
Efficient Interactive Proofs
for Linear Algebra

Christopher Hickey Graham Cormode

University of Warwick

Data, S, in
the Cloud

⊥ F(S)

Conversation

Conclusion

F(S)

F(S) = ?

Our Model – Streaming Interactive Proofs

Verifier Helper

Completeness
An honest helper will ALWAYS
convince the verifier

Soundness
A dishonest helper will ALMOST
NEVER trick the verifier

Costs in SIPs

Interactivity Number of rounds

Verifier Memory Working memory of the verifier

Communication Total communication sent in both directions

Verifier’s
Streaming Cost

Computational complexity of streaming in S

Verifier’s
Checking Cost

Computational complexity of streaming the
conversation

Helper
Overhead

Additional work required by the helper
beyond solving the problem

What Costs to Trade Off
“Non-interactive” costs

Verifier Memory

Verifier's Streaming Cost

Helper Overhead

Rule of thumb:

“Interactive” costs

Communication

Interactivity

Verifier's Checking Cost

Our work attempts to see which cost is best to relax in order to
minimize the total time of the protocol.

We focus on linear algebra, as this is a primitive for many problems,
and yields interesting examples.

Decreasing a non-interactive cost usually increases
some interactive cost, and vice-versa.

Warm-up: Inner Product

Method This Work
[CTY11]

Binary Sum-Check
[CMT12]

FFT and LDEs

“Non-
interactive”

costs

Total Communication 𝑑𝑛
1
𝑑 log 𝑛 𝑛

Verifier Checking Cost 𝑑𝑛
1
𝑑 log 𝑛 𝑛

Rounds 𝑑 − 1 log 𝑛 1

“interactive”
costs

Helper Overhead 𝑛 log 𝑛 𝑛 log 𝑛 𝑛 log 𝑛

Verifier Streaming Cost 𝑑𝑛1+
1
𝑑 𝑛 log 𝑛 𝑛 𝑛

Verifier Memory 𝑑 + 𝑛
1
𝑑 log 𝑛 𝑛

For two vectors of length 𝑛, ignoring constant factors.

Note that if we set 𝑑 = 2, we get [CMT12], and if we set 𝑑 = log 𝑛 we get [CTY11].

𝑛
1
log 𝑛 = 2

𝑑 is a variable parameter from 1 to log 𝑛 determining the number of rounds.

Matrix Multiplication

Method This Work
[Thaler13]

Binary Sum Check
[CH18]

Fingerprints

“Non-
interactive”

costs

Total Communication 𝑑𝑛
2
𝑑 log 𝑛 𝑛2

Verifier Checking Cost 𝑛2 + 𝑑𝑛
2
𝑑 𝑛2 + log𝑛 𝑛2

Rounds 𝑑 1 + log 𝑛 1

“interactive”
costs

Helper Overhead 𝑛2 log 𝑛 𝑛2 log 𝑛 1

Verifier Streaming Cost 𝑑𝑛2+
2
𝑑 𝑛2 log 𝑛 𝑛2 log 𝑛

Verifier Memory 𝑑𝑛
2
𝑑 log 𝑛 1

For two matrices of size 𝑛 × 𝑛, ignoring constant factors.

𝑑 is a variable parameter from 1 to log 𝑛 determining the number of rounds.

Motivation: Minimizing Total Time Taken

Number of rounds considering only communication for Matrix Multiplication
that decreases the total time to send all the data over all the rounds.

Less interactivity, even with more communication reduces overall time!

The question is now how much does this affect the other overheads?

Solution: Low Degree Extensions!
Consider a polynomial which passes through each data point 𝑖, 𝑣𝑖 .

We index the data via a hypercube 𝑙 𝑑 and create the unique polynomial of
degree 𝑙 in 𝑑 variables that passes through each data point.

Problem: Given streaming access to two data sets, how
can we check they’re the same (with high probability)?

We can evaluate this LDE at a random point in 𝔽𝑑
as we stream the data!

LDEs share many useful properties,

• The probability of two different vectors having
the same LDE evaluation at a random point is
very small

• LDEs have linearity

• They can be constructed in 𝑂 𝑛𝑙𝑑 time

LDEs can be used with the powerful sum-
check protocol [LFKN92] to sum a function
of the elements in a data set.

LDEs are very useful for making efficient
protocols for inner product and matrix
multiplication that use 𝑑 = log𝑛 and 𝑙 = 2.

Problem: Given 𝑢, 𝑣 ∈ 𝔽𝑛, how can we check the inner
product 𝑢𝑇𝑣? [CTY11]

[CTY11] uses LDEs with 𝑛 = 𝑙𝑑, we represent the 𝑑-variate LDE of 𝑢 by 𝑢 and 𝑣 by 𝑣 . We
want to find

𝑢𝑇𝑣 = 𝑢𝑖𝑣𝑖

𝑛

𝑖=1

= ∙∙∙ 𝑢 𝑘1, … , 𝑘𝑑 𝑣 𝑘1, … , 𝑘𝑑

𝑙−1

𝑘𝑑=0

𝑙−1

𝑘1=0

They use a well-known protocol called ‘sum-check’ [LFKN92], a 𝑑-round protocol in which
the prover allows the verifier to check the following sum against a ‘secret’ constructed in
the streaming phase 𝑢 𝑟1, … , 𝑟𝑑 𝑣 𝑟1, … , 𝑟𝑑 .

The messages the prover sends are degree 2𝑙 polynomials, which the prover can create in
time 𝑂 𝑛𝑙𝑑 .

Problem: How were LDEs used to solve inner product?
[CTY11]

The protocol uses sum-check, this is a 𝑑-round protocol involving 𝑑 messages of 2𝑙 field elements.

Classification Cost (ignoring constant factors) Explanation

Interactivity 𝑑 𝑑 rounds

Verifier Memory 𝑙 + 𝑑 Needs to store 𝑟, and 𝑙 evaluations of 𝑔𝑗

Communication 𝑙𝑑 𝑑 messages of 2𝑙 field elements

Verifier’s
Streaming Cost 𝑑𝑛1+

1
𝑑 Evaluating 𝑢 𝑟1, … , 𝑟𝑑 𝑣 𝑟1, … , 𝑟𝑑

Verifier’s
Checking Cost

𝑙𝑑 𝑙 evaluations of 𝑔𝑗, 𝑑 times

Helper
Overhead

𝑛𝑙𝑑 Forming 𝑔𝑗 for 𝑗 in 1, 𝑑

[CTY11] note that using 𝑙 = 2 and 𝑑 = log𝑛 minimizes many costs, but with the cost of maximum interactivity.

Problem: How can we make [CTY11] variable-round
without sacrificing Helper Overhead?

[CMT12] introduced a non-interactive protocol that massively reduced the helper overhead to
𝑛 log 𝑛 where the prover uses convolutions and fast fourier transforms.

We generalize this result to variable round protocols, as well as implementing a ‘stop-short’
reduction in sum-check to allow the protocol to run in 𝑑 − 1 rounds.

Note that even with this adaptation, the memory efficient method is to use 𝑑 = log𝑛. We aim to
show experimentally that in practice, it’s often most time efficient to use as much memory as you
have available.

However, the main motivation behind this protocol is how we can use it as a primitive for other
protocols.

Problem: Vector-Matrix-Vector Multiplication

A first example of how to use this primitive is a nifty algebraic trick for multiplying two
vectors 𝑢, 𝑣 ∈ 𝔽𝑛 and 𝐴 ∈ 𝔽𝑛×𝑛 we can verify 𝑢𝑇𝐴𝑣 by considering

𝑢𝑇𝐴𝑣 = 𝑢𝑖𝐴𝑖𝑗𝑣𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= 𝑢𝑣𝑇 𝑣𝑒𝑐 ∙ 𝐴𝑣𝑒𝑐

Where the subscript 𝑣𝑒𝑐 refers to a canonical transformation from a matrix to a vector.

Using the inner product protocol on the LDEs of 𝐴 and 𝑢𝑣𝑇 gives us a protocol with
communication and space costs O 𝑙2𝑑 and 𝑑 rounds.

Note we can use the inner product protocol as we can construct 𝑢𝑣𝑇 (𝑟1, 𝑟2) using
𝑢 𝑟1 𝑣 𝑟2 .

Problem: Matrix Multiplication

For matrices A, B ∈ 𝔽𝑛×𝑛 we will have to
verify that a sent matrix is correct, not
just a scalar.

[Thaler13] uses LDEs for verification, and
uses log 𝑛 rounds and the inner product
definition of matrix multiplication.

We use fingerprints in conjunction with
our inner product protocol, however
implement the outer-product definition
of matrix multiplication.

For a vector v ∈ 𝔽𝑛, the fingerprint
of 𝑣 with respect to 𝑥 ∈𝑅 𝔽 is:

𝑓𝑥 𝑣 = 𝑣𝑖𝑥
𝑖

𝑛−1

𝑖=0

Fingerprints have the property
𝑓𝑥 𝑢

𝑇𝑣 = 𝑓𝑥𝑛 𝑢 𝑓𝑥 𝑣 [CH18].

We define fingerprints for matrices
analogously.

Problem: Matrix Multiplication

For matrices A, B ∈ 𝔽𝑛×𝑛 we will have to verify that a sent matrix is correct, not just
a scalar.

Fingerprints are useful with the following identity

𝑓𝑥 𝐴𝐵 = 𝑓𝑥𝑛 𝐴𝑖
↓ 𝑓𝑥 𝐵𝑖

→

𝑛

𝑖=1

=
𝑓𝑥𝑛 𝐴1

↓

⋮
𝑓𝑥𝑛 𝐴𝑛

↓
∙ 𝑓𝑥 𝐵1

→ ⋯ 𝑓𝑥 𝐵𝑛
→

To use our inner product protocol, the verifier simply needs to be able to find the
LDE of these two vectors at a random point, which it can using the linearity of
fingerprints and LDEs.

Practical Analysis – Matrix Multiplication

Classification Costs How we’ll time it

Interactivity 𝑑 The latency between each machine × number of rounds × 2

Verifier Memory 𝑑𝑛
2
𝑑 n/a

Communication 𝑑𝑛
2
𝑑 The bandwidth to send all the messages × communication

Verifier’s
Streaming Cost 𝑑𝑛2+

2
𝑑 The time for the verifier to form the secret.

Verifier’s
Checking Cost 𝑛2 + 𝑑 + 𝑛

2
𝑑 The time to fingerprint the matrix, and then run the interactive protocol.

Helper
Overhead

𝑛2 log 𝑛 The cost of producing the sum-check polynomials.

Classification Costs How we’ll time it

Interactivity 𝑑 The latency between each machine × number of rounds × 2

Verifier Memory 𝑑𝑛
2
𝑑 n/a

Communication 𝑑𝑛
2
𝑑 The bandwidth to send all the messages × communication

Verifier’s
Streaming Cost 𝑑𝑛2+

2
𝑑 The time for the verifier to form the secret.

Verifier’s
Checking Cost 𝑛2 + 𝑑 + 𝑛

2
𝑑 The time to fingerprint the matrix

The time taken to run the
interactive protocol

Helper
Overhead

𝑛2 log 𝑛 The cost of producing the sum-check polynomials.

Classification Costs How we’ll time it

Interactivity 𝑑 The latency between each machine × number of rounds × 2

Verifier Memory 𝑑𝑛
2
𝑑 n/a

Communication 𝑑𝑛
2
𝑑 The bandwidth to send all the messages × communication

Verifier’s
Streaming Cost 𝑑𝑛2+

2
𝑑

We will not time this, as it happens concurrently to seeing the data, which
can happen at any point prior to the protocol starting.

Verifier’s
Checking Cost 𝑛2 + 𝑑𝑛

2
𝑑 The time to fingerprint the matrix

The time taken to run the
interactive protocol

Helper
Overhead

𝑛2 log 𝑛 The cost of producing the sum-check polynomials.

Practical Analysis – Matrix Multiplication
Using bandwidth of 100Mbps

And Latency of 20ms
Interactivity Communication

Verifier’s Checking
cost

Verifier’s Checking
cost

Helper
overhead

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)
Fingerprinting AB

(ms)
Interactive Stage

(ms)
Forming messages

(ms)

212

2 12

8 4

64 2

216

2 16

16 4

256 2

218

2 18

8 6

512 2

Using bandwidth of 100Mbps
And Latency of 20ms

Interactivity

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)

212

2 12 440

8 4 120

64 2 40

216

2 16 600

16 4 120

256 2 40

218

2 18 680

8 6 200

512 2 40

Using bandwidth of 100Mbps
And Latency of 20ms

Interactivity Communication

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)

212

2 12 440 0.014

8 4 120 0.015

64 2 40 0.041

216

2 16 600 0.019

16 4 120 0.031

256 2 40 0.163

218

2 18 680 0.022

8 6 200 0.026

512 2 40 0.328

Using bandwidth of 100Mbps
And Latency of 20ms

Interactivity Communication
Verifier’s Checking

cost

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)
Fingerprinting AB

(ms)

212

2 12 440 0.014 150

8 4 120 0.015 150

64 2 40 0.041 150

216

2 16 600 0.019 40000

16 4 120 0.031 40000

256 2 40 0.163 40000

218

2 18 680 0.022 600000

8 6 200 0.026 600000

512 2 40 0.328 600000

Using bandwidth of 100Mbps
And Latency of 20ms

Interactivity Communication
Verifier’s Checking

cost
Verifier’s Checking

cost

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)
Fingerprinting AB

(ms)
Interactive Stage

(ms)

212

2 12 440 0.014 150 0.009

8 4 120 0.015 150 0.035

64 2 40 0.041 150 0.043

216

2 16 600 0.019 40000 0.006

16 4 120 0.031 40000 0.046

256 2 40 0.163 40000 1.700

218

2 18 680 0.022 600000 0.006

8 6 200 0.026 600000 0.030

512 2 40 0.328 600000 6.400

Using bandwidth of 100Mbps
And Latency of 20ms

Interactivity Communication
Verifier’s Checking

cost
Verifier’s Checking

cost
Helper

overhead

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)
Fingerprinting AB

(ms)
Interactive Stage

(ms)
Forming messages

(ms)

212

2 12 440 0.014 150 0.009 0.23

8 4 120 0.015 150 0.035 0.10

64 2 40 0.041 150 0.043 0.11

216

2 16 600 0.019 40000 0.006 3.50

16 4 120 0.031 40000 0.046 1.60

256 2 40 0.163 40000 1.700 1.80

218

2 18 680 0.022 600000 0.006 14.10

8 6 200 0.026 600000 0.030 6.30

512 2 40 0.328 600000 6.400 7.80

Practical Analysis – Matrix Multiplication
Using bandwidth of 100Mbps

And Latency of 20ms
Interactivity Communication

Verifier’s Checking
cost

Verifier’s Checking
cost

Helper
overhead

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)
Fingerprinting AB

(ms)
Interactive Stage

(ms)
Forming messages

(ms)

212

2 12 440 0.014 150 0.009 0.23

8 4 120 0.015 150 0.035 0.10

64 2 40 0.041 150 0.043 0.11

216

2 16 600 0.019 40000 0.006 3.50

16 4 120 0.031 40000 0.046 1.60

256 2 40 0.163 40000 1.700 1.80

218

2 18 680 0.022 600000 0.006 14.10

8 6 200 0.026 600000 0.030 6.30

512 2 40 0.328 600000 6.400 7.80

This is independent of interactivity!

Practical Analysis – Matrix Multiplication
Using bandwidth of 100Mbps

And Latency of 20ms
Interactivity Communication

Verifier’s Checking
cost

Verifier’s Checking
cost

Helper
overhead

Matrix Size
(𝑛 = 𝑙𝑑)

l d
Latency

(ms)
Bandwidth

(ms)
Fingerprinting AB

(ms)
Interactive Stage

(ms)
Forming messages

(ms)

212

2 12 440 0.014 150 0.009 0.23

8 4 120 0.015 150 0.035 0.10

64 2 40 0.041 150 0.043 0.11

216

2 16 600 0.019 40000 0.006 3.50

16 4 120 0.031 40000 0.046 1.60

256 2 40 0.163 40000 1.700 1.80

218

2 18 680 0.022 600000 0.006 14.10

8 6 200 0.026 600000 0.030 6.30

512 2 40 0.328 600000 6.400 7.80

The latency dominates the other costs significantly, and this would still be the case even with a latency of 5ms.

This clearly demonstrates the location of the time bottle-neck in this protocol.

Interactivity and verifier memory

• The time bottleneck is the latency between the
verifier and the prover, dominating the other
costs that decrease with increased interactivity.

• This leads us to want to reduce the interactivity
as much as the verifier’s memory (𝑂(𝑙2𝑑)) will
let us.

• For example, for 𝑛 = 218, optimality will likely
be with a 6 round protocol.

For a matrix of size 𝒏 = 𝟐𝟏𝟖

𝒍 𝒅 𝒍𝟐𝒅

2 18 72

4 9 144

8 6 384

64 3 12288

512 2 524288

Closing Thoughts

• For our applications, where the problem is highly structured, the
interactive protocols are very efficient.

• By adapting [CMT12]’s FFT protocol for binary sum-check to arbitrary sum-
check, we achieve faster protocols than previously possible.

• We demonstrate how using certain applications are better with LDEs and
some with fingerprints, and show some useful algebraic tricks to apply.

• Latency is the dominant time bottleneck.

• The most efficient protocol for the verifier will be to use as much memory
as possible, even though the asymptotics say more interactivity is better.

• A large cost for the verifier is the initial streaming phase. Additional work
could be done to uncover efficiency tricks to find the secret.

Any Questions? Email C.Hickey@warwick.ac.uk

