the edge-arrival model that computes a (1− s

6N )-
maximal independent set on a graph on N vertices. We now show how A can be used to
solve RS-Index:

Given G, let G̃ be the graph obtained from G, where every induced matching M ′i in G is
replaced by edges M̃ ′i := Mi \M ′i (observe that E(G)∪E(G̃) = E(H)). Alice now constructs
two disjoint copies G1 and G2 of G̃, runs algorithm A on G1

.
∪ G2 (on an arbitrary ordering

of their edges), and sends the memory state to Bob. Bob constructs the edge set F that
connects every vertex v1 ∈ V (G1) \ Vi1 with every vertex v2 ∈ V (G2) \ Vi2, where Vi1 and
Vi2 are the copies of the vertices Vi in graphs G1 and G2, respectively, and continues the
execution of A on F . Let I be the independent set produced by algorithm A.

Observe that the graph processed by algorithm A contains N = 2n vertices. Since I is
(1 − s

6N )-maximal, we have |V \ Γ[I]| ≤ N − (1 − s
6N )N = s/6. This allows us to identify

Ω(s) edges of M ′i as follows:
Let a, b be the incident vertices to an arbitrary edge of M ′i , let a1, b1 be the copies of a, b

in G1, and let a2, b2 be the copies of a, b in G2. Observe that a1 and b1 are not connected in

2 In [12] a lower bound is given for the task of computing a maximum matching. Their hardness stems
from the fact that it is hard to learn many edges of M ′

i under the distribution described in the definition
of RS-Index.
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G1, and a2 and b2 are not connected in G2. We now claim that if all vertices a1, b1, a2, b2
are covered by I, i.e., {a1, b1, a2, b2} ⊆ Γ[I], then either {a1, b1} ⊆ I or {a2, b2} ⊆ I (or
both). Indeed, suppose that this is not the case. Then there are vertices x1 ∈ {a1, b1}
and x2 ∈ {a2, b2} with x1, x2 /∈ I. Let y1 ∈ I be a vertex incident to x1, and let y2 ∈ I
be a vertex incident to x2. By the construction of the input graph, y1 ∈ V (G1) \ Vi1, and
y2 ∈ V (G2) \ Vi2. Observe, however, that the edge y1y2 was included by Bob, which implies
that y1, y2 are not independent: a contradiction. Hence, either {a1, b1} ⊆ I or {a2, b2} ⊆ I
(or both) hold. This implies that the algorithm identified that there is no edge between a1, b1,
which in turn implies that we learned one edge of M ′i . Hence, for every pair of vertices a, b of
M ′i , either at least one vertex among {a1, b1, a2, b2} is not covered by I, or we learn one edge
of M ′i . Since there are s/2 edges in M ′i , and at most s/6 vertices of the input graph are not
covered by I, we learn at least s/2− s/6 = Ω(s) edges of M ′i , which thus solves RS-Index.
By Theorem 14, algorithm A therefore requires space Ω(r · s). J

In [12] it is shown that there are n-vertex (nΘ( 1
log logn ), ( 1

4 − ε)n) Ruzsa-Szemerédi graphs,
for every ε > 0, and in [2], it is shown that there are such graphs with Θ(n2−o(1)) edges such
that each matching is of size n1−o(1). Combined with Lemma 15, we obtain:

I Theorem 16. Every randomized constant error one-pass streaming algorithm that com-
putes a 24

25 -maximal independent set requires space n1+Ω( 1
log logn ), and every such algorithm

computing a (1− 1
nε )-maximal independent set requires space Ω(n2−o(1)), for every ε > 0.

Last, interestingly, if we allow an algorithm to perform multiple passes, then sublinear
space algorithms can be obtained. Such algorithms are in fact immediately implied by the
correlation clustering algorithms given in [1]. Their result yields the following theorem:

I Theorem 17. There is a O(log logn)-pass streaming algorithm for maximal independent
set that uses space Õ(n).

4 Maximum Independent Set in Geometric Intersection Graphs

We now present a collection of results around geometric intersection graphs, in one and two
dimensions, given as explicit or implicit vertex streams. We consider intervals and squares.

A geometric intersection graph is a graph where nodes correspond to geometric objects,
and edges indicate whether or not a particular pair of objects intersect. These graphs can
be described implicitly as the collection of geometric objects, or explicitly as a collection of
vertices and edges under the promise that some geometric representation exists.

For implicit representations, we assume that intervals and squares are presented by their
centers and their lengths. We assume that the center is a value in [M ]d (d = 1 for intervals,
and d = 2 for squares), and the length is in [M ], for some M ∈ poly n.

4.1 Unit Interval Graphs: d = 1
As discussed in Section 1, given a stream of unit intervals we can compute a 3

2 -approximation
to MIS in Õ(α(G)) space, and any better approximation requires Ω(n) space. A natural
question is how this compares with the space complexity for an interval intersection graph
given as an explicit vertex stream:

I Theorem 18. Any algorithm with constant error probability that returns a ( 5
3 − ε)-

approximation of α(G) for a unit interval intersection graph given as an explicit vertex
stream requires Ω(n) space.
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A1 B1
A0

B0

x

(a) First party makes 3 cliques.

A1 B1

A0

B0

xy z

aσ
bσ

(b) After second party adds y and z, ifXσ = 0
then α(G) = 3.

A1 B1

A0

B0

xy zaσ bσ

(c) Conversely, if Xσ = 1 then α(G) = 5.

Figure 6 Interval representations for the construction in theorem 18. Horizontal positioning
represents the location of the intervals in R, vertical positioning is for clarity only.

Proof. We will show this bound by a reduction from the 2-party Index communication
problem. Consider an instance of Index with bit vector X ∈ {0, 1}n and index to be queried
σ ∈ [n]. We will construct a 2n+ 3 vertex graph as an explicit vertex stream.

Label the vertices x, y, z and ai, bi for i ∈ [n]. Split the ai’s into two sets based on
the bit vector X: A1 = {ai}Xi=1 and A0 = {ai}Xi=0. Similarly let B1 = {bi}Xi=1 and
B0 = {bi}Xi=0. Now the first party creates the following subgraph in the stream: a clique
consisting of all the vertices in A1, a second clique made from B1, and a third clique containing
A0 ∪B0 ∪ {x}.

So far this represents a valid interval graph, which can be interpreted as three adjacent
“stacks” of intervals. Now, the second player adds y with edges to every ai except aσ and
then adds z with edges to every bi except bσ. This can still be viewed as a valid interval
graph, but we now require some intervals from each stack to be “shifted” to overlap with the
two new intervals.

In the case of Xσ = 0, the resulting graph has α(G) = 3. Otherwise, α(G) = 5. Hence,
any algorithm giving a better than 5

3 -approximation factor could distinguish them and solve
Index. J

This shows that MIS for interval graphs is strictly more difficult in explicit vertex streams
than implicit ones.

4.2 Square Graphs: d = 2
We obtain several improved bounds for the 2D case. Full details can be found in the extended
paper, but we briefly summarise here.

Our first result for 2D is a 3-approximation algorithm for MIS on a unit square stream.
This is a generalization of the algorithm of [7] for unit interval streams — we perform a
decomposition of the plane into 2-by-3 strips, similar to their decomposition of the line into
length 3 segments.

I Theorem 19. There is a 3-approximation streaming algorithm for MIS on a stream of
unit squares (implicit vertex stream) using Õ(α(G)) space.
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As in [7] for unit intervals, this immediately leads to a sublinear space algorithm for
estimating α(G) with only a (1+ε) factor loss in approximation factor, through a combination
of counting distinct elements and clever sampling.

I Corollary 20. We can (3 + ε)-approximate α(G) with constant probability in a stream of
unit squares using O(ε−2 log ε−1 + logn) space.

One might speculate whether this decomposition approach could afford a better approx-
imation factor based on some different partitioning of the plane. We give evidence for the
negative, since any larger strip size results in the fixed-size sub-problems not being solvable
exactly, as the following result shows.

I Theorem 21. Given a stream of w-by-w squares contained in a (2 + δ)w-by-(2 + δ)w
region, achieving a ( 3

2 − ε)-approximation to α(G), with constant probability of success for
any ε, δ > 0 requires Ω(n) space.

Our next result for two dimensions is a stronger lower bound for approximating α(G) of
a stream of unit squares in an unrestricted region, based on a reduction from the chained
index communication problem used in our main result in Section 2.

I Theorem 22. Achieving a ( 5
2 − ε)-approximation of α(G), with constant probability of

success, on a unit square stream requires Ω(n) space for any ε > 0.

If we are allowed a combination of large and small balls, we can slightly improve the
lower bound up to the maximum possible for a 3-party construction.

I Theorem 23. Achieving a (3 − ε)-approximation of α(G), with constant probability of
success, on a stream of squares or arbitrary side lengths requires Ω(n) space for any ε > 0.

5 Conclusion

We have looked at the complexity of Maximal and Maximum Independent Set (and various
relaxations and related problems) under three natural models of graph streams: edge-arrival,
explicit vertex-arrival, and implicit vertex-arrival.

By making use of a new communication problem Chaink, we showed that MIS is not
significantly easier on explicit vertex streams than edge streams. However, the question of
whether they have exactly the same complexity is left open. Improving the communication
bound on Chaink to Ω(n), as we conjectured, would improve our MIS lower bound to
Ω
(
n2

c5

)
, but we do not know of any vertex stream upper bounds better than the Õ

(
n2

c2

)
algorithm for general edge streams.

There are a number of other open questions that naturally follow from our study:
Is there a multi-pass lower bound for maximal independent set in edge streams?
Are there o(α(G)) space algorithms for achieving constant factor approximations to α(G)
for classes of geometric intersection graphs given as explicit vertex streams?
Can we close the gap between the 3 and 5/2 factors of the upper and lower bounds for
approximating MIS in a unit square stream?
Is there an O(α(G)) space constant factor approximation algorithm for MIS on streams
of arbitrary sized squares?
Can Chaink be used to form novel lower bounds for other kinds of problems?
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