

Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - \square Every subset of size s has equal probability to be the sample
- When the *i*-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - With probability 1 s/i, throw it away

Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - \square Every subset of size s has equal probability to be the sample
- When the *i*-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - With probability 1 s/i, throw it away
- Correctness: intuitive

Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - \square Every subset of size s has equal probability to be the sample
- When the *i*-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - With probability 1 s/i, throw it away
- Correctness: intuitive
- Space: O(s), time O(1)

Sampling from a sliding window

[Babcock, Datar, Motwani, SODA'02; Gemulla, Lehner, SIGMOD'08; Braverman, Ostrovsky, Zaniolo, PODS'09]

Why existing solutions don't work

- When k = 1, reservoir sampling has communication $\Theta(s \log n)$
- $\hfill When \hfill k \geq 2$, reservoir sampling has cost O(n) because it's costly to track i

Tracking *i* approximately?

Sampling won't be uniform

Key observation:

We don't have to know the size of the population in order to sample!

time

Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrishnan, Yi, SODA'08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP'08]
- Heavy hitters and quantiles [Yi, Zhang, PODS'09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS'10]

Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrishnan, Yi, SODA'08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP'08]
- Heavy hitters and quantiles [Yi, Zhang, PODS'09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS'10]
- All of them are deterministic algorithms, or use randomized sketches as black boxes

Our results on random sampling

window infinite sequence-based time-based

upper bounds	lower bounds
$O((k+s)\log n)$	$\Omega(k + s \log n)$
$O(ks\log(w/s))$	$\Omega(ks\log(w/ks))$
$O((k+s)\log w)$	$\Omega(k + s \log w)$
(per window)	

Our results on random sampling

window	upper bounds	lower bounds
infinite	$O((k+s)\log n)$	$\Omega(k + s \log n)$
sequence-based	$O(ks\log(w/s))$	$\Omega(ks\log(w/ks))$
time-based	$O((k+s)\log w)$	$\Omega(k + s \log w)$
(per window)		

Applications

- Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
- Also for sliding windows

Our results on random sampling

window	upper bounds	lower bounds
infinite	$O((k+s)\log n)$	$\Omega(k + s \log n)$
sequence-based	$O(ks\log(w/s))$	$\Omega(ks\log(w/ks))$
time-based	$O((k+s)\log w)$	$\Omega(k + s \log w)$
(per window)		

Applications

- Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
- Also for sliding windows
- ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
- ϵ -nets: $\tilde{O}(k+1/\epsilon)$

Sampling from an infinite window

- $\square Initialize i = 0$
- □ In round *i*:

 $\hfill\square$ Sites send in every item w.p. 2^{-i}

(This is a Bernoulli sample with prob. 2^{-i})

Sampling from an infinite window

- $\square Initialize i = 0$
- □ In round *i*:
 - Sites send in every item w.p. 2^{-i}

(This is a Bernoulli sample with prob. 2^{-i})

Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

(The lower sample is a Bernoulli sample with prob. 2^{-i-1})

Sampling from an infinite window

- $\square Initialize i = 0$
- □ In round *i*:

 $|S_k|$

 S_2

 S_1

 $\hfill\square$ Sites send in every item w.p. 2^{-i}

(This is a Bernoulli sample with prob. 2^{-i})

Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

(The lower sample is a Bernoulli sample with prob. 2^{-i-1})

■ When the lower sample reaches size s, the coordinator broadcasts to advance to round $i \leftarrow i + 1$ Discard the upper sample

Split the lower sample into a new lower sample and a higher sample

- **Communication cost of round** *i*: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive O(s) sampled items before round ends

- **Communication cost of round** *i*: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

Expect to receive O(s) sampled items before round ends

D Broadcast to end round: O(k)

- **Communication cost of round** *i*: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 Expect to receive O(s) sampled items before round ends
 - **D** Broadcast to end round: O(k)
- **D** Number of rounds: $O(\log(n/s))$
 - **I**n round *i*, need $\Theta(s)$ items being sampled to end round
 - Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items

- **Communication cost of round** *i*: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 Expect to receive O(s) sampled items before round ends
 - **D** Broadcast to end round: O(k)
- □ Number of rounds: $O(\log(n/s))$
 - **I**n round *i*, need $\Theta(s)$ items being sampled to end round
 - \square Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items
- Communication: $O((k+s)\log n)$
 - Lower bound: $\Omega(k + s \log n)$

- **Communication cost of round** *i*: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 Expect to receive O(s) sampled items before round ends
 - **D** Broadcast to end round: O(k)
- □ Number of rounds: $O(\log(n/s))$
 - \square In round *i*, need $\Theta(s)$ items being sampled to end round
 - \square Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items
- **Communication**: $O((k+s)\log n)$
 - Lower bound: $\Omega(k + s \log n)$
- Site space: O(1), time: O(1)Coordinator space: O(s), total time: $O((k+s)\log n)$

Sample for sliding window =

a subsample of the (unexpired) sample of frozen window + a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities

Dealing with the frozen window: The algorithm

- Each site builds its own level-sampling structure for the current window until it freezes
 - □ Needs $O(s \log w)$ space and O(1) time per item
 - Necessary unless communication is $\Omega(w)$

Dealing with the frozen window: The algorithm

- Each site builds its own level-sampling structure for the current window until it freezes
 - Needs $O(s \log w)$ space and O(1) time per item
 - Necessary unless communication is $\Omega(w)$
- When the current window freezes
 - For each level, do a *k*-way merge to build the level of the global structure at the coordinator Total communication $O((k + s) \log w)$
 - Total communication $O((k+s)\log w)$

Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - ϵ -nets: $\tilde{O}(k+1/\epsilon)$
 - •••

Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - ϵ -nets: $\tilde{O}(k+1/\epsilon)$
 - ••••
- Is random sampling the best way to solve these problems?

Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - ϵ -nets: $\tilde{O}(k+1/\epsilon)$
 - ••••
- Is random sampling the best way to solve these problems?
 - New result: Heavy hitters and quantiles can be tracked in $\tilde{O}(k + \sqrt{k}/\epsilon)$, using a different sampling method

