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Oversensitivity

X:
Y:
L
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Y looks more similar to X, but ||X-Y]|, = 94,

Want a metric which is less sensitive to size of

differences

IX-Z]|; = 51

al

In some situations, L, and L, are too sensitive to the
values in the vectors:




Introducing L,
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Define L, norm (abusing terminology a little):

X[l = X X
Xi=0=XP=0

L, norm counts number of non-zero entries in
the vector

Closely connected to F,, zeroth Frequency
Moment of a stream



L, Metric
L, Metric is
IX-Yllo = {i | X;# Y}

Just count the number of locations where two
vectors differ.
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For strings this corresponds to the Hamming
metric.



Uses of L,

Many applications of L, norms and metric

* Machine Learning — used as an evaluation
function

e Data Cleaning — find tables that are almost
identical

e String Similarity (substitution errors)
e Clustering — less sensitive to outlier values

e Count number of distinct items in a stream



Embedding into L,
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Let U(j) = bitstring that is all zeros, apart from
1in j'th location

Set U(X) = U(X,)U(X,)...U(X.)
Then |IX = Y|l, = %2 [JUX) = UY)]I

L, metric on integer valued vectors trivially
embeds into L, (equivalently, L,2or L P):

So, what's the problem?



Drawbacks
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* The embedding only works in the sketch
model — if the whole vector is available

* |f a large vector is presented incrementally
(in a streaming fashion with small space),
can't make the embedding incrementally

e Example: tracking information about tables
in databases, want to find near duplicates

e Tables are frequently updated with inserts
and deletes, want to maintain information
without rescanning



Incremental Model
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e Can model most scenarios as a vector

e Example Vector a represents counts of each
attribute value in a table

e Vectors defined incrementally by updates
(i,))

* (i,J) means add j to entry i in the (initially
zero) vector a



Goal

Given vectors a, b, c... presented in this
incremental format, want to be able to maintain
a small space summary (sketch) of each vector.

Use this sketch to approximate (with guarantees):
— L, norm of any vector: ||all,, I|bllo, ---
— L, difference of any pair: |la—bj|,, lla—cll, ---
— Union size of subset: |la + b +¢]|,

— Arbitrary combinations: |la + b—c¢ + .. ||,



Connection to F,
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Suppose all updates are of the form (i, 1)

Then ||a]|, is number of distinct i's seen in
stream = F_, zeroth moment of the stream

Fo = llally if j positive for all updates (i,j)

But not if j's are allowed to be negative — eg

if we are computing |

Many algorithms for

-, (Flajolet, Martin 83,

Bar-Yossef, Jayram, Kumar, Sivakumar 02,
Gibbons, Tirthapura 01 and more) but can't
handle negative updates.



Solution Method i

e Sketch will be a linear projection of the vector
with vectors with entries from appropriately
chosen distributions

e Will show how to maintain this projection in
small space

e Will show which distribution we want to draw
values from, and how to draw from it

e First, consider just L, norm of a single vector
and reduce the problem to a nearby norm...



Zeroing in on L, Norm

Suppose absolute value of any entry in the

vector < B

lally, =2 [a|° <X [g]P<

Setting BP = (1+¢€) means

lally < llall,? < (7

So setting p = ¢/ log B, al

¥ BP |a;|%< BP [lall

+¢) |lally

OWS approximation

of Ly by L,— reducing p zeros in on L,
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Stable Distributions

Let X be a random variable distributed with a
stable distribution. Stable distributions have
property that

in dbn.
X1 +a,X+ ... a X, = @, a ..., a)ll,X
if X, ... X_ are stable with stability parameter p
Gaussian distribution is stable with parameter 2

Stable distributions exist and can be simulated
for all parameters 0 < p < 2.



Maintaining the Sketch i

Let x4 4...%, , be values drawn independently from
stable distribution with parameter p

Sketch s is s, ... s, for small k, initially O
Maintain s; = a ® x; = a X 1 +aX;,+ ... 3%,
When (i,j) in the stream arrives, update sketch:

S| é S| i j*leifOI’| :1 tO k
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Finding the L, Norm

Use the sketch to approximate the L, norm

Compute ||d||, = median {|s,|P ... |s [P}

We know each s, is distributed as ||al|,X

median |5 |P distributed as median(|lal| *| X |P)
= |lall,> median(|X|P)

Set k = 3/¢2 log 1/0 repeats, and bound probability
that sampled values are far from true median
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Probability Calculation

Let min be defined by Pr[|X|P<min] = "2-¢

If Pr[| X|P<median|s|P/|lal|,P] < 72 - € then
median |s;|P/lla]l,P <min and at least k/2
values < min [this is a bad event]

Set indicators Y, = O if |s|P/[[a]l,P < min, else 1

Y,are independent, Pr[Y, = 1] = 2 + € and
E(Z Y|) — k(1/2 1n 8)

Bad event is indicated by XY,<k/2



Chernoff Bound i

Apply the Chernoff bound here: want to know
PriX Y, < k/2]

k/2 = k/2("2 + €)/(2 + €) = EEY)/(1 + 2¢)
~ (1 -2€)EXY))

So PrlX Y, < k/2] < exp(-k("2 + €)e?/2)
= exp(-3log 1/0 ("2 + €)/2)
< exp(-%2 log 1/0) < 0/2
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Similar argument to show same 6/2 bound for (1+¢)

Using the bound

So Pr[Pr[|X|P<median|s/|P] < V2 -¢€] < 9/2

Writing F(x) for cumulative dbn function of | X|P:
PriF(median|s;|P) e [ /2-¢ 72> + €]l > 1-0
Primedian|s;|P e [F'("2 - €), F1("2 + ¢)]] > 1-3
Primedian |s;| e [F'("2)(1-O(g)),F-1("2)(1+O(e)1]1>1-6

if the derivative of F is bounded around the median




Consequences

Pr[ (1-e) median|X|P < median|s|P /|lall,?

< (14+¢€) median|X|P] > 1-0

Overall probability we are within (1 =€) is>1- 0
Sets k = O(1/€? log 1/9) repetitions

But... need to generate values from stable dbns

need to store all x;; = O(kn) storage



Generating Stable Distributios

Compute r, 6 as uniform random variables in
range [0...1], [-t, 7]

Chambers, Mallows, Stuck 76:

P

sin pé (cos(@(l p)))p

stable(8,r, p) =
( P) cos'’” @ —Inr

stable(0, r, p) is distributed with stable
distribution with parameter p



Reducing space needs
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* X;; must be from stable distribution with parameter p
* X,; must be the same every time it is used

Generate values from a stable distribution using the
transform from uniform distributions

Use appropriately chosen pseudo-random number
generator to generate r, 6 as function of i,| and seed

Argue that this generates sufficient randomness, and
also only limited precision is needed.
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(1-¢) ||lall, < median(]|s,|P)/median |X|P < (1+¢€) |lall,
with probability 1-o

Guaranteed Accuracy

Final Result, with scaling of €

Space usage is small: the L, sketch consists of
O(1/¢? log 1/0) counters

Time per item is to update each counter,
O(1/¢? log 1/0)
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Complete Algorithm

initialize sk[1l.k] = 0.0

for all tuples (i1,3) do
initialize random with 1
for s =1 to k do

rl = random(); r2 = random()
sk[s] = sk[s]+j*stable(rl,r2,p)

for s =1 to k do

sk[s] = absolute(sk[s])r
return median(sk)*scalefactor(p)

Simple to implement, can run quickly, small space



Properties
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By linearity of the construction, all other
variations are straightforward to compute:

sk(a + b) = sk(a) + sk(b)
sk(a - b) = sk(a) - sk(b)

by linearity of dot product, so can approximate
la — bl|, and ||la + b]|, etc. with the same
accuracy (ie 1= € with probability 1-9).



Practical Issues: Speed
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e Speed bottleneck is in generating values from
stable distributions

e Use results from statistics to generate values
from a simpler dbn which have the same
distribution

e For any distribution, sum of multiple copies
of the same distribution will always tend to
be a stable distribution

e So look for a dbn that is in the “domain of
attraction” of a stable dbn with parameter p



Optimization

e Extended central limit theorem: a dbn is in the

domain of attraction of a stable dbn with parameter
p if F, its CDF, obeys

1 - F(x) + F(-x) = xP O(1)
* Let U = Uniform(-1,1), and set Y = sign(U)*|U|-"/p
 Then Y is in the domain of attraction of X(p).

* Replace X(p) with Y in the algorithm to speed up



Practical Observations
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e Accuracy is pretty good in practice

e Outperforms Flajolet-Martin probabilistic
counting to find distinct elements in
accuracy for same space usage

* With faster generation of values, also
competitive in time

e Other distinct element methods are
asymptotically faster, but less flexible



Applications
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* Now consider an application of L,
techniques to solve a novel problem.

e Consider data streams which consist of
many signals

* Reduce the problem to several L, norm
computations in small space



Multiple Signals

Previous work considers only a single signal at a
time

Many data streams consist of multiple signals
from several distributions, from which we want
to extract some global information

Examples:
— financial transactions from many different individuals

— web clickstreams from many users registered on
different machines

— multiple readings from multiple sensors in
atmospheric monitoring



Multiple Signal Model i

* Model stream of multiple signals S as simply
structured series of items

* nitems in the stream S=(i, a[i,j]) means ali,j]
is the value of distribution j at location i

e Assume: ali,jl is bounded by polynomial in n

* Don't assume that j is made explicit in stream
or that we see updates for every [i,j] pair.

e Number of signals and domain of signals is
too large to store explicitly



Dominance Norm
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e The dominance norm measures the “worst
case influence” of the different signals

* Defined as Dom(S) = X; max ; {ali,jl}

e A function of the marginals of a matrix of
the signal values

e Can also think of this as the L, norm of the
upper-envelope of the signals



Dominance Norm

A
N

 Maximum possible utilization of a resource
* Applied in financial applications, electrical grid

e Treat as an indicator of actionable events



Dominance Norm

e Suppose each ali,jl is O or 1
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* Consider each signal to define a set X, then

Dom(S) = Uj )(j

This can be solved with stream a
finding unions of multiple sets

gorithms for

Can also be thought of as counting the number

of distinct items i in the stream

Can this be generalized for arbitrary ali,j]?



Approximation




Approximation




Approximation

(14+¢€)>-(1+¢)4
——————————————————— (1+¢)4
2*[(1+¢€)4-(1+¢€)3]
e e (1+€)3
3*[(14+¢€)3-(1+¢)?]
e e — — — —— —— —— —— —— — p)
4*[(14¢€)2-(1+¢€)] (1 +8)
——————————————————— (1+¢)




Space Cost

* log,.. (max val / min val) distinct element

algorithm instances = O(log (n)/¢) instances

e Space required is O(poly-log(n)/e?) per
instance using existing techniques

e Total space is O(poly-log(n)/e3)

e Cubic space dependency on 1/¢ is high — can
do better by modifying L, norm solution



Approximation Algorithm i

* Make new sketch, set s, = O initially

* Let x;, be values drawn from Stable Distribution with
parameter p = ¢/log n.

e For every (i,ali,j]) in the stream,

z =17+ X2 x;,
e Repeat independently in parallel O(1/¢2 log 1/90)
times, then with probability at least 1-0,
(1-e)Dom(S) < median(|z|P) < (14+€)Dom(S)
median(|X|P)




Efficient Computation

* Direct implementation means adding afi,j]
values to the counters for every update

e But, each value is drawn from a stable

distribution, and we know sum of stables is a
stable

e Use similar trick to before, round to nearest
power of (1+¢€) and add the O(log (n)/¢)
values to the counters

e So update time is O(log (n)/€3)



Full results

* Approximate the Dominance norm within
1+¢ with probability at least 1-0 using
O(1/¢? log (1/9)) counters

* Time per update is O(1/¢3 log (1/9))

e Possible to ‘subtract off’ the effect of earlier
insertions — not possible with most distinct
element algorithms



Other Dominances
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* Natural questions: are other notions of
dominance on multiple streams tractable?

e Take Min-Dominance:
MinDom(S) = X; min ; {ali,j]}

e Let X,, X, be subsets of {1...n/2}.
Setali,jl=1< 1€ Xj

e Then MinDom(S) = [ X, N X, |

e Requires (n) space to approximate, even
allowing probability, several passes etc.



Extensions
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e Other reasonable definitions of dominances —
eg Median Dominance, Relative Dominance
between two streams, also require linear
space

e Are there other natural quantities which are
computable over streams of multiple signals?

e What quantities are good indicators for
actionable events?



Closed Problems?

e Q(1/€?) space is necessary [see David

Woodruff's talk today] but what about time?

 O(1/poly(e)) time is OK for database speeds,
but too long for network speeds.

* New technique from Piotr Indyk improves
update time to O(1)

* Method is more related to that of Flajolet-
Martin, with some clever use of hashing



Open Problems
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e To find new applications and improvements
of stable distributions to metric spaces and
embedding problems

* To find other applications for L, and related
metrics — L, generally not much studied for
non-integer p

* To find more uses of statistical distributions in
this area — approximate other normed spaces
with similar techniques

* To find some lunch



