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Federated Computation

● Privacy-preserving computations distributed over collections of users at web scale

○ Can be thought of as “A privacy-preserving MapReduce”

● Data stays on client devices, only sufficient statistics are shared: data minimization, purpose limitation

● Additional privacy comes from (local or central) differential privacy and secure multiparty computation

● Federated Computation has been widely adopted in practice (Google, Apple, Meta, etc.)

● Often combined with Differential Privacy (DP) to obtain formal privacy guarantees
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There’s more to life than learning…

Most work has been on Federated Learning (FL) which concentrates on the core training procedure

● Typically, via collection of gradients from batches of clients over multiple epochs

A complete end-to-end federated ML solution has many additional steps: 

● Feature selection

● Feature normalization

● Model calibration and evaluation 

● Model maintenance / checking

These steps share the same privacy concerns as the core FL training

We badge these as “Federated Computation Beyond Learning” 
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Outline

Overview of three recent works looking at different aspects of federated computation:

● Baseline federated pre-training for feature selection (CCS 2022)

● Post-processing: federated AUC measurement (VLDB 2023) 

● Synthetic Data Generation in the Federated Setting (KDD 2024)

Open problems and future work
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Federated Boosted Decision Trees 
with Differential Privacy
Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, Somesh Jha
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Federated Boosted Decision Trees 

● Goal: To develop accurate, lightweight GBDT methods for the federated setting, under DP

● Motivation:

○ “Simple” baseline models that could be used in the federated (i.e., distributed and private) setting

○ Features chosen by decision trees are most important: addresses feature selection

● Some prior work has looked at related questions:

○ Existing private tree-based methods focus on central DP and only on decision trees (DTs) or RFs

○ Existing federated GBDT methods lack DP

■ Opportunity to study private boosting and adopt tight privacy accounting methods like Rényi DP

● Horizontal Federated model : each client holds some data over all features
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Recap: Gradient Boosted Decision Trees (GBDTs)

Decision Trees (DTs): Hierarchical model based on binary splits

● Each internal node splits the dataset depending on a condition e.g., age <= 30

● Each leaf node of the tree contains a weight for prediction

Random Forests (RFs):

● Build an ensemble of independent DTs in parallel

● RF predicts the average or majority vote of each tree

Gradient-boosted Decision Trees (GBDT):

● ‘Boost’ a set of weak learners by building models iteratively

● Trees are built (sequentially) at each round on residuals from previous rounds

Many popular centralized GBDT implementations: XGBoost, LightGBM, CatBoost
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Private GBDT Framework

Break the GBDT algorithm into 3 main components:

● (C1) Split Method: “Decide which split to pick”

● (C2) Weight Update Method: “Computing the leaf weights”

● (C3) Split Candidate Method: “Computing candidate splits”

All three require querying the data (with DP noise for privacy)
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C1: Split Methods

● Histogram-based (Hist): 
○ Compute a (private) histogram over split-candidates and use this to find split-scores at each level

○ Scores can be computed easily under secure aggregation + DP

● Partially Random (PR): 
○ Pick a random split-candidate for each feature and compute split scores

● Totally Random (TR): 
○ Pick a feature, split-candidate pair completely at random

○ Requires only perturbing leaf weights
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C2: Weight Updates

● Averaging: (zeroth order) compute class probabilities of leaf nodes and average across each tree
○  Leads to Random Forest updates

● Gradient: (first order) just use gradient information g
i
 to update weights

○ Leads to standard GBDT updates

● Newton: (second-order) use both gradient and Hessians g
i
, h

i
 to compute weights

○ Leads to XGBoost updates  

All three can be done via a single aggregation operator that computes a (secure, private) vector sum
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C3: Split Candidates

● Quantiles (non-private): Standard method used for GBDTs

● Uniform: Uniformly divide up features over their range

● Log: Divide uniformly over the log of a feature

● Iterative Hessian (IH):
○ Mimics XGBoost to form quantile sketches where Hessians 

are used as weights

○ Forms a private Hessian histogram over current split 

candidates by iteratively splitting/merging bins over s steps
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Results C1 & C2: Split Methods and Weight Updates

Varying split-methods on benchmark Credit 1 data: 

Histogram, Totally random (TR), Partially Random (PR)

Conclusions: 

● TR competitive but typically requires many trees 

to get better results than histogram

● PR helps but still performs worse than TR
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Results C3: Split Candidates

Methods: Uniform, Log, Quantiles (non-private), IH

● For datasets with skewed attributes, IH performs best
○ For more candidates, uniform splits lose performance

Conclusion: 

● Refining split-candidates over rounds can help

● Only a small amount of budget needed for good results
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End-to-End Comparison

● Methods that replicate the centralized algorithm 

under DP perform worst 

(DP-GBM, FEVERLESS, DP-RF)

● Best results combine Newton updates, random 

splits, IH split candidates, large batches

Conclusions:

● The best individual components also work the 

best when combined together

● Batching updates reduces communication

● Best results close to non-private baselines
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Key Takeaways

● Can achieve good performance with few rounds of communication by batching random trees
○ Batching updates is advantageous when privacy budget is very small

● Proposing split candidates over multiple rounds can often lead to better utility 
○ BUT... do not waste 50% of your privacy budget doing so!

● Boosting doesn’t always have a clear advantage over RF in high privacy settings 
○ Some previous works have overstated performance of DP-GBDTs vs private RFs i.e., “GBDTs > RFs” 

●  Core message: Fully replicating the GBDT algorithm in the Federated setting is not ideal
○ Use “data-independent” or less data-intensive methods when possible
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Federated Calibration and 
Evaluation of Binary Classifiers
Graham Cormode, Igor L. Markov
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Federated Post-training statistics

Given a (binary) classifier that has been trained, we want to evaluate:

● ROC AUC (Area Under Curve): a measure of quality of the classifier

● Calibration curves: a function to accurately measure the confidence of a prediction

● Other metrics: the precision, recall, accuracy etc. …  

In the federated setting, each client holds examples with a ground truth label (positive or negative)

We show how to capture these via (federated) histogram and quantile primitives
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Area Under Curve

Given the score function, we predict x is positive if s(x) > T, else negative

Different choices of T give false positive (FP) / false negative (FN) tradeoffs

Receiver Operator Characteristic curve: plot FPR against TPR as T varies;

Area Under Curve (AUC) measures the tradeoff, between 0.5 and 1.0

Basic calculation: sort examples by score, numerically integrate (quadrature)

But there are equivalent combinatorial calculations: 

● Compute sum of ranks of positive examples in sorted scores as S

● AUC = (S - ½n+(n+ - 1)) / (n+n-), where n+ (n-) are the number of positive (negative) examples

● This effectively computes the number of (positive, negative) pairs that are disordered by s

T=0

T=1
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Federated Area Under Curve

We make use of histograms to capture information about the classifier behaviour via secure aggregation:

Divide scores into B equal size bins, build histograms of number of negatives and positives in each bin

Compute AUC from histogram approximation by one of two (numerically equivalent) options:

a) Treating the bins as piecewise constant score function, and performing quadrature; or

b) Apply the combinatorial calculation based on sum of ranks of positive examples

Error decays as O(1/B2) under smoothness assumption on score function, or O( (1/B + 1/ε)1/B) with ε-DP
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Federated Primitives

Computation of the tasks is enabled by a few basic primitives: 

● Quantile computation (of the score distribution)

● Histogram materialization (of the positive and negative counts)

● Mean estimation (of other quantities)

All three of these are implementable in the Federated setting in different privacy models

● Secure Aggregation: server only sees the result of the aggregation computation

● Local DP: each client message achieves differential privacy locally

● Distributed DP: the clients each add enough noise so that the sum is DP
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Federated AUC Results

● Error quickly becomes negligible (10-3 with 20 buckets, 10-4 with 60 buckets) for no noise (left)

● For distributed DP noise (centre), error plateaus at around 0.002

● 10-20 buckets achieves < 0.005 error for Local DP noise (right)
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Federated Synthetic Data with 
FLAIM
Graham Cormode, Sam Maddock, Carsten Maple
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Federated Synthetic Data

Synthetic Data is an important tool in working with private data 

● Train a generative model on a private data set

● Ensure that the parameters are learned with a (differential) privacy guarantee

● Generate arbitrary amounts of realistic synthetic data without privacy constraints

● Enables many downstream applications for data exploration and modeling

Federated Synthetic Data follows the description, but the private training data is held by distributed clients
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Challenges to Federating Synthetic Data Generation

In the federated setting, we need to ensure that:

● The privacy guarantees are met for each client

● The coordinating server is not exposed to private data

● The communication cost of the training is bounded

● Messages are sent securely and do not leak information

● The resulting model is sufficiently accurate
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AIM: Adaptive and Iterative Mechanism

We start with a state-of-the-art approach to synthetic data generation in the centralized setting

“AIM: An Adaptive and Iterative Mechanism for Differentially Private Synthetic Data”, McKenna et al. 2022

The data is represented based on marginal distributions over combinations of features

We make use of a “workload” set of queries, e.g., all pairwise feature distributions

● Select: (privately) select the query that is worst approximated by the current model

● Measure: (privately) perform the selected query on the private data and update the model

● Generate: use the updated model to generate a new set of synthetic data
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FLAIM: Federated Learning AIM 

The core of our approach is to translate the centralized algorithm into the federated setting: 

● Perform some number of steps of the AIM algorithm locally at each client

○ Apply regularization to prevent overfitting the local distribution (heterogeneity)

● Periodically, update the central statistics by combining all client reports, tracking privacy budget

○ Client updates are weighted based on the noise added and number of examples

● The server finds the new model, choosing the new parameters to minimize a loss function

For more details, see the main presentation/poster at KDD24 on Tuesday 27th August
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Experimental Set up

We implement and evaluate three variants as well as the original (centralized) AIM: 

● DistAIM: a synchronous (expensive) translation of AIM to the federated setting on a sample of clients

● NaiveFLAIM, a first attempt to translate AIM to the federated setting

● AugFLAIM, FLAIM augmented with information on client heterogeneity to avoid overfitting

We measure workload error as we vary privacy budget, number of rounds, and fraction of participating clients
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Experimental results

● Augmenting FLAIM with knowledge of client heterogeneity improves accuracy

● FLAIM can approach accuracy of centralized and (non-private) distributed AIM
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Concluding Remarks

There’s more to life than learning: many other ML/DM tasks are needed in the federated setting

Future work: post-training model calibration, data distribution drift measurement, richer analytics

More generally, one can think of many other tasks in federated setting

● Data analysis – querying and mining

● General purpose federated data querying systems? 

● Explore other models of distributed data privacy for computation

● Debugging other federated workflows
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