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Quantiles
Quantiles summarize data distribution concisely.

Given N items, the φ–quantile is the item with rank
φN in the sorted order. 

Eg. The median is the 0.5-quantile, the minimum
is the 0-quantile.

Equidepth histograms put bucket boundaries on 
regular quantile values, eg 0.1, 0.2…0.9

Quantiles are a robust and rich summary: 
median is less affected by outliers than mean



Quantiles over Data Streams
Data stream consists of N items in arbitrary order.

Models many data sources eg network traffic, each 
packet is one item. 

Requires linear space to compute quantiles exactly 
in one pass, Ω(N1/p) in p passes.

ε-approximate computation in sub-linear space

–Φ-quantile: item with rank between (Φ-ε)N and (Φ+ε)N

– [GK01]: insertions only, space O(1/ε log(εN))

– [CM04]: insertions and deletions, space O(1/ε log 1/δ)



Biased Quantiles
IP network traffic is very skewed

– Long tails of great interest

– Eg: 0.9, 0.95, 0.99-quantiles of TCP round trip times

Issue: uniform error guarantees
– ε = 0.05: okay for median, but not 0.99-quantile

– ε = 0.001: okay for both, but needs too much space

Goal: support relative error guarantees in small 
space
– Low-biased quantiles: φφφφ-quantiles in ranks φ(1φ(1φ(1φ(1±εεεε)N

– High-biased quantiles: (1-φφφφ)-quantiles in ranks 
(1-(1±ε)φφφφ)N



Prior Work
Sampling approach given by Gupta and Zane  

[GZ03] in context of a different problem: 

–Keep O(1/ε) samplers at different sample rates, 
each keeping a sample of O(1/ε2) items 

–Total space: O(1/ε3), probabilistic algorithm

Uses too much space in practice.

Is it possible to do better? Without randomization?



Intuition
Example shows intuition behind our approach. 

Low-biased quantiles: give error εφ on φ-quantiles

–Set ε=10%.  Suppose we know approximate 
median of n items is M — so absolute error is εn/2

–Then there are n inserts, all above M

–M is now the first quartile, so we need error εN/4

M

εn/2



Intuition
How can error bounds be maintained?

–Total number of items is now N=2n, so required  
absolute error bound is for M is still εn/2 

Error bound never shrinks too fast, so we can 
hope to guarantee relative errors. 

Challenge is to guarantee accuracy in small space

M

εn/2



Space for Biased Quantiles
Any solution to the Biased Quantiles problem must 

use space at least Ω(1/ε log(εN))

Shown by a counting argument, there are 
Ω(1/ε log(εN)) possible different answers based 
on choice of φ

For uniform quantiles, corresponding lower bound 
is Ω(1/ε) — biased quantiles problem is strictly 
harder in terms of space needed.



Our Approach
A deterministic algorithm that guarantees relative 

error for low-biased or high-biased quantiles

Three main routines:

–Insert(v) — inserts a new item, v

–Compress — periodically prune data structure

–Output(φ) — output item with rank (1±εεεε)φN

Similar structure to Greenwald-Khanna algorithm 
[GK01] for uniform quantiles (φ±εεεε), but need new 
implementation and analysis. 



Data Structure
Store tuples ti = (vi, gi, ∆i) sorted by vi

–vi is an item from the stream

–gi = rmin(vi) – rmin(vi-1)

– ∆i = rmax(vi) – rmin(vi)

Define ri = ∑j=1
i-1 gj

We will guarantee that the true rank of vi is 
between ri + gi and ri + gi + ∆i 
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Biased Quantiles Invariant
In order to guarantee accurate answers, we 

maintain at all times for all i: 

Intuitively, if the uncertainty in rank is 
proportional to ε times a lower bound on rank, 
this should give required accuracy

gi + ∆i !!!! max {2εri, 1}

“uncertainty” 
in rank of vi

2ε times lower bound 
on rank of vi



Output Routine

Compute ri

Upper bound on 
allowed rank 

max rank of vi
Output previous

item, vi-1

Claim: Output(φ) correctly outputs ε−approximate 
φ-biased quantile



Proof
i is the smallest index such that 

ri + gi + ∆i > φn + εφn (*)

So ri-1 + gi-1 + ∆i-1 !!!! (1 + ε)φ n. [+]

Using the invariant on (*), (1 + 2ε)ri > (1+ε)φn 
and (rearranging) ri > (1-ε)φn. [-]

Since ri = ri-1 + gi-1, we combine [-] and [+]:

[-] (1-ε)φn < ri-1 + gi-1

! ! ! ! (true rank of vi-1) !!!!

ri-1 + gi-1 + ∆i-1 !!!! (1+ε)φn [+]



Inserting a new item
We must show update operations maintain bounds 

on the rank of vi and the BQ invariant

To insert a new item, we find smallest i such that 
v < vi

–Set g = 1 (rank of v is at least 1 more than vi-1)

–Set ∆ = max{2ε ri,1}-1 (uncertainty in rank at 
most one less than ∆i !!!! max{2ε ri,1})

–Insert (v,g,∆) before ti in data structure

Easy to see that Insert maintains the BQ invariant



Compressing the Data Structure
Insert(v) causes data structure to grow by one 

tuple per update.  Periodically we can Compress
the data structure by pruning unneeded tuples.

Merge tuples ti =(vi, gi, ∆i) and ti+1=(vi+1, gi+1, ∆i+1) 
together to get (vi+1, gi+gi+1, ∆i+1).

⇒⇒⇒⇒ Correct semantics of g and ∆

Only merge if gi + gi+1 + ∆i+1 !!!! max{2εri,1}

⇒⇒⇒⇒ Biased Quantiles Invariant is preserved



k-biased Quantiles
Alternate version: sometimes we only care about, 

eg, φ = ½, ¼, … ½k

Can reduce the space requirement by weakening 
the Biased Quantiles invariant:

k-BQ invariant: 
gi + ∆i !!!! 2ε max{ri, φkn, ε/2}

Implementations were based on the algorithm 
using this invariant. 



Experimental Study
The k-biased quantiles algorithm was implemented 

in the Gigascope data stream system. 

Ran on a mixture of real (155Mbs live traffic 
streams) and synthetic (1Gbs generated traffic) 
data. 

Experimented to study:

–Space Cost

–Observed accuracy for queries

–Update Time Cost



Experiments: Space Cost

k-biased quantiles, vs. GK with ε = eps φk

⇒⇒⇒⇒ Space usage scales roughly as k/ε logc ε N on 
real data, but grows more quickly in worst case.



Experiments: Accuracy

GK1: ε = eps  

GK2: ε = eps φk

Good tradeoff between space and error on real data



Experiments: Time Cost
Overhead per packet was about 5 – 10µs

Few packet drops (<1%) at Gigabit ethernet 
speed. 

Choice of data structure to implement the list of 
tuples was an important factor.

– running compress periodically is blocking operation.  
Instead, do a partial compression per update

–“cursor” + sorted list (5µs / packet) does better 
than balanced tree structure (22µs / packet)



Extension: Targeted Quantiles
Further generalization: before the data stream, we 

are given a set T of (φ,ε) pairs.

We must be able to answer φ-quantile queries over 
data streams with error ±εn. 

From T, generate new invariant f(r,n) to maintain:

In paper, we show that 
maintaining gi + ∆i !!!! f(ri,n) 
guarantees targeted 
quantiles with required 
accuracy.



Deletions
For uniform quantile guarantees, can handle item 

deletions in probabilistic setting  [CM04]. 

But, provably need linear space for biased 
quantiles (with a strong “adversary”), even 
probabilistically

Sliding window also requires large space. 



Conclusions
Skew is prevalent in many realistic situations

Biased Quantiles give a non-uniform way to study 
skewed data. 

We have given efficient algorithms to find biased 
quantiles over streams of data using small space. 

Many other tasks can benefit from incorporating 
skew either into the problem, or into the analysis 
of the solution. 


