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Distributed Monitoring

There are many scenarios where we need to track events:

m Network health monitoring within a large ISP

m Collecting and monitoring environmental data with sensors
m Observing usage and abuse of distributed data centers

All can be abstracted as a collection of observers who want to
collaborate to compute a function of their observations

From this we generate the Continuous Distributed Model
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Continuous Distributed Model

Track f(Sy,...,S;)

local stream(s)
seen at each site

k sites

S 00000000000
= = X

m Site-site communication only changes things by factor 2

m Goal: Coordinator continuously tracks (global) function of streams

— Achieve communication poly(k,1/€,log n)
— Also bound space used by each site, time to process each update
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Challenges

®m Monitoring is Continuous...

— Real-time tracking, rather than one-shot query/response
m ..Distributed...

— Each remote site only observes part of the global stream(s)

— Communication constraints: must minimize monitoring burden
m .. .Streaming...

— Each site sees a high-speed local data stream and can be resource
(CPU/memory) constrained

m ..Holistic...
— Challenge is to monitor the complete global data distribution
— Simple aggregates (e.g., aggregate traffic) are easier

4 Continuous Distributed Monitoring



]
Baseline Approach

m Sometimes periodic polling suffices for simple tasks
— E.g., SNMP polls total traffic at coarse granularity
m Still need to deal with holistic nature of aggregates
m Must balance polling frequency against communication

— Very frequent polling causes high communication,
excess battery use in sensor networks

— Infrequent polling means delays in observing events

m Need techniques to reduce communication
while guaranteeing rapid response to events
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Variations in the model

m Multiple streams define the input A

m Given function f, several types of problem to study:

— Threshold Monitoring: identify when f(A) > T
Possibly tolerate some approximation based on €T

— Value Monitoring: always report accurate approximation of f(A)
— Set Monitoring: f(A) is a set, always provide a “close” set

m Direct communication between sites and the coordinator

— Other network structures possible (e.g., hierarchical)
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Outline

1. The Continuous Distributed Model
2. How to count to 10

3. Entropy, a non-linear function

4. The geometric approach

5. A sample of sampling

6. Prior work and future directions
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The Countdown Problem

m A first abstract problem that has many applications
m Each observer sees events
m Want to alert when a total of T events have been seen

— Report when more than 10,000 vehicles have passed sensors
— ldentify the 1,000,000t customer at a chain of stores

m Trivial solution: send 1 bit for each event, coordinator counts
— O(T) communication
— Can we do better?
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A First Approach

m One of k sites must see 1/k events before threshold is met
m So each site counts events, sends message when 1/k are seen
m Coordinator collects current count n, from each site
— Compute new threshold U =T-2>._kn,
— Repeat procedure for T’ until T < k, then count all events
m Analysis: T>1/(1-1/k) > 1"’/(1-1/k)? > ...
— Number of thresholds = log (1/k) / log(1/(1-1/k)) = O(k log (T/k))
— Total communication: O(k? log (t/k)) [each update costs O(k)]
m Can we do better?
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A Quadratic Improvement
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Observation: O(k) communication per update is wasteful
Try to wait for more updates before collecting

Protocol operates over log (T/k) rounds [C.,Muthukrishnan, Yi 08]
— Inround j, each site waits to receive T/(2 k) events

— Subtract this amount from local count n, and alert coordinator
— Coordinator awaits k messages in round j, then starts round j+1
— Coordinator informs all sites at end of each round

Analysis: k messages in each round, log (t/k) rounds
— Total communication is O(k log (1/k))
— Correct, since total count can’t exceed T until final round
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Approximate variation

m Sometimes, we can tolerate approximation
m Only need to know if threshold T is reached approximately
m So we can allow some bounded uncertainty:

— Do not report when count < (1-€) T
— Definitely report when count > 1
— In between, do not care
m Previous protocol adapts immediately:
— Just wait until distance to threshold reaches €1
— Cost of the protocol reduces to O(k log 1/€) (independent of T)
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Extension: Randomized Solution

m Costis high when k grows very large
m Randomization reduces this dependency, with parameter €
m Now, each site waits to see O(€?1/k) events

— Roll a die: report with probability 1/k, otherwise stay silent
— Coordinator waits to receive O(1/€?) reports, then terminates

m Analysis: in expectation, coordinator stops after T(1-€/2) events
— With Chernoff bounds, show that it stops before T events
— And does not stop before T(1-€) events

m Gives a randomized, approximate solution: uncertainty of €1
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13 Continuous Distributed Monitoring



Monitoring Entropy
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Countdown solutions relied on monotonicity and linearity
Entropy is a function which is neither monotone or linear!
Let f. be the total number of occurrences of item i

Let m be the total number of all items = 2. f.
This defines an empirical probability distribution:

— Item i has empirical probability f./m

We want to monitor the entropy of this distribution:
H=2.f/mlog (m/f)
— Specifically, report whether H > T or H < (1-€)t

C—
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Entropy Protocol

m Protocol based on [Arackaparambil Brody Chakrabarti 09]

m [nitially, collect all items from sites for 100 items (say)
— Empirical entropy is changing rapidly here

m In each subsequent round i, coordinator computes T,

— Run approximate countdown protocol for T, with € =%
— Collect frequency distribution from all sites, compute entropy

m Analysis: suppose we have m items, and there are n arrivals

— Can bound the change in entropy as 2n/(m+n) log (m+n)
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Change in Entropy
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Entropy change as f, goes to (f. + g,) is at most

2 | fi/ mlog (m/f) = (f + g)/(m+n) log (m+n)/(f; + g;) |
<2. | f/mlog (m+n)—(f. + g)/(m+n) log (m+n) |
<. |f./m—(f +g)/(m+n) | log(m+n)
<2 | f.(m+n)—(f + g)m | log (m+n)/ m(m+n)
<. | fn—g m|log (m+n)/m(m+n)
<. (f.n+ g m)/m(m+n) log (m+n)
< (mn + mn)/m(m+n) log (m+n)
< 2n/(m+n) log (m+n)
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Entropy Protocol Analysis

m Change in entropy is at most 2n/(m+n) log (m+n)

— If we set n < m, then this is bounded by 2n/m log (2m)
m Need to know if entropy changes by at least €1/2

— (the smallest amount to force coordinator to change output)
m SosetT =€tm/(4 log 2m)

— So long as n is less than this, entropy changes by at most €1/2
m Analysis: letting N be total number of observations so far,

— Observations increase by a (1+ €t/4 log 2N) factor each round

— Bounds total number of rounds as O((log? N)/T)

— Countdown protocol costs O(k) per round
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Extension: Entropy Sketches

m Currently, each site sends current distribution each round
— If there are D distinct items seen, total cost is O(kD(log? N)/(€T))
— Can be very costly when D is high!

m Solution: send a compact sketch of the data distribution
— Sketches for entropy give a 1+€ approximation in O(1/€?) space
— Sketches are combined to produce a sketch of the whole dbn
— Total cost is O(k/(1€3) log? N)

m Lower bound for deterministic algorithms: Q(keY/2 log (eN/k))
— Room for improvement in dependence on €, log N
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General Non-linear Functions

Query: f(S,,...,S)>T ?

S S

m For general, non-linear f(), the problem becomes a lot harder!

— E.g., information gain over global data distribution

m Non-trivial to decompose the global threshold into “safe” local
site constraints

m E.g., consider N=(N,+N,)/2 and f(N) = 6N - N2 > 1
Tricky to break into thresholds for f(N,) and f(N,)
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The Geometric Approach

m A general purpose geometric approach [Scharfman et al.’06]

m Each site tracks a local statistics vector v, (e.g., data distribution)
m Global conditionis f(v) > T, where v=2.A. v, (2A =1)
— V = convex combination of local statistics vectors

m All sites share estimate € = 2, A v, of v

based on latest update v, from site i

m Each site i tracks its drift from its most recent update Av, = v-v,
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Covering the convex hull

m Key observation: v =2 . A.[[e+Av)
(a convex combination of “translated” local drifts)

m vliesin the convex hull of
the (e+Av,) vectors

m Convex hull is completely
covered by spheres with
radii | |[Av.,/2| |, centered at
e+Av,/2

m Each such sphere can be
constructed independently
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Monochromatic Regions

m Monochromatic Region: For all points x in the region f(x) is on
the same side of the threshold (f(x) > T or f(x) < 1)

m Each site independently checks its sphere is monochromatic
— Find max and min for f() in local sphere region (may be costly)

— Broadcast updated value of v, if not monochrome
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Restoring Monochomicity

m After broadcast, ||Av,||,=0 = Sphere atiis monochromatic
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Restoring Monochomicity

m After broadcast, ||Av,||,=0 = Sphere atiis monochromatic

— Global estimate e is updated, which may cause more site update
broadcasts

m Coordinator case: Can allocate local slack vectors to sites to
enable “localized” resolutions

— Drift (=radius) depends on slack (adjusted locally for subsets)
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Extension: Transforms and Shifts

m Subsequent extensions further reduce cost [Scharfman et al. 10]

— Same analysis of correctness holds
when spheres are allowed to be ellipsoids

L]
L]
a
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— Additional offset vectors can be used
to increase radius when close to
threshold values

— Combining these observations
allows additional cost savings
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Drawing a Sample

m A basic ‘set monitoring’ problem is to draw a uniform sample
m Given inputs of total size N, draw a sample of size s
— Uniform over all subsets of size s

m Overall approach:
— Define a general sampling techniqgue amenable to distribution

— Bound the cost
— Extend to sliding windows
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Binary Bernoulli Sampling

Always sample with probability p = 2-
Randomly pick i bits, each of which is 0/1 with probability
Select item if all i random bits are O

(Conceptually) store the random bits for each item
— Can easily pick more random bits if the sampling rate decreases

A
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Sampling Protocol

m Protocol based on [C., Muthukrishnan, Yi, Zhang 10]
®m In round i, each site samples with p = 2"

30

Sampled items are sent to the coordinator

Coordinator picks one more random bit

End round i when coordinator has s items with (i+1) zeros
Coordinator informs each site that a new round has started
Coordinator picks extra random bits for items in its sample
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Protocol Costs

m Correctness: coordinator always has (at least) s items
— Sampled with the same probability p
— Can subsample to reach exactly s items
m Cost: each round is expected to send O(s) items total
— Can bound this with high probability via Chernoff bounds
— Number of rounds is similar bounded as O(log N)
— Communication cost is O((k+s) log N)
m Lower bound on communication cost of Q(k + s log N)
— At least this many items are expected to appear in the sample
— O(k log (k/sN) + s log n) upper bound by adjusting probabilities
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Extension: Sliding Window

—

Departing [T

—_ —_>
T 2T 3T AT

m Extend to sliding windows: only sample from last T arrivals
m Key insight: can break window into ‘arriving’ and ‘departing’
— Use multiple instances of Countdown protocol to track expiries

m Cost of such a protocol is O(ks log (W/s))
— Near-matching Q(ks log(W/ks)) lower bound
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Early Work

m Continuous distributed monitoring arose in several places:
— Networks: Reactive monitoring [Dilman Raz 01]
— Databases: Distributed triggers [Jain et al. 04]
m Initial work on tracking multiple values
— “Adaptive Filters” [Olston Jiang Widom 03]
— Distributed top-k [Babcock Olston 03]

adjust

Filters — p—=a— 1 = fe—1 e
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Prediction Models

m Prediction further reduces cost [C, Garofalakis, Muthukrishnan, Rastogi 05]

— Combined with approximate (sketch) representations

P p Prediction used at
fRi (Sk (fRi .
coordinator for query
— { answering
Predicted Distribution Predicted Sketch \

Prediction error
tracked locally

fRi Sk(fRi ) by sites
——l (local constraints)

True Distribution (at site) True Sketch (at site)
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Problems in Distributed Monitoring

m Much interest in these problems in TCS and Database areas

m Many specific functions of (global) data distribution studied:
— Set expressions [Das Ganguly Garofalakis Rastogi 04]
— Quantiles and heavy hitters [C, Garofalakis, Muthukrishnan, Rastogi 05]
— Number of distinct elements [C., Muthukrishnan, Zhuang 06]
— Conditional Entropy [Arackaparambil, Bratus, Brody, Shubina 10]
— Spectral properties of data matrix [Huang et al. 06]
— Anomaly detection in networks [Huang et al. 07]
m Track functions only over sliding window of recent events
— Samples [C, Muthukrishnan, Yi, Zhang 10]
— Counts and frequencies [Chan Lam Lee Ting 10]
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Other Work

m Many open problems remain in this area
— Improve bounds for previously studied problems
— Provide bounds for other important problems
— Give general schemes for larger classes of functions

m Much ongoing work
— See EU-support LIFT project, | 1 ft-eu. org

m Two specific open problems:
— Develop systems and tools for continuous distributed monitoring
— Provide a deeper theory for continuous distributed monitoring
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Monitoring Systems

m Much theory developed, but less progress on deployment
m Some empirical study in the lab, with recorded data
m Still applications abound: Online Games [Heffner, Malecha 09]

— Need to monitor many varying stats and bound communication
| |Bob [ . ‘

m Severa [ B

Frank hits Azuregos for 35
— Buil Bob hits Azuregos for 19 - 'ms
Frank hits Azuregos for 40 £ T
— Evol : buted DBMSS?)
S ,
m Severa
— Whe #*  specific?
— Whe onitoring?

| > =% Carol shoots Azuregos for 50
Alice hits Azuregos for 4__J§

Azuregos bites Alice for 90
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Theoretical Foundations

“Communication complexity” studies lower bounds of distributed
one-shot computations

m Gives lower bounds for various problems, e.g.,
count di sti nct (via reduction to abstract problems)

m Need new theory for continuous computations

1

-
g
s
2
[ay]
&
— Based on info. theory and models of how streams evolve? £2
O
— Link to distributed source coding or network coding? e
A B Qo
X —~{ Ticoder}—+ 1 £ 1
i A Channe] \ Joint X § % %
>« No Communication Decoder g S
HOYX) - y —=[Tncod Ideal / o 2 »gé‘oé
R AL T @—» Channel § 5 %
| | = _ . & 3 3
HEY)  HE) Bz Slepian-Wolf theorem [Slepian Wolf 1973] =3 §5
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Concluding Remarks

Continuous distributed monitoring is a natural model
Captures many real world applications
Much non-trivial work in this model

Much work remains to do!

Thank You!
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