

Zeroing in on the L₀ Metric

Graham Cormode graham@dimacs.rutgers.edu

Joint work with M. Datar, P. Indyk. S. Muthukrishnan

Oversensitivity

In some situations, L_1 and L_2 are too sensitive to the values in the vectors:

X:	6	5	4	3	2	1
Y:	100	5	4	3	2	1
Z:	12	12	12	12	12	12

Y looks more similar to X, but
$$||X-Y||_1 = 94$$
, $||X-Z||_1 = 51$

Want a metric which is less sensitive to size of differences

Introducing L₀

Define L₀ norm (abusing terminology a little):

$$||X||_{0} = \sum X_{i}^{0}$$

$$X_{i} = 0 \Rightarrow X_{i}^{p} = 0$$

$$X_{i} \neq 0 \Rightarrow X_{i}^{p} = 1$$

L₀ norm counts number of non-zero entries in the vector

Closely connected to F₀, zeroth Frequency Moment of a stream

L₀ Metric

L₀ Metric is

$$||X-Y||_0 = |\{i \mid X_i \neq Y_i\}|$$

Just count the number of locations where two vectors differ.

For strings this corresponds to the Hamming metric.

Uses of L₀

Many applications of L₀ norms and metric

- Machine Learning used as an evaluation function
- Data Cleaning find tables that are almost identical
- String Similarity (substitution errors)
- Clustering less sensitive to outlier values
- Count number of distinct items in a stream

Embedding into L₁

 L_0 metric on integer valued vectors trivially embeds into L_1 (equivalently, L_2^2 or L_p^p):

Let U(j) = bitstring that is all zeros, apart from 1 in j'th location

Set $U(X) = U(X_1)U(X_2)...U(X_n)$

Then $\|X - Y\|_0 = \frac{1}{2} \|U(X) - U(Y)\|_1$

So, what's the problem?

Drawbacks

- The embedding only works in the sketch model – if the whole vector is available
- If a large vector is presented incrementally (in a streaming fashion with small space), can't make the embedding incrementally
- Example: tracking information about tables in databases, want to find near duplicates
- Tables are frequently updated with inserts and deletes, want to maintain information without rescanning

Incremental Model

- Can model most scenarios as a vector
- Example Vector a represents counts of each attribute value in a table
- Vectors defined incrementally by updates

 (i,j)
- (i,j) means add j to entry i in the (initially zero) vector a

Goal

Given vectors a, b, c... presented in this incremental format, want to be able to maintain a small space summary (sketch) of each vector.

Use this sketch to approximate (with guarantees):

- L_0 norm of any vector: $||a||_0$, $||b||_0$, ...
- L_0 difference of any pair: $||a b||_0$, $||a c||_0$...
- Union size of subset: $||a + b + c||_0$
- Arbitrary combinations: $\|a + b c + ...\|_0$

Connection to F₀

- Suppose all updates are of the form (i,1)
- Then $||a||_0$ is number of distinct i's seen in stream = F_0 , zeroth moment of the stream
- $F_0 = ||a||_0$ if j positive for all updates (i,j)
- But not if j's are allowed to be negative eg
 if we are computing ||a b||₀
- Many algorithms for F₀ (Flajolet, Martin 83, Bar-Yossef, Jayram, Kumar, Sivakumar 02, Gibbons, Tirthapura 01 and more) but can't handle negative updates.

Solution Method

- Sketch will be a linear projection of the vector with vectors with entries from appropriately chosen distributions
- Will show how to maintain this projection in small space
- Will show which distribution we want to draw values from, and how to draw from it
- First, consider just L₀ norm of a single vector and reduce the problem to a nearby norm...

Zeroing in on L₀ Norm

Suppose absolute value of any entry in the vector < B

$$||a||_0 = \Sigma |a_i|^0 \le \Sigma |a_i|^p \le \Sigma B^p |a_i|^0 \le B^p ||a||_0$$

Setting $B^p = (1+\varepsilon)$ means

$$||a||_0 \le ||a||_p^p \le (1+\varepsilon) ||a||_0$$

So setting $p = \varepsilon / log B$, allows approximation of L_0 by L_p – reducing p zeros in on L_0

Stable Distributions

Let X be a random variable distributed with a stable distribution. Stable distributions have property that

$$a_1X_1 + a_2X_2 + \dots + a_nX_n = \|(a_1, a_2, \dots, a_n)\|_pX$$

if $X_1 \dots X_n$ are stable with stability parameter p

Gaussian distribution is stable with parameter 2

Stable distributions exist and can be simulated for all parameters 0 .

Maintaining the Sketch

Let $x_{1,1}...x_{k,n}$ be values drawn independently from stable distribution with parameter p

Sketch s is $s_1 \dots s_k$ for small k, initially 0

Maintain
$$s_1 = a \cdot x_1 = a_1 x_{1,1} + a_2 x_{1,2} + \dots a_n x_{1,n}$$

When (i,j) in the stream arrives, update sketch:

$$s_l \leftarrow s_l + j^* x_{l,i}$$
 for $l = 1$ to k

Finding the L₀ Norm

Use the sketch to approximate the L₀ norm

Compute $\|\hat{a}\|_0 = \text{median } \{|s_1|^p ... |s_k|^p\}$

We know each s_1 is distributed as $||a||_p X$

median $|s_l|^p$ distributed as median $(||a||_p^p|X|^p)$

= $||a||_p^p$ median($|X|^p$)

Set $k = 3/\epsilon^2 \log 1/\delta$ repeats, and bound probability that sampled values are far from true median

Probability Calculation

Let min be defined by $Pr[|X|^p < min] = \frac{1}{2} - \varepsilon$

If $\Pr[|X|^p < median |s_i|^p/||a||_p^p] < \frac{1}{2} - \varepsilon$ then $median |s_i|^p/||a||_p^p < min and at least k/2 values < min [this is a bad event]$

Set indicators $Y_1 = 0$ if $|s_1|^p/||a||_p^p < \min$, else 1

 Y_l are independent, $Pr[Y_i = 1] = \frac{1}{2} + \epsilon$ and $E(\Sigma Y_l) = k(\frac{1}{2} + \epsilon)$

Bad event is indicated by $\Sigma Y_1 < k/2$

Chernoff Bound

Apply the Chernoff bound here: want to know $Pr[\Sigma Y_1 < k/2]$

$$k/2 = k/2(\frac{1}{2} + \epsilon)/(\frac{1}{2} + \epsilon) = E(\Sigma Y_{||})/(1 + 2\epsilon)$$

$$\approx (1 - 2\epsilon)E(\Sigma Y_{||})$$

So
$$Pr[\Sigma Y_1 < k/2] < exp(-k(1/2 + \epsilon)\epsilon^2/2)$$

= exp(-3log
$$1/\delta$$
 (½ + ε)/2)

$$< \exp(-\frac{3}{4} \log 1/\delta) < \delta/2$$

Using the bound

So $Pr[Pr[|X|^p < median |s_1|^p] < \frac{1}{2} - \epsilon] < \frac{\delta}{2}$

Similar argument to show same $\delta/2$ bound for $(1+\epsilon)$

Writing F(x) for cumulative dbn function of $|X|^p$:

Pr[F(median $|s_j|^p$) $\in [\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon]] > 1-\delta$

Pr[median $|s_j|^p \in [F^{-1}(\frac{1}{2} - ε), F^{-1}(\frac{1}{2} + ε)]] > 1-δ$

Pr[median | s_j | \in [F⁻¹(½)(1–O(ε)),F⁻¹(½)(1+O(ε))]]>1-δ

if the derivative of F is bounded around the median

Consequences

Pr[(1-
$$\epsilon$$
) median $|X|^p \le \text{median} |s_l|^p / ||a||_p^p$
 $\le (1+\epsilon) \text{median} |X|^p] > 1-\delta$

Overall probability we are within $(1 \pm \epsilon)$ is $\geq 1 - \delta$ Sets $k = O(1/\epsilon^2 \log 1/\delta)$ repetitions

But... need to generate values from stable dbns need to store all $x_{l,i} = O(kn)$ storage

Generating Stable Distributions

Compute r, θ as uniform random variables in range [0...1], [- π , π]

Chambers, Mallows, Stuck 76:

$$stable(\theta, r, p) = \frac{\sin p\theta}{\cos^{1/p}\theta} \left(\frac{\cos(\theta(1-p))}{-\ln r}\right)^{\frac{1-p}{p}}$$

stable(θ, r, p) is distributed with stable distribution with parameter p

Reducing space needs

- x_{I,i} must be from stable distribution with parameter p
- x_{I,i} must be the same every time it is used

Generate values from a stable distribution using the transform from uniform distributions

Use appropriately chosen pseudo-random number generator to generate r, θ as function of i,l and seed

Argue that this generates sufficient randomness, and also only limited precision is needed.

Guaranteed Accuracy

Final Result, with scaling of ε

 $(1-\epsilon) ||a||_0 \le \text{median}(|s_1|^p)/\text{median} |X|^p \le (1+\epsilon) ||a||_0$ with probability 1-δ

Space usage is small: the L_0 sketch consists of $O(1/\epsilon^2 \log 1/\delta)$ counters

Time per item is to update each counter, $O(1/\epsilon^2 \log 1/\delta)$

Complete Algorithm


```
initialize sk[1...k] = 0.0
for all tuples (i,j) do
  initialize random with i
  for s = 1 to k do
    r1 = random(); r2 = random()
    sk[s] = sk[s]+j*stable(r1,r2,p)
for s = 1 to k do
  sk[s] = absolute(sk[s])^p
return median(sk)*scalefactor(p)
```

Simple to implement, can run quickly, small space

Properties

By linearity of the construction, all other variations are straightforward to compute:

$$sk(\mathbf{a} + \mathbf{b}) = sk(\mathbf{a}) + sk(\mathbf{b})$$
$$sk(\mathbf{a} - \mathbf{b}) = sk(\mathbf{a}) - sk(\mathbf{b})$$

by linearity of dot product, so can approximate $\|a - b\|_0$ and $\|a + b\|_0$ etc. with the same accuracy (ie $1 \pm \varepsilon$ with probability $1-\delta$).

Practical Issues: Speed

- Speed bottleneck is in generating values from stable distributions
- Use results from statistics to generate values from a simpler dbn which have the same distribution
- For any distribution, sum of multiple copies of the same distribution will always tend to be a stable distribution
- So look for a dbn that is in the "domain of attraction" of a stable dbn with parameter p

Optimization

 Extended central limit theorem: a dbn is in the domain of attraction of a stable dbn with parameter p if F, its CDF, obeys

1 -
$$F(x)$$
 + $F(-x)$ = x^{-p} O(1)

- Let U = Uniform(-1,1), and set $Y = sign(U)^* |U|^{-1/p}$
- Then Y is in the domain of attraction of X(p).
- Replace X(p) with Y in the algorithm to speed up

Practical Observations

- Accuracy is pretty good in practice
- Outperforms Flajolet-Martin probabilistic counting to find distinct elements in accuracy for same space usage
- With faster generation of values, also competitive in time
- Other distinct element methods are asymptotically faster, but less flexible

Applications

- Now consider an application of L₀ techniques to solve a novel problem.
- Consider data streams which consist of many signals
- Reduce the problem to several L₀ norm computations in small space

Multiple Signals

Previous work considers only a single signal at a time

Many data streams consist of multiple signals from several distributions, from which we want to extract some global information

Examples:

- financial transactions from many different individuals
- web clickstreams from many users registered on different machines
- multiple readings from multiple sensors in atmospheric monitoring

Multiple Signal Model

- Model stream of multiple signals S as simply structured series of items
- n items in the stream S=(i, a[i,j]) means a[i,j]
 is the value of distribution j at location i
- Assume: a[i,j] is bounded by polynomial in n
- Don't assume that j is made explicit in stream or that we see updates for every [i,j] pair.
- Number of signals and domain of signals is too large to store explicitly

Dominance Norm

- The dominance norm measures the "worst case influence" of the different signals
- Defined as Dom(S) = Σ_i max $_j$ {a[i,j]}
- A function of the marginals of a matrix of the signal values
- Can also think of this as the L₁ norm of the upper-envelope of the signals

Dominance Norm

- Maximum possible utilization of a resource
- Applied in financial applications, electrical grid
- Treat as an indicator of actionable events

Dominance Norm

- Suppose each a[i,j] is 0 or 1
- Consider each signal to define a set X_j, then

$$Dom(S) = |U_j X_j|$$

This can be solved with stream algorithms for finding unions of multiple sets

Can also be thought of as counting the number of distinct items i in the stream

Can this be generalized for arbitrary a[i,j]?

Approximation

Approximation

Approximation

Space Cost

- $log_{1+\epsilon}$ (max val / min val) distinct element algorithm instances = $O(log(n)/\epsilon)$ instances
- Space required is O(poly-log(n)/ε²) per instance using existing techniques
- Total space is $O(\text{poly-log}(n)/\epsilon^3)$
- Cubic space dependency on $1/\epsilon$ is high can do better by modifying L_0 norm solution

Approximation Algorithm

- Make new sketch, set $s_1 = 0$ initially
- Let $x_{i,k}$ be values drawn from Stable Distribution with parameter $p = \epsilon/\log n$.
- For every (i,a[i,j]) in the stream,

$$z = z + \sum_{k=1}^{a[i,j]} x_{i,k}$$

• Repeat independently in parallel O($1/\epsilon^2 \log 1/\delta$) times, then with probability at least 1- δ ,

$$(1-ε)Dom(S) \le median(|z|p) \le (1+ε)Dom(S)$$

median(|X|^p)

Efficient Computation

- Direct implementation means adding a[i,j] values to the counters for every update
- But, each value is drawn from a stable distribution, and we know sum of stables is a stable
- Use similar trick to before, round to nearest power of $(1+\epsilon)$ and add the $O(\log (n)/\epsilon)$ values to the counters
- So update time is $O(\log (n)/\epsilon^3)$

Full results

- Approximate the Dominance norm within $1\pm\epsilon$ with probability at least 1- δ using $O(1/\epsilon^2 \log (1/\delta))$ counters
- Time per update is $O(1/\epsilon^3 \log (1/\delta))$
- Possible to 'subtract off' the effect of earlier insertions – not possible with most distinct element algorithms

Other Dominances

- Natural questions: are other notions of dominance on multiple streams tractable?
- Take Min-Dominance:

$$MinDom(S) = \Sigma_i min_j \{a[i,j]\}$$

- Let X₁, X₂ be subsets of {1...n/2}.
 Set a[i,j]=1 ⇔ i ∈ X_j
- Then MinDom(S) = $|X_1 \cap X_2|$
- Requires $\Omega(n)$ space to approximate, even allowing probability, several passes etc.

Extensions

- Other reasonable definitions of dominances eg Median Dominance, Relative Dominance between two streams, also require linear space
- Are there other natural quantities which are computable over streams of multiple signals?
- What quantities are good indicators for actionable events?

Closed Problems?

- $\Omega(1/\epsilon^2)$ space is necessary [see David Woodruff's talk today] but what about time?
- O(1/poly(ε)) time is OK for database speeds, but too long for network speeds.
- New technique from Piotr Indyk improves update time to O(1)
- Method is more related to that of Flajolet-Martin, with some clever use of hashing

Open Problems

- To find other applications for L₀ and related metrics – L_p generally not much studied for non-integer p
- To find new applications and improvements of stable distributions to metric spaces and embedding problems
- To find more uses of statistical distributions in this area – approximate other normed spaces with similar techniques
- To find some lunch