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Abstract— Monitoring and analyzing network traffic usage pat-
terns is vital for managing IP Networks. An important problem
is to provide network managers with information about changes
in traffic, informing them about “what’s new”. Specifically, we
focus on the challenge of finding significantly large differences in
traffic: over time, between interfaces and between routers. We
introduce the idea of a deltoid: an item that has a large difference,
whether the difference is absolute, relative or variational.

We present novel algorithms for finding the most significant
deltoids in high speed traffic data, and prove that they use small
space, very small time per update, and are guaranteed to find
significant deltoids with pre-specified accuracy. In experimental
evaluation with real network traffic, our algorithms perform well
and recover almost all deltoids. This is the first work to provide
solutions capable of working over the data with one pass, at
network traffic speeds.
Keywords: Network measurements. Traffic data analysis.

I. INTRODUCTION

IP networks are sophisticated engineering systems. Moni-
toring and analyzing network traffic usage patterns is essen-
tial for managing these systems. For example, provisioning
IP networks needs capacity planning and forecasting which
needs detailed analysis of traffic usage over time. Running a
service—hosting, providing network connectivity, etc—needs
detailed accounting for billing, verifying Service Level Agree-
ments, periodic reporting of usage per customer, etc. Enforcing
and ensuring the security of the infrastructure needs constant
monitoring of network activity for patterns of anomalous
traffic. In general, it is a fundamental operational detail in
interacting with an IP network at any level—single user or a
large ISP—that one have tools to gather and analyze traffic
usage.

Our study here is primarily motivated by analysis of mas-
sive, high speed data generated by IP networks, from the
perspective of a large ISP. For motivation, consider analysis
of the header information on each IP packet, or at a higher
level of aggregation, the records of IP flows say from Cisco’s
netflow, from each of the routing elements of a large ISP.
Our focus is on near-real time analysis such as warranted by
network monitoring scenarios. In this context, there are two
key questions.
What are the performance constraints for high speed network
data analysis? Capturing per packet information or netflow
records for each router and transporting it to data warehouses
is unrealistic, because of the storage costs as well as the

transportation overhead. A back-of-the-envelope calculation
with even 10’s of OC48’s such as those found in a large ISP
backbone will illustrate this fact. Unlike in telephone networks
where billing “per record/call” is (has been) the norm and
is subject to legal requirements, IP network operators have
less motivation to collect or archive packet or flow records
since it does not have a direct and immediate impact on
revenue, and it is not mandated. Instead, a more realistic
scenario is to collect some aggregated information or monitor
specific “queries” of interest on the traffic stream. That entails
performing computations per packet or per netflow record,
at the router itself or at collection boxes associated with
the routers. This in turn presents well known performance
bottlenecks: one needs methods that will (1) use small amount
of memory because memory such as SRAM with access time
commensurate with IP traffic is expensive and it is impractical
to attach large memory of this caliber to each interface card
of typical routers in large ISPs and (2) use very few memory
accesses per packet or flow record.

Both these constraints are well known in networking com-
munity, and have been articulated in the classical context of
packet switching, more recently in packet classification and
IP lookups, and in the emerging context of monitoring high
speed traffic data (see [16] for a short, but excellent overview
of these constraints). Our algorithmic results in this paper are
designed with these performance criteria in mind.
What are specific data analyses of interest to monitoring high
speed traffic data? Typically, the focus is on monitoring a
few simple aggregates that will serve as “signals” for ongoing
phenomenon. For example, one may monitor the number of
distinct “flows”—distinct source IP addresses, or distinct TCP
connections, etc—ongoing in a link: steep increases in this
number may correlate with certain attacks or port scans [17],
[32]. In a similar spirit, one may wish to calculate the number
of “tiny” flows, that is, the ones that involve few packets
only [12]. Another example is to monitor “heavy hitters”, i.e.,
those flows that represent a significantly large proportion of
the ongoing traffic or the capacity of the link [15].

In this paper, we study a somewhat related class of prob-
lems of finding entities—addresses, flows eg., comprising
source/destination IP addresses and port numbers or combina-
tions thereof, etc—that differ significantly in traffic level from
one time window to another, from one interface to other, or
from one router to another. The traffic level may be counted in



terms of the number of connections, packets, bytes, etc. These
are therefore heavy hitters in the difference of traffic levels
either across time, interface or routes. Currently, network
managers tell us that they look for significant differences in the
traffic levels while operating a network; monitoring significant
differences is an intuitively powerful way to summarize the
changes in the network, and therefore, draw human attention
to these across the network over time. What is needed is a
way to highlight the things that are different, that is, to find
“what’s new” between different traffic streams.

Our main results are extremely efficient methods that work
on high speed IP traffic data and detect significantly large
differences in traffic levels across time and network elements.
Our contributions are:

• We formalize intuitive notions of “differences”—deltoids,
as we call them, including absolute, relative or variational
deltoids—and initiate the study of methods for finding
significantly large deltoids between high speed IP net-
work data streams.

• We design efficient algorithms for finding significant
deltoids on high speed data. We analytically prove that
they (a) use small space, (b) take small time per packet or
flow record update, and (c) find significant deltoids within
pre-specified accuracy quickly. The algorithms use novel
group tests in a combinatorial group testing framework
that underlies all the algorithms, and work without any
assumption on the input data source and give the first
solution to these problems.

• We implement and test our algorithms on various real life
network data—netflow and SNMP data from IP networks
as well as telephone records—and show that deltoids
are interesting. Even without engineering our algorithm
using standard techniques of parallelization, hardware
implementation or exploiting the special structure of IP
data, our algorithms can process a million records a
second on a cheap desktop computer. Thus our solutions
appear well suited for high speed network monitoring
applications.

Our work lies in the intersection of research in many
communities. The networking community has recently started
studying what traffic data analysis problems can be solved
at line speed: finding heavy hitters [11], [15], [24], counting
distinct flows [17], etc. Our work here extends this list by
providing methods to do quite nontrivial analyses such as what
are the significant differences in traffic levels across network
elements and time. The precise problem of looking for deltoids
is implicit in the exploratory approach inherent in network
management. The problem of detecting relative deltoids for
example has been posed as an open problem in [6], [22], and
has been often stated in informal discussions with researchers
and network operators. Finally, our work is grounded in Algo-
rithms research. The combinatorial group testing approach for
stream computations has been developed in [10], [20], [21].
Most similar is [10] for the problem of finding heavy hitters.
Here, we expand previous work substantially, in particular,

by designing novel tests that work for different deltoids. This
not only gives us the first known theoretical results we derive
in this paper, but also serves to position the combinatorial
group testing as a general framework for detecting significant
entities, be they volumes or differences.

Map. In Section II, we present a discussion of what various
differences of interest are, and formally define the problem
of finding significant deltoids, We also show why standard
methods such as sampling do not work. In Section III and IV
we present our group-testing framework, and present specific
results for different deltoids. In Section V, we present our
experimental results with real network data. Some extensions
are described in Section VI and in Section VII, we discuss
related work. Concluding remarks are made in Section VIII.

II. PRELIMINARIES

A. Difference Detection Problems: Informal Discussion

We focus on finding items which exhibit large difference.
We call such items “deltoids”, to denote items whose differ-
ence, or delta, is noteworthy. There could be many possible
ways to measure how individual items have changed. We
illustrate these by considering the number packets sent by a
particular IP address through a given interface aggregated by
hour.

1) Absolute Difference: A large difference between the
number of packets sent in one hour and the next.

2) Relative Difference: A large ratio of the number of
packets sent in one hour and the next.

3) Variational Difference: A large variance of the number
of packets taken over multiple time periods.

We must be precise about what is meant by “large”, since
it will depend on the volume of traffic, and whether we
are counting packets, bytes or flows. More than this, it also
depends on the distribution of traffic itself: if we look for
deltoids between traffic going into and coming out of a link,
then a difference of a few packets would be significant,
whereas between the traffic going onto the link in one hour
and the next, the difference would have to be much larger to be
noteworthy. It is therefore vital that the notion of a significant
difference is traffic dependent.

Our solution is to look for differences which are a user-
specified fraction of the total difference. That is, items whose
difference is some fraction, say 1% or 5% of the sum of
differences of all items. Given a fraction φ, there can be at
most 1/φ deltoids for any notion of difference, although this
bound is unlikely to be reached by realistic traffic, since we
expect much of the difference to be from non-deltoids.

Each of our notions of difference captures a different situ-
ation. A busy web server such as CNN.com will experience a
notable absolute difference in its traffic while an exciting news
story is unfolding. Flash crowds, or “the slashdot effect” will
result in a large relative difference for a server that normally
experiences lower traffic (another relative difference would be
if the server crashes under the increased load and its outbound
traffic falls from high to zero). Meanwhile, high variance
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Fig. 1. Items displaying different kinds of difference: (b) has the highest
absolute difference between 10am and 11am, (e) has the highest relative
difference, and (d) has the highest variance.

detects items whose traffic is variable over time, such as office
networks, whose traffic will be high during working hours, and
low overnight. These notions can be distinct: Figure 1 depicts
a situation with five different items (a)—(e) and their values
over equal time periods between 10am and 11am. The items
with highest relative and absolute difference between the first
and last reading, and with the highest variance are all distinct
(and distinct from the item with highest overall count).

Because of the potentially high volume of network traffic
and high link speeds, any method devised for finding deltoids
needs to provide truly high performance in order to be con-
sidered for deployment in real network monitoring situations.
See [16] for a nice discussion of the rationale. We summarize
the requirements:

• Fast Update Speed. Solutions have to be capable of
operating at network line speed on a per packet or per
flow record basis. Thus per packet or per flow record
processing has to be very fast so that data processing
is carried out in real time. This rate varies greatly,
depending on the capacity of the link and the nature
of the traffic. IP traffic on fast backbone links can be
many millions of packets per second but other situations
generate traffic at much lower rates.

• Low Space Requirement. Although memory and disk is
increasingly cheap and plentiful, storing and processing
traffic data at per packet or per netflow record speed calls
for high speed memory with very small access times.
Such memory (such as SRAMs) can be expensive, and so
it is desirable that solutions use small space for processing
and storing summaries of IP traffic data streams.

• Efficient, Accurate Queries. The operation of recovering
the deltoids should not be a costly one. Although this
operation can be done offline, and so does not have the
same time restrictions as the update operation, still it
should be relatively fast to find the deltoids. It is very
important that the operation should also give guarantees
about the accuracy of its output.

B. Standard Approaches

Meeting all these requirements is not straightforward. Many
natural first ideas fail on one or more of these criteria. We
briefly discuss various simple attempts to solve this problem,
and explain their shortcomings.

• Sampling. Reducing the storage cost by sampling and
storing, some very small fraction—say 1% or less—has
the disadvantage that we are likely to miss important in-
formation about deltoids. To achieve a reasonable amount
of storage space, the rate of sampling will have to be very
low, thereby missing many packets or netflow records.
In the worst case, deltoids are missed entirely by the
sampling and so cannot be recovered.

• Heavy Hitters. Several methods have been published
recently for finding the “heavy hitter” items, which are
those whose traffic is above some threshold of the total
traffic [10], [15], [27]. This is a related notion to deltoids,
since heavy hitters are a special case of deltoids: the
deltoids found between a traffic stream and an empty
stream are precisely the heavy hitters. So this suggests
the following solution: for each stream, find and store the
heavy hitters which account for more than φ of the total
traffic. Then given two streams, output as the deltoids all
items which are heavy hitters in one stream but not the
other. Such an approach is unfortunately severely flawed.
For example, the heavy hitters might be identical in both
streams: some items are always popular (such as popular
websites). Because deltoids are defined in relation to the
sum of the differences instead of the sum of the traffic,
then it is possible that no deltoids are heavy hitters, and
so this method will not find any of the true deltoids, and
will output items that are not deltoids. In our experiments,
we found that this heuristic performed generally poorly.

• Sketch-based Methods. Sketches are a class of pow-
erful, small space approximations of distributions [4].
It is possible to create sketches for each stream so
that combining sketches for multiple streams allows the
(absolute) difference for each item to be found [20], [25].
However, this approach suffers a major drawback: in
order to compare two streams, we must somehow know
which items to query in order to find those with large
change. So, either we must query every item (eg all 232 IP
addresses), or we use the current stream as a sequence of
items to test: for every address that is seen, test whether
this has a large change. This approach is problematic,
since it requires extra processing: we must update our
data structure and test it for every item in the stream. It
also means we must decide in advance what comparison
to do, and does not allow the more flexible approach of
comparing arbitrary pairs of streams after the stream has
been seen. The main point is that a sketch is a small
storage approximation of the data, but if we want to use
that to find deltoids, we must exhaustively cycle through
many possible values.



C. Problem Formulation

We will consider streams S1, S2, . . . Sm which represent the
data of interest over collected over fixed time periods, eg. each
stream represents observed traffic flows from a particular hour
or day. These can be thought of as defining vectors, where the
ith entry of the vector for Sj represents the quantity associated
with item i after processing the whole of the jth stream. We
shall use Sj to refer to both the stream, and also the implicit
vector that it defines, and so Sj [i] denotes the total for item
i in the jth stream. The dimension of Sj is n, meaning that
i ∈ {0 . . . n− 1}.

For example, the streams might represent flow volume from
each source IP address on a given link, one stream per hour.
Then n = 232 and Sj [i] represents the total flow volume from
source IP address i in the jth hour. Streams of IP data are
modeled by the cash register model of streams [29]: this means
that the same item i can be observed multiple times in the
stream, and each contribution adds to the value of Sj [i]. This
naturally describes a stream of IP packets: each packet has an
address i, and a packet size p so that Sj [i] ← Sj [i] + p. The
challenges here are multiple: first, to process the streams as
they arrive in real time, at network line speeds; and second, to
obtain a concise, approximate representation of each stream, so
that we use much less fast memory than we would to represent
Sj exactly. Then, given queries of the form (j, k), we want to
find particular items i which behave differently in Sj than in
Sk.

We can now formalize the idea of deltoids.

• Absolute Difference. The absolute difference of an item i
is |Sj [i]− Sk[i]|.

• Relative Difference. The relative difference of an item i
is Sj [i]/ max{Sk[i], 1}.1

• Variational Difference. The variational difference (vari-
ance) of an item i over ` streams is given by
∑`

j=1(Sj [i]−
∑`

k=1 Sk[i]/`)2.

We shall describe methods to find items whose absolute,
relative or variational difference is high. We use the term
deltoid to refer to an item whose difference is large relative
to the total differences.

Definition 1 (Exact Deltoids): For any item i, let D[i] de-
note the difference of that item, be it absolute, relative or
variational difference. A φ-deltoid is an item i so that D[i] >
φ
∑

x D[x].
Our solutions rely on a slight relaxation of the problem,

where we talk of approximate deltoids.
Definition 2 (Approximate Deltoids): Given ε ≤ φ, the ε-

approximate φ-deltoid problem is to find all items i whose
difference D[i] satisfies D[i] > (φ+ε)

∑

x D[x], and to report
no items where D[i] < (φ− ε)

∑

x D[x]. Items between these
thresholds may or may not be output. We consider the set of
deltoids, denoted Deltoids, defined as

i ∈ Deltoids⇒ D[i] > (φ + ε)
∑

x D[x]
i 6∈ Deltoids⇒ D[i] < (φ − ε)

∑

x D[x].

1The 1 term makes sure there is no 0 in the denominator.

All our algorithms are probabilistic with user-defined pa-
rameter δ which is the upper bound on the probability of the
algorithm failing. All our bounds will involve parameters φ,
ε and δ, in addition to n. We will assume each Sj [i] can be
stored in one computer word, as is standard. All the space
bounds we state below are in terms of the number of words.

III. ALGORITHMIC FRAMEWORK

Our solutions are based on Group Testing. The underlying
principle is to make use of tests which, given a subset, or group
of items, tell us whether there is a deltoid within the group.
In general, the test may err with some probability, and so we
will need to bound the chance of false positives (including an
item which is not a deltoid in the output) and false negatives
(failing to include a deltoid in the output).

Our Non-Adaptive Group Testing Procedure is divided into
two parts: identification, to find a set of “candidates” which
should include all deltoids, and verification, which removes
items from the set of candidate items which are not deltoids.
For each part we keep a data structure, which consists of sets
of “Test” data structures: as items arrive, they are included in
appropriate test data structures, as described below. All our
procedures will use essentially the same structure of groups;
what will vary is the tests that are used. We will first describe
this structure and how it is used. In the next section, we will
describe how to make tests for deltoids.

A. Identification

Group Structure. The groups are subsets of the items, defined
by pairwise independent hash functions [28]. Given approxi-
mation factor ε and failure probability δ, choose tid = log 1

δ
such hash functions h1... log 1

δ
: {0 . . . n − 1} → {1 . . . g}.

Here g is the number of groups, to be specified later. Set
Ga,b = {i|ha(i) = b}.

Tests. Within each group keep 1 + log n data structures Ta,b,c

which allow us to pose tests on the items in the group. The data
structure will depend on the nature of the difference we are
trying to detect and will be specified later; for now, assume that
each test reports whether there is a deltoid in the group. Let
Bc denote the set of integers whose binary representation has
a 1 in the cth bit position for c = 1 . . . log n; for convenience
of notation, let B0 = {0 . . . n− 1}. Then Ta,b,c applies to all
items in Ga,b ∩ Bc. We will assume that the tests here are
linear: that is, the tests are a linear function2 of the data. Let
T ′

a,b,c denote the complement of Ta,b,c: Ta,b,c reports whether
there is a deltoid in Ga,b ∩ Bc, and T ′

a,b,c reports whether
there is a deltoid in Ga,b\Bc. By linearity of the test function,
T ′

a,b,c = Ta,b,0−Ta,b,c. Finally, for some test T , let |T | denote
the outcome of the test: |T | = 1 means that the test returned
positive, and |T | = 0 otherwise.

Group Testing for Identification. In order to find the deltoids
between Sj and Sk, we will need to combine the test data

2f is a linear function if it satisfies f(x+y) = f(x)+f(y) and f(ax) =
af(x) for all x and y in the domain of the function, and for all scalars a.



structures for each stream, Ta,b,c(j) and Ta,b,c(k) to get
Ta,b,c(j, k). How this achieved will vary from test to test; from
now on, we will treat the tests as black box objects which
report whether there is a deltoid within the subset that the test
is operating on. We then apply the following procedure:

• For each group Ga,b, if |Ta,b,0(j, k)| = 0, conclude that
there is no deltoid in the group, and go to the next group.

• Otherwise, we use the results of the other tests for that
group to identify the deltoid. For each value of c, if
|Ta,b,c| = |T

′
a,b,c| then either both are negative, and there

is no deltoid in the group after all, or both are positive,
and there are two or more deltoids in the same group. In
both these cases, we reject the group Ga,b.

• Otherwise, if |Ta,b,c| = 1 then the deltoid i ∈ Bc so it has
a 1 in the cth bit position; else |T ′

a.b.c| = 1 and so i has
0 in the c bit position. So the full binary representation
of i can be recovered.

• If the group is not rejected, then some item i is found
and so it is added to the set of candidate items, which
are believed to be ε-approximate φ-deltoids.

B. Verification

In practice, the tests will not be perfect, but will themselves
have some probability of failure, which can lead to false
positives. Some simple checks can be made to avoid this.
Having found an item i ∈ Ga,b which is believed to be a
deltoid, a first “sanity check” is to check that ha(i) = b: if not,
then clearly the tests erred, and the item should be rejected. To
give good guarantees about the items that are found, we will
additionally keep a Verification data structure. This closely
resembles the Identification structure, but is constructed with
different parameters.

Groups and Tests. Using the same parameters ε and δ, we
choose tver = 4 log 1

δ new hash functions f1 . . . f4 log 1/δ :
{1 . . . n} → {1 . . . v} from a family of pairwise independent
hash functions This time we keep just a single test data
structure for each group, Va,b. The tests and number of groups
are chosen so the probability that each test errs is at most 1

8 .

Group Testing for Verification. For each candidate item,
compute the groups that it falls into in the verification data
structure. For each of these groups, compute the test outcome,
and take the majority vote of these tests (positive or negative)
as the overall result for the item. If the item is positive, include
it in the output as an ε-approximate φ-deltoid.

Theorem 1: If the probability that each test Va,b gives the
wrong answer is at most 1

8 , then

i ∈ Deltoids⇒ Pr[(
∑4 log 1

δ

a=1 |Va,f(i)|) < 2 log 1
δ ] < δ

i 6∈ Deltoids⇒ Pr[(
∑4 log 1

δ

a=1 |Va,f(i)|) ≥ 2 log 1
δ ] < δ

Proof:

i 6∈ Deltoids⇒ E((
∑4 log 1

δ

a=1 |Va,f(i)|) = 1
2 log 1

δ . So

2 log 1
δ = 4E((

∑4 log 1
δ

a=1 |Va,f(i)|). By Chernoff bounds [28],

Pr[(
∑4 log 1

δ

a=1 |Va,f(i)|) ≥ 2 log 1
δ ] < δ. The other case is

symmetric.

Consequently, given this set up we can be sure that each
item passed by the identification and verification stages has
probability at most δ of not being a deltoid. Similarly, every
deltoid has probability δ of not being passed by the verification
stage. We are free to set δ to be arbitrarily small, and the
dependence on δ is fairly weak.

Choosing a Threshold. We must choose the threshold for
an item being a deltoid. Each of the tests that will introduce
will involve comparing a numeric quantity to φ

∑

i D[i], a
fraction of the total difference. So in particular we need to
know

∑

i D[i] to be able to make the test. For each test, we
will show how to find this quantity exactly, or give a good
approximation.

Complete Update Procedure. The full update procedure for
the Combinatorial Group Testing is

• Read new item i with traffic p (bytes, packets or flows).
• For a = 1 to tid do

– For c = 0 to log n do

∗ If i ∈ Bc, update Ta,ha(i),c with p

• For a = 1 to tver do

– Update Va,fa(i) with p

The running time is therefore O(tver+tid log n) test updates
per item in the stream. For tests which take constant time to
update (as is the case for all tests we consider here), then this
cost is O(log(n) log 1

δ ). This meets our requirement of being
fast to update. For each kind of deltoid, we will additionally
show that the overall space requirements are also low.

IV. FINDING DELTOIDS

A. Absolute Deltoids

For absolute deltoids, each test data structure is simply a
single variable,

Ta,b,c =
∑

i∈Ga,b∩Bc
Sj [i].

This data structure is clearly linear and straightforward to
maintain under updates: when an update to item i of p arrives,
just add p to all counters Ta,ha(i),c. We define the combination
of test for streams j and k as:

Ta,b,c(j, k) = |Ta,b,c(j)− Ta,b,c(k)|
|Ta,b,c(j, k)| = 1 ⇐⇒ Ta,b,c(j, k) > φ||Sj − Sk||1.

We set the number of groups in the identification procedure to
be g = 2

ε and for the verification v = 8
ε . The following lemma

shows that we have constant probability of finding each deltoid
in each group that it is counted in.

Lemma 1: i ∈ Deltoids⇒
∀a : Pr[∀c : (|Ta,ha(i),c(j, k)| = 1 ⇐⇒ i ∈ Bc)

∧ (|T ′
a,ha(i),c(j, k)| = 1 ⇐⇒ i 6∈ Bc)] ≥

1
2

Proof: If i ∈ Deltoids, suppose for some a
|Ta,b,0(j, k)| = 0 (a false negative), then (by definition)

|D[i]| > (φ + ε)||Sj − Sk||1 ∧ |
∑

x∈Ga,b

D[x]| < φ||Sj − Sk||1



So |Ta,b,0(j, k)| = 0⇒ |
∑

x6=i,x∈Ga,b

D[x]| > ε||Sj − Sk||1.

Let the random variable3 Xi =
∑

x6=i,x∈Ga,b
|D[x]|. For all c,

i ∈ Deltoids ∧Xi < ε||Sj − Sk||1 ⇒
i ∈ Bc ⇒ Ta,b,c(j, k) ≥ D[i]−Xi > φ||Sj − Sk||1) ∧
i 6∈ Bc ⇒ Ta,b,c(j, k) ≤ Xi < φ||Sj − Sk||1)

⇒ |Ta,b,c(j, k)| = 1 ⇐⇒ i ∈ Bc;

the case for i 6∈ Bc is symmetric with T ′ replacing T . Since
|
∑

x∈Ga,b
D[x]| ≤ Xi:

Pr[|
∑

x∈Ga,b

D[x]| < ε||Sj − Sk||1] ≥ Pr[Xi < ε||Sj − Sk||1].

By the pairwise independence of the hash functions,
E(Xi) = ε

2 ||Sj − Sk||1, and by the Markov inequality,

Pr[Xi < ε||Sj − Sk||1] = Pr[Xi < 2E(Xi)] >
1

2
.

This means that for each Identification group that each
deltoid falls in, there is a constant probability that all tests
give the correct output, and so consequently we can identify
it. Since each deltoid falls in log 1

δ groups, then the probability
that it is not detected in any of them is less than 2

1
δ = δ, so

the probability that it is found is at least 1− δ.
Lemma 2: i ∈ Deltoids ⇒ Pr[|Va,fa(i) = 0] < 1

8∧ i 6∈
Deltoids⇒ Pr[|Va,fa(i) = 1] < 1

8
Proof: The proof is similar to the previous lemma:

i ∈ Deltoids⇒ Pr[|Va,fa(i)(j, k)| = 0]
≤ Pr[

∑

x6=i,x∈Ga,fa(i)
|D[x]| > ε||Sj − Sk||1]

< 1
8 by the same argument as above.

i 6∈ Deltoids⇒ |D[i]| < (φ − ε)||Sj − Sk||1
⇒ Pr[|Va,fa(i)(j, k)| = 1]
≤ Pr[

∑

x6=i,x∈Ga,fa(i)
|D[x]| > ε||Sj − Sk||1]

< 1
8

So the probability of each test erring is at most 1
8 , and

applying Theorem 1 gives the result that each deltoid is passed
by the Verification stage with probability 1 − δ while non-
deltoids are rejected with probability 1− δ.

Setting a Threshold. To set the threshold for searching for
absolute difference deltoids, we need to compute ||Sj − Sk||1.
This can be accomplished by keeping an additional “sketch”
structure for each stream and combining them to make a good
quality approximation of the L1 difference of the two streams.
Such techniques are well documented in the literature for
example in [18], [23].

Theorem 2: Each ε-approximate absolute deltoid is found
by the above algorithm with probability at least 1 − δ.
The space required for finding absolute difference del-
toids is O( 1

ε log(n) log 1
δ ). The time to update the tests is

O(log(n) log 1
δ ) per item in the stream, and the expected time

to find deltoids is O( 1
ε log(n) log 1

δ ).

3This is random variable depending on the random choice of the hash
function h from the set of pairwise independent hash functions.

B. Variational Deltoids

To find items with the highest variational difference, we first
describe how to build a test for finding items which are large
in their squares, and then show how to adapt this to finding
high variance items. The test construction for variations is
more complex, and is based on the “sketch” described by
Alon, Matias and Szegedy [4]. Naively, we could keep a
full sketch for each test, but this would blow up the space
and time to process each item. Here, we show that keeping
a single counter for each test is sufficient to find deltoids.
We also crucially rely on the linearity properties of the tests
derived from these sketches. For each hash function ha :
{0 . . . n − 1} → {1 . . . d

ε2 } which divides items into groups
(with d to be specified later), we additionally keep a second
hash function za which is drawn from a family of 4-wise
independent hash functions mapping the items {0 . . . n − 1}
uniformly onto {+1,−1}. For each group, compute

Ta,b,c =
∑

i∈Ga,b∩Bc

Sj [i]za(i).

Again, this is easy to maintain this when Sj is presented as
an unaggregated stream of values, since for each update we
just have to add the update multiplied by za(i) onto Ta,hai,c

for all values of a and c.
Lemma 3: For each group that item i falls in, T 2

a,b,c is a
good estimate for Sj [i]

2: with probability at least 2d
(d−1)2 , then

|T 2
a,b,c − Sj [i]

2| < ε||Sj ||
2.

Proof: The analysis proceeds in a similar way to that
given in [4]. Let Ii,x be an indicator variable so that Ii,x =
1 ⇐⇒ (ha(x) = ha(i)), and 0 otherwise. By the indepen-
dence properties of za, the expectation E(za(i)za(x)) = 0 for
i 6= x, and is always 1 otherwise. The expectation of T 2

a,b,c is

E(T 2
a,b,c) = (Sj [i]za(i) +

∑

x6=i Ii,xSj [x]za(x))2

= Sj [i]
2 +

∑

x6=i E(2Sj [i]za(i)Ii,xSj [x]za(x))+
∑

x,y 6=i E(za(x)za(y)Ii,xIi,ySj [x]Sj [y])

≤ Sj [i]
2 + 0 + ε2

d ||Sj ||
2
2

= Sj [i]
2 + ε2

d ||Sj ||
2
2

Similarly, the variance, Var(T 2
a,b,c) is at most 2ε2

d ||Sj ||
4
2.

Consider the probability that T 2
a,b,c is not a good estimate of

Sj [i]
2: then the difference between the two quantities is more

than ε||Sj ||
2
2. By applying the Chebyshev inequality, and the

fact that ε < 1:
Pr[|T 2

a,b,c − Sj [i]
2| > ε||Sj ||

2
2]

≤ Pr[|T 2
a,b,c − Sj [i]

2 − ε2

d |Sj ||
2
2| > ε(1− ε

d )||Sj ||
2
2|]

< Pr[|T 2
a,b,c − E(T 2

a,b,c)| >
(d−1)ε

d ||Sj ||
2
2]

<
d2Var(T 2

a,b,0)

(d−1)2ε2||Sj [i]||42
= 2d

(d−1)2

The condition for Variational Deltoids can be re-written in
terms of sums of squares. The contribution to the variance of
item i from the ` streams is given by

σ2[i] =
∑̀

j=1

(Sj [i]− µ[i])2; µ[i] =
∑̀

k=1

Sk[i]

`



By the linearity of the test function then, we can compute a
single estimate for σ2(j)[i] as (Ta,b,c(j)−

∑`
k=1 Ta,b,c(k)/`)2.

Denote the total variance of all items,
∑

i σ2[i] as σ2(`).
For the test for variational deltoids, set g = 6

ε2 , v = 18
ε2 , and

Ta,b,c(`) =
∑̀

j=1

(

Ta,b,c(j)−
∑̀

k=1

Ta,b,c(k)

`

)2

|Ta,b,c(`)| = 1 ⇐⇒ Ta,b,c(`) > φσ2(`).

Lemma 4: i ∈ Deltoids⇒
∀a, c : Pr[ (|Ta,ha(i),c(j, k)| = 1 ⇐⇒ i ∈ Bc)

∧ (|T ′
a,ha(i),c(j, k)| = 1 ⇐⇒ i 6∈ Bc)] > 1

2

Proof: For i ∈ Deltoids and any a and c, let b = ha(i).
Assume that i ∈ Bc (the other case is symmetric). Hence, by
Lemma 3 with d = 6 and using linearity of expectation with
the fact the variance of the estimator is bounded by the sum
of the variances, then

Pr[|Ta,b,c(`)− σ2[i]| > εσ2(`)] <
12

25
<

1

2
.

Since i ∈ Deltoids⇒ σ2[i] ≥ (φ + ε)σ2(`), then

i ∈ Bc ⇒ Pr[|Ta,b,c(`)| = 1] = Pr[Ta,b,c(`) ≥ φσ2(`)]
≤ Pr[|Ta,b,c(`)− (φ + ε)σ2(`)| ≥ εσ2(`)] < 1

2

using the above. For the other direction, assume i 6∈ Bc. Since
i is not in this group, then effectively σ2[i] = 0 for this group.
Then by Lemma 3 again, and using the fact that ε ≤ φ, it
follows that

i 6∈ Bc ⇒ Pr[|Ta,b,c(`)| = 1] = Pr[Ta,b,c(`) ≥ φσ2(`)]
≤ Pr[|Ta,b,c(`)− 0| ≥ εσ2(`)] < 1

2

Hence, amplifying the probability by log 1
δ repetitions, there

is probability at least 1− δ that each deltoid will be found.
The probability of failure of the Verification tests is less than

1
8 , by again observing that the expectation of each verification
test is a function of the variance of the item i, σ2[i], and by
substituting d = 18 into Lemma 3, giving the probability of a
good estimate to be 36

172 < 1
8 . So deltoids pass all Verification

tests with probability at least 1 − δ, while non-deltoids are
passed with probability at most δ.

Computing a Threshold. In order to set the threshold based
on φσ2, we need to know σ2 itself. This can be done by
making an appropriate sketch data structure, but it turns out
that the data structure that we want to make is precisely that
of the Verification tests: an unbiased estimator for σ2 is

mediana

∑

b





∑̀

j=1

(

Va,b(j)−
∑̀

k=1

Va,b(k)

`

)2


 .

Theorem 3: Each ε-approximate variational deltoid is
found by the above algorithm with probability at least
1 − δ. The space required for finding variational del-
toids is O( 1

ε2 log(n) log 1
δ ). The time to update the tests is

O(log(n) log 1
δ ) per item in the stream, and the expected time

to find deltoids is O( 1
ε2 log(n)` log 1

δ ).

C. Relative Deltoids

Finding relative deltoids gives an extra challenge, since it
entails approximating the ratio of values from large vectors,
which is known to require a large amount of space to do
accurately [9]. Instead, we use a slightly weaker notion of
approximate deltoids to make our guarantees, and in our
experimental work we will show that this approach is still
highly accurate. In order to find items with large relative
difference, we need to transform one of the streams. Thus
this method does not work in the general cash register model,
but requires that one of the streams be aggregated. This still
permits the tests for one of the streams to be computed on live
data as it arrives, and deltoids found between this stream and
any one for which the tests have been pre-computed. Let S1/k

be the stream whose ith entry is S1/k[i] = 1
Sk[i] . Then, finding

items with large relative difference means finding an item i so
that D[i] = Sj [i] ∗ S1/k[i] is large, relative to

∑

i D[i]. We
shall refer to this “inverted” stream by S1/k or just 1/k. We
choose g = 2

ε and v = 4
ε as for absolute differences and set

Ta,b,c(j) =
∑

i∈Ga,b∩Bc

Sj [i] ; Ta,b,c(1/k) =
∑

i∈Ga,b∩Bc

S1/k[i].

Tests are combined by Ta,b,c(j, 1/k) = Ta,b,c(j)∗Ta,b,c(1/k)

|Ta,b,c(j, 1/k)| = 1 ⇐⇒ Ta,b,c(j, 1/k) > φ
∑

i

Sj [i]

Sk[i]
.

Ta,b,c(j) is the same as in the absolute deltoid case, and so
is easy to compute and maintain as new values are seen in the
stream. Here, our notion of deltoids is slightly weaker: we set
i to be an ε-approximate φ-deltoid by the rules:

D[i] ≥ φ(
∑

i D[i]) + ε||Sj ||1||S1/k||1 ⇒ i ∈ Deltoids
D[i] ≤ φ(

∑

i D[i])− ε||Sj ||1||S1/k||1 ⇒ i 6∈ Deltoids

Lemma 5: i ∈ Deltoids⇒

∀a, c : Pr[ (|Ta,ha(i),c(j, 1/k) = 1 ⇐⇒ i ∈ Bc)]
∧ (|T ′

a,ha(i),c(j, 1/k) = 1 ⇐⇒ i 6∈ Bc)] ≥
1
2

Proof: For any a, c and i ∈ Deltoids, let b = ha(i).
Again, assume i ∈ Bc, since the other case is symmetric.
With absolute certainty,

i ∈ Bc ⇒ Ta,b,c(j) ∗ Ta,b,c(1/k)
= (

∑

x∈Ga,b
Sj [x])(

∑

x∈Ga,b

1
Sk[x])

≥
Sj [i]
Sk[i] = D[i] ≥ φ

∑

i D[i]⇒ |Ta,b,c(j, 1/k)| = 1

However, we also need to show that with constant proba-
bility |T ′

a,b,c(j, 1/k)| = 0, which is a little more involved.

i ∈ Bc∧(Ta,b,0(j, 1/k)−Sj [i]/Sk[i]) < ε||Sj ||1||S1/k||1 (1)

⇒ T ′
a,b,c(j, 1/k) = (

∑

x∈Ga,b/Bc
Sj [x])(

∑

x∈Ga,b/Bc
S1/k[x])

≤ (
∑

x∈Ga,b
Sj [x])(

∑

x∈Ga,b
S1/k[x])− Sj [i]/Sk[i]

< ε||Sj ||1||S1/k||1 ⇒ |T
′
a,b,c| = 0

So, we show that the probability of (1) is bounded by a
constant. As before, we define some variables:

Ii,x = 1 ⇐⇒ ha(i) = ha(x); Ii,x = 0 ⇐⇒ ha(i) 6= ha(x)
Yi = Ta,b,0(j, 1/k)− Sj [i]/Sk[i]



E(Yi) = E((Sj [i] +
∑

x Ii,xSj [x])∗
(1/Sk[i] +

∑

y Ii,y1/Sk[y])− Sj [i]/Sk[i])

≤ 1
g ||Sj ||1||S1/k||1.

Then the probability of (1) is given by

Pr[Yi < ε||Sj ||1||S1/k||1)] >
E(Yi)

ε
||Sj ||1||S1/k||1 =

1

εg
.

Since εg = 2, the result follows.
As in previous cases, the fact that each deltoid is in log 1

δ
groups, the overall probability of finding it is 1− δ.

Lemma 6: (i ∈ Deltoids⇒ |Va,b| = 1)∧(i 6∈ Deltoids⇒
Pr[|Va,b| = 1] ≤ 1

8 ).
Proof: The first part follows immediately from the proof

of the previous lemma. For the second part, we use the same
variable Yi from the above proof. Then

i 6∈ Deltoids⇒ Pr[|Va,b| = 1]
= Pr[Yi + Sj [i]/Sk[i] > φ

∑

i D[i]]
≤ Pr[Yi > ε||Sj ||1||S1/k||1] ≤

1
εv = 1

8

using the Markov argument above.

Computing a Threshold. The threshold is φ
∑

i D[i], which
can also be approximated using sketch computations [3], [11].

Theorem 4: Each ε approximate relative deltoid is found by
the above algorithm with probability at least 1− δ. The space
required for finding absolute deltoids is O( 1

ε log(n) log 1
δ ).

The time to update the tests is O(log(n) log 1
δ ) per item

in the stream, and the expected time to find deltoids is
O( 1

ε log(n) log 1
δ ).

V. PRACTICAL IMPLEMENTATION AND STUDY

We implemented our methods in C and conducted a set of
experiments on a number of data sets, varying the parameters
ε and δ. We also implemented two of the alternate “naive”
solutions described in Section II-A, the sampling solution,
and the heuristic of storing the heavy hitters (most frequent
items) from each stream, and computing deltoids based on
the difference between the heavy hitters for each stream. For
our experiments we also exhaustively computed the “exact”
deltoids for each data set, so that the output of our approximate
methods could be compared to this and evaluated. To make an
evaluation of the results, we computed the standard measures
of precision and recall of exact φ-deltoids: precision is the
fraction of the items returned that were correct, giving a
measure of the number of false positives, and recall is the
fraction of the exact deltoids that were found, giving a measure
of the number of false negatives. These measures range from
0 to 1, and ideally they should both be 1. The experiments
were conducted on a lightly loaded Wintel 2.4GHz machine
with 512Mb of RAM.

The data sets we analyzed were drawn from a variety of
network scenarios:

• lbl-conn7 is a data set obtained from the Internet Traffic
Archive [1], [30]. It consists of a record of wide-area
connections taken over a thirty day period, totaling three-
quarters of a million records. To study absolute and
relative differences, we split the trace into two pieces

covering the first and second halves of the time period.
For variations, we split it into seven equal sized periods.
We looked at differences in the number of bytes going to
destination IP addresses.

• phone is a stream of 2.2 million phone calls which were
captured during a single afternoon. We also split this
stream in the middle to examine the difference in calling
patterns in the first half compared to the second. In order
to partially anonymize the data, only the area code and
local exchange of the caller and destination (eg 212-555)
were retained. This has the effect of aggregating over
local areas. We looked at differences in the number of
calls between pairs of exchanges.

• snmp consists of two streams of SNMP data recording all
traffic over two related links in an eight day period. We
compared the absolute and relative differences between
the traffic sent on the links, and the variational differences
within each link over the same time periods on each of
the eight days. Even though the rate of generation of
SNMP data is much smaller than packet or flow records,
nevertheless, it is useful to see the deltoids in this data
source over time.

A. Experiments with Standard Approaches

When we tested the quality of sampling and then computing
on the sampled data, we found that if the sampling rate was
large, say sampling and storing each update with probability
1
5 to 1

10 , then sampling gave a good approximation of the
correct answer. However, the group testing method stores an
amount of space that is essentially constant—it depends only
on the parameters ε and δ, and not on the size of the stream.
In order to make a fair comparison between our method and
sampling, we computed the space used by our method, and set
the sampling frequency to be such that the space used by the
sample was the same as our method. So we have plotted the
precision and recall of our method for varying ε, and plotted
the results for sampling with the same space at corresponding
x values. In each step, we multiply ε by a constant factor. By
doing this, we see that sampling is generally inferior to group
testing given equivalent space.

We also experimented with heuristics based on keeping
only the Heavy Hitters in each stream and basing the deltoids
on these. We omit full details of our experiments with this
heuristic for lack of space: in summary, we found the heuristic
to be highly unreliable, with overall poor precision and recall.

B. Group Testing for Absolute Deltoids

We conducted several experiments to determine the right
settings of parameters ε and δ to balance accuracy with time
and space consumption. We discovered that our group testing
method significantly outperformed the a priori worst case
guarantees given in Section IV. In particular, we found that
the system output very few false positives even with the
Verification stage bypassed. We also found that we could set
ε and δ to quite high values and still achieve near perfect
precision and recall.
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Fig. 2. Experiments on finding Absolute Deltoids
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Fig. 3. Experiments on finding Relative Deltoids

Figures 2 (a) and (b) show the precision and recall on
lbl-conn7. In our experiments on all data sources we found
that there were almost no items whose difference consumed
a very large fraction of the total difference (say, 10%). The
largest few deltoids have difference around 5%, and there are
typically around twenty in the range 1% to 0.5%. For our
experiments, we set the threshold φ to be 0.1%, meaning
there were between 100 and 200 deltoids. Interestingly, many
of the absolute difference deltoids, the largest few included,
were items whose difference was between a moderately large
item in the first stream and a larger value in the second,
meaning that they were distinct from the relative difference
deltoids. As in most of our experiments, group testing achieved
near perfect precision throughout, with little variation. Recall
improves as ε is shrunk, and reaches the optimal value around
ε = φ

10 . Figure 2 (c) shows the effect of varying δ on recall for
phone data (precision was 1 throughout). We see that although
decreasing δ always improves recall, beyond δ = 0.25 the
effect is very small, meaning that it suffices to set δ = 0.25,
corresponding to two copies of the identification test.

C. Group Testing for Relative Deltoids

Finding relative difference deltoids turned out to be the most
challenging problem. Setting the right value of φ is important
here: set φ too low and everything is a deltoid, set it too
high and there are no deltoids. It is therefore an important
feature of our method that φ can be specified at query time:
only ε needs to be chosen in advance. The relative difference
deltoids were items which were moderately large in the first

stream, but whose count had dropped to zero or single digit
figures in the second stream. This makes them challenging
to find. In Figure 3 (a) and (b) we see that Group Testing
outperforms sampling over most settings of ε. Acceptable
results are obtained when ε = φ

3 , and perfect results by the
time ε = φ

10 .
Figure 2 (c) shows the difficulties with certain data sets:

on SNMP data, if ε is not set low enough, then the recall
is highly variable, meaning that many deltoids are missed.
A lower δ helps somewhat, and the phenomenon disappears
when ε < φ

2 , meaning that it is vital to know approximate
upper bounds on φ for the traffic source of interest. In all
our experiments, we found that φ = 0.1% or 0.05% covered
the top two hundred deltoids; more than this is unlikely to
be informative, and already this is stretching the amount of
information a network manager will want to see.

D. Group Testing for Variational Deltoids

The results for variational deltoids are shown in Figure 4.
Here, group testing performed very well: good results were
achieved by setting ε > φ. We conjecture that this is partly due
to the way in which variational deltoids are defined: because
they are based on the square of the deviation from the mean,
this means that deltoids have a significantly larger difference
than non-deltoids (as contrasted with the relational case, where
we found that the difference of deltoids was not much different
to the difference of non-deltoids, contributing to the difficulty
of getting perfect precision). Optimal results were achieved on
the lbl-conn7 data set by setting ε = φ. Figure 4 (c) shows
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Fig. 4. Experiments on finding Variational Deltoids
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that for variational too, recall is improved by decreasing δ, but
that even for δ = 0.25 then optimal recall is achieved for a
modest value of ε relative to φ.

E. Space and Time Costs

We ran speed trials to determine whether our methods were
capable of operating at network line speeds. The results were
very encouraging. Our code was not optimized, and included
several routines for checking and supporting output for the
experiments, so we believe that an optimized implementation
running on dedicated hardware could improve the throughput
a lot. For each method, we computed how many items per
second the method could process (here, the items were taken
to be 32 bit IP addresses and packet sizes of traffic from each
address). The results are shown in Figure 5. We study the effect
of varying δ on the item processing cost: note that ε does not
factor in the update time, only in the space and query costs.

As expected, absolute and relative differences take about the
same time, since the update algorithms are almost identical.
For variational deltoids, we need to compute an additional
4-wise independent hash function; however, this additional
computation does not seem to have a disastrous impact in the
processing speed, and reduces the packet processing right by
an average of about a third. Since in our earlier experiments,
we saw that setting δ = 0.5 gives high output quality, then
we benchmark our system as capable of processing around 1
million items per seconds. This means that it is easily capable
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of processing traffic rates on 100Mbs links, and with some
work then 1Gbps and higher are within reach.

The space usage was also reasonable. Figure 6 shows how
the space needed varies as a function of ε and δ. In our
previous experiments, we determined that the very highest
difference deltoids occur around φ = 5%, and so can be found
with very small space—say, around 10k. For the top ten or
twenty deltoids, then setting φ = 0.5% sufficed, meaning we
need around 100k to find them. To find the top one hundred
to two hundred deltoids, this gives a space requirement of
between 500k and at most 2 or 3Mb per stream. In practice,
a network manager will only want to see the very highest
deltoids, or those which consume more than a small fraction
of the total bandwidth.

VI. EXTENSIONS

We consider a number of ways in which our work can be
extended. Our ongoing work is to experimentally study our
algorithmic these extensions.

• Comparing Different Time Windows, Speeds, Granu-
larity and Predictions. Throughout this work, we have
assumed that pairs of streams represent the same traffic
volume, so that values for each item are comparable.
But we would also like to be able to compare, say, the
traffic in the last hour to the traffic in the last week,
or the traffic on a fast link to the traffic on a much
slower link. The solution is to scale all traffic linearly



so that the two streams have the same scaled traffic.
An important consequence of the linearity of the tests
in our algorithms is that such scaling by α can be done
by scaling all values stored in the tests by α. Similarly,
one can take our data structure for the interfaces and add
them to consider the total traffic per router or take that
for each hour and add them up to consider total traffic
per day, etc. because of this linearity; hence, our methods
work for different granularities. This also allows a wide
variety of predictive models to be tested. Comparing
the last hour to the current hour can be thought of a
prediction that subsequent hours should look similar. The
deltoids are the items which are behaving differently to
how they are predicted. Other prediction models—say, an
average of the last 24 hours, or an exponentially weighted
average—can be made by making the appropriate linear
combination of tests for the past data.

• Faster Implementation. Our current implementation is
fairly fast, but there are some improvements that may
speed up the stream processing. First, we observed in the
course of our experiments that sampling at a sufficiently
high rate (say, 10 - 20%) preserves most of the deltoids.
(The same is not true when we sampled to 1% or lower.)
This suggests that if we first sample the stream as it
arrives, and pass only the sampled items to the group
testing, then this should still find most deltoids, while
increasing the capacity of the system by a factor of 5–
10. Another direction is to try to speed up the update
procedure itself. One reason that it is slow is that it
considers a bit at a time of the index of the item. At
the cost of increasing the space used, we could consider
larger divisions: say, consider the index a byte at a
time, and keep 256 tests—one for each byte value. This
increases the space needed by a large factor—we need
256 tests per byte of the index, instead of 8—but results
in a theoretical speed up of a factor of 8.

There are a number of possible extensions that are not
fully answered; for example, we have focused on solving the
fundamental question of how to find and detect single items
which exhibit difference. Our methods extend to when the
items are multidimensional (so consider source and destination
address, instead of source or destination), or when they are
arranged into a hierarchy (such as network/subnet/address).
But hierarchical data such as the IP universe presents a
new challenge: here, the aim is to find prefix deltoids which
consume φ of the total difference after the contribution of any
deltoids that share this prefix have been discounted. A version
of group testing in order to find hierarchical heavy hitters is
described in [8], the deltoid problem on hierarchies is yet to
be solved.

VII. RELATED WORK

There has been some recent work on finding various del-
toids. A significant contribution [25] propose a set of methods
to find changes in network data, which fall into the category we
term “Sketch-based methods” in Section II-B. Much of their

work is complementary to ours, since they propose a variety of
“prediction methods” to compare the observed counts against
predictions based on past observations. When there is a signif-
icant (absolute) difference between the count and the predicted
count, the item is output. Throughout, we have assumed the
simplest prediction model: comparing the value of each item
to its value in another time period or in another location.
But the prediction methods proposed in [25] are based on
linear transformations of previous readings (average, weighted
average, etc.) and so can be applied here by performing the
same transformation on the values stored in the test data
structures. However, a different method is proposed for finding
the items that are changed, based on building sketches of the
data as it is observed. As we pointed out in Section II-B,
this limits the applicability of this approach. While deltoids
can be found online by querying the sketch every time an
item arrives, it is not possible to use this approach offline:
after a stream has been seen, to compare it to the summaries
of several other streams, and find deltoids between each (or
linear combinations of each). This shows the strength of the
group testing approach: deltoids can be found in both the
online scenario and the offline one. The methods we have
described here not only solve the absolute difference problem
considered in [25], but also apply to the relative and variational
cases. Similarly, in [6], the authors considered the problem
of finding absolute deltoids, but their method took two passes
over the data. In contrast, our result here finds absolute deltoids
in one pass. The authors in [6] explicitly left finding relative
deltoids on data streams as an open question; this problem is
also explicitly stated in the context of web search traffic as
an open problem in [22] where it is called the problem of top
gainers and losers. In this paper, we give the first solution to
the problem of finding relative deltoids.

The problem of finding absolute deltoids was also studied
in a recent paper [14] where the authors consider reporting
“compressed deltas” which may be thought of as “hierarchical
absolute deltoids” from Section VI. The authors propose
algorithms based on finding heavy hitters in each stream and
using that to prune the search space for finding absolute
deltoids. The pruning is done either in multiple passes, or
by using the candidates from one stream to search the other.
These approaches do not give a provable guarantee on the
quality of absolute deltoids that are reported, as we are able to
do. However, [14] highlights the challenges of network traffic
data analyses we address, and a good discussion of the issues
and difficulties.4

A number of results are known which are somewhat related
to ours. For example, various norm aggregates of differences
have been studied in the data stream context including L1

norm [18], Hamming norm [7], etc. These methods provide
estimates of the norm, say sum total of the differences, but do
not explicitly determine the items that have large differences.

Combinatorial group testing (CGT) has a long history [13]

4This paper discusses “relative” deltoids, but relative to them means scaling
each data stream by a scalar, so that notion is different from our definition of
relative deltoids.



because it has myriad applications. CGT is inherent in small
space algorithms from learning theory [26] as well as data
stream algorithms for finding histograms and wavelets [20].
The problem of finding heavy hitters was addressed in [15]
where an item was a heavy hitter if it exceeds a fixed threshold.
More recently, we used CGT for finding heavy hitters in data
streams [10] for database scenarios where items are inserted
and deleted. Our work here extends this approach substantially
by introducing different group tests to find different deltoids,
thereby deriving powerful new results as well as making it a
general framework with many applications.

The area of data streams—designing algorithms that use
small space, handle updates rapidly, and estimating differ-
ent quantities of interest—has become popular in database
research, networking and algorithms. There have been tutori-
als [19], [31], workshops [2] and surveys [5], [29]. Our results
add to the growing set of techniques in this area.

VIII. CONCLUDING REMARKS

We initiated the study of finding significant differences in
network data streams, so that network managers can be kept
up to date with “what’s new”. Our methods require small
amounts of memory and operate very quickly, able to process
millions of records per second on a standard desktop computer.
Our solutions are all based on a structure of Combinatorial
Group Testing, which gives a flexible framework for detecting
any kind of difference, given a suitable test definition. The
structure can be used to find absolute, relative and variational
differences, between traffic in different time periods, interfaces
or routers. Different link speeds can be compensated for,
different prediction models used, and there are prospects for
pushing the data rate to hundreds of millions of packets
per second. The result is a scalable, effective method for
monitoring and analyzing traffic usage patterns as part of an
ongoing network management task.
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