Deterministic Algorithms for Biased Quantiles

Graham Cormode cormode@bell-labs.com

S. Muthukrishnan muthu@cs.rutgers.edu

Flip Korn flip@research.att.com

Divesh Srivastava divesh@research.att.com

Quantiles

Quantiles summarize data distribution concisely.

- Given N items, the ϕ -quantile is the item with *rank* ϕ N in the sorted order.
- Eg. The median is the 0.5-quantile, the minimum is the 0-quantile.
- Equidepth histograms put bucket boundaries on regular quantile values, eg 0.1, 0.2...0.9

Quantiles are a robust and rich summary: median is less affected by outliers than mean

Quantiles over Data Streams

- Data stream consists items arriving in arbitrary order, number (so far) is N.
- Models many data sources eg network traffic, each packet is one item.
- Requires linear space to compute quantiles exactly in one pass, $\Omega(N^{1/p})$ in p passes [MP80].
- ε-approximate computation in sub-linear space
 - Φ -quantile: item with rank between (Φ - ϵ)N and (Φ + ϵ)N
 - [GK01]: insertions only, space O($1/\epsilon \log(\epsilon N)$)
 - [CM04]: insertions & deletions, space O(1/ $\epsilon \log^2 U \log 1/\delta$)

Why Biased Quantiles?

IP network traffic is very skewed

- Long tails of great interest
- Eg: 0.9, 0.95, 0.99-quantiles of TCP round trip times

Issue: uniform error guarantees

- $-\epsilon = 0.05$: okay for median, but not 0.99-quantile
- $-\epsilon = 0.001$: okay for both, but needs too much space
- Goal: support *relative* error guarantees in small space
 - Low-biased quantiles: ϕ -quantiles in ranks $\phi(1\pm\epsilon)N$
 - High-biased quantiles: $(1-\phi)$ -quantiles in ranks $(1-(1\pm\epsilon)\phi)N$

Prior Work

Sampling approach due to Gupta & Zane [GZ03]

- Keep $O(1/\epsilon \log N)$ samplers at different sample rates, each keeping a sample of $O(1/\epsilon^2)$ items
- Total space: $O(1/\epsilon^3)$, probabilistic algorithm
- Deterministic alg [CKMS05]
 - Worst case input causes linear space usage
 - Showed lower bound of $\Omega(1/\epsilon \log \epsilon N)$ for any alg
- Improved probabilistic alg of Zhang+ [ZLXKW06]
 - Needs $O(1/\epsilon^2 \text{ polylog N})$ space and time

Our Approach

Domain-oriented approach: items drawn from [1...U], want space to depend on O(log U)

- Impose binary tree structure over domain
- Maintain counts c_w on (subset of) nodes

Count represents input items from that subtree /

So counts to left of a leaf are from items strictly less; uncertainty in rank of item is from ancestors

Similar to [SBAS04] approach for uniform quantiles

Functions over the tree

- We define some functions to measure counts over the tree.
- If(x) = leftmost leaf
 in subtree x
- anc(x) = set of ancestors of node x
- $L(v) = \sum_{If(w) < If(v)} C_w$ (Left count)
- $A(x) = \sum_{w \in anc(x)} C_w$ (Ancestor count)

Accuracy Invariants

To ensure accurate answers, we maintain two invariants over the set of counts:

 $\forall x. L(x) - A(x) \leq rank(x) \leq L(x)$

ensures we can deterministically bound ranks

 $\forall v. v \neq lf(v) \Rightarrow (c_v \leq \alpha L(v))$

ensures range of possible ranks is bounded

To guarantee ε -accurate ranks, will set $\alpha = \varepsilon/\log U$ (since we use **2** summed over log U ancestors)

Claim: any summary satisfying **1** and **2** allows us to find r'(x) so $|r'(x) - rank(x)| \le \epsilon rank(x)$

Data Structure

Store subset of nodes and counts as "bq-summary" Nodes with count 0 do not need to be stored Split bq into two: bq-leaves (bql) and bq-tree (bqt). This division is needed to get tightest space bounds.

bql

bq-leaves is a subset of leaf nodes only

 bq-tree is subset of nodes strictly to right of bq-leaves

Equivalence Classes

Main effort for the space bound is in proving that the size of bqt is bounded

- We force all nodes V in bqt with at least one child present) to be "full": for $v \in V$, $c_v = \alpha L(v)$
- Partition V into equivalence classes based on L(v): classes form paths
- E_i is set of nodes in i'th equivalence class, with L value = L_i
- L_1 is sum of bq-leaves: $L_1 = \sum_{v \in bql} C_v$

Space Bound

- Ensure the number of leaves $|bq|| = L_1 \ge 1/\alpha$
- The L_i's increase exponentially, can show $L_{i+1} \ge L_1 \prod_{j=1}^{i} (1+\alpha |E_j|)$

-Consider item U+1, so rank(U+1)=N.

 $-Also N = L(U+1) \ge 1/\alpha \prod_{j=1}^{q} (1 + \alpha |E_j|)$

- Using these expressions, we bound size of |bqt|
- Total space = |bql| + |bqt|

= O(1/ $\epsilon \log (\epsilon N) \log U$)

Maintenance

Need to show how to maintain the accuracy invariants, while guaranteeing space is bounded and updates are fast.

- Will Insert each update x. Insert will be defined to maintain accuracy, but space may grow
- Periodically will run a linear scan of data structure to Compress it.
- Will argue that these two together maintain space and time bounds.

Insert Procedure

Given update item x:

- Compare to $z = \max_{u \in bql} u$
- If $x \leq z$, place x in bql in time O(1)
- If x > z place x in bqt in time O(log log U):
 - Find closest materialized ancestor y of x in bqt
 - Add 1 to c_y unless this would make $c_y > \alpha L(y)$, if so then create child of y with count = 1
- Easy to show this procedure maintains accuracy invariants. Space increases by ≤ 1 node.

Compress

- If we keep Inserting, space can grow without limit, but in worst case, we add one new node per insert, so Compress when space doubles
- Need to periodically recompute L() values for nodes, and merge together nodes when possible
 - First, resize bq-leaves so $|bql| = min(N, 1/\alpha)$
 - Recompute z = max_{v ∈ bql} v in time linear in |bql|, Insert leaves removed from |bql| into bqt.
 - Tricky part is compressing bq-tree...

Compress Tree

- CompressTree operation takes a (sub)tree in bqt, ensures that each node is "full" (has c_v = αL(v)) by "pulling up" weight from below
 - For node v compute L(v) and $wt(v) = \sum_{v \in anc(w)} c_w$
 - Set c_v as big as possible by borrowing from wt(v)
 - Allows us to remove descendents with zero count
- With care, CompressTree takes time O(|bqt|) and computes L(v) incrementally as a side effect
- Can show Compress maintains conditions ①, ②, and the space bound follows.

Final Result

 Can answer rank queries with error ε rank(x), using space O(1/ε log εN log U), and amortized update time O(log log U).

-Lower bound on space = $O(1/\epsilon \log (\epsilon N))$

- To answer queries, need latest values of L(v), so need time O(1/ε log εN log U) to preprocess
 - Can then answer queries in time O(log U) each
 - Alternatively, spend O(log U) time on updates and allow L(v) values to be computed in time O(log U)
 - Quantile queries can be answered by binary searching for item with desired rank

Extensions

- Partially biased algorithm
 - Sometimes only need accuracy down to some $\epsilon' N$
 - Can reduce space slightly for this weaker guarantee
 - Space required is $O(1/\epsilon \log (\epsilon/\epsilon') \log U)$
- Uniform algorithm
 - The CompressTree idea can be applied to ϵN error
 - -bq-leaves not needed, space used is $O(1/\epsilon \log U)$
 - Time is O(log log U) amortized as before

Experimental Results

Nearly Sorted (worst case) data

- CKMS, MRC = prior work, SBQ = this work
- SBC has better space on some data sets
- SBC at least 25x faster than MRC on all data sets

Experimental results

- New alg can use more space than existing algs,
- Total space still small (in absolute terms)

Commentary

- Took effort to get conditions "just right":
 - Small changes break either space or time bounds
 - bq-leaves needed for tight space bounds
- Easy to merge together summaries to get summary of union (for distributed computations)

Linearity of L and A means everything goes through

- Close to optimal space bounds
 - What about faster updates, less work for queries?
- Made crucial use of tree-structure over universe

- Can we drop U and work over arbitrary domains?