
Cheap Checking for Cloud Computing
Statistical Analysis via Annotated Data Streams

Graham Cormode, Christopher Hickey
University of Warwick

Motivation
Cloud computing is now an effective way
to outsource data analysis.

The issue of trust arises, can the user check
a result is optimal without repeating the
computation?

How can we verify outsourced computa-
tion with limited resources?

Our work focuses dimensionality reduction
methods: OLS, PCA and LDA.

Annotated Data Streams

The annotated streaming model [1] works
as follows;

• The (weak) Verifier streams the data
and performs some preliminary com-
putation

• The (powerful) Helper computes an
answer, which is provided along
with some additional ‘annotation’ pre-
scribed by the protocol

• The verifier uses the annotation to help
check the result, and either accepts or
rejects.

We are looking for protocols that ensure in-
correct answers are rejected with high prob-
ability, whilst keeping the following costs
low

• V - the verifier’s memory

• H - the size of the annotation

Fingerprints
Our protocols rely on fingerprints of matri-
ces [3]. These have the property that if two
matrix fingerprints agree, then with high
probability the matrices are the same.

For A ∈ Fn×m
q , the matrix fingerprint

of A is a linear function with x ∈R Fq

fx(A) =
∑n−1

i=0

∑m−1
j=0 Aijx

in+j

We can easily form the fingerprint of a ma-
trix (or vector) as we stream it.

Primitive 1: Matrix Product
Given A,B ∈ Fn×n

q , we give a protocol
where

• V = O(log(q))

• H = O(n2 log(q))

This protocol follows from fingerprinting
the outer product of vectors u, v ∈ Fn

fx(u⊗ v) = fxn(u)fx(v)

And so

fx(AB) =
n−1∑
i=0

fx(A
↓
i ⊗B→i)

=
n−1∑
i=0

fxn(A↓i)fx(B
→
i)

where A↓i and B→i are the columns of A
and rows of B respectively.

The protocol has the helper replay the
input, allowing us to form fx(AB), and use
fingerprints to ensure they match the result.

Our protocol is an improvement by a
factor of n over [2].

Primitive 2: Eigenpairs
When verifying eigenpairs of a symmetric
matrix A ∈ Fn×n

q , we must round our
solution into a finite field, consequently the
solution (ṽi, λ̃i)

n
i=1 for A ∈ Fn×n

q may only
approximately satisfy Av − λv = 0.

We define a protocol to tolerate ap-
proximate solutions λ̃ so that |λ − λ̃| ≤ ε,
for a parameter ε > 0 that can be set
arbitrarily small. To reach this precision,
we must scale up the field size by a factor T .

Consider ṽi and λ̃i, which are (Tvi, Tλi)
rounded into the field FTq.

||TAṽi − λ̃iṽi||max ≤ O(n||A||F)

This tells us that

|Tλi − λ̃i| ≤ O(n
3
2 ||A||F)

Therefore, to achieve error ε we choose
T = O(n

3
2 ||A||F/ε), and receive matri-

ces Ṽ , D̃ ∈ FTq from the helper, verifying
bounds on

||TAV − D̃Ṽ ||max and ||Ṽ T Ṽ − T 2I||max

Our costs are therefore

• V = O(log(qT))

• H = O(n2 log(qT))

Application: PCA
Given a large normalized data matrix
S ∈ Fn×d

q , to find the principal components
we must find the eigenvectors of the covari-
ance matrix of the data, STS.

We can fingerprint STS whilst stream-
ing, and then, invoking our previous
primatives, we get a protocol for PCA with
precision ε > 0 and

• V = O(log(qT))

• H = O(d2 log(qT))

Using T = O(n
3
2 ||S||2F/ε).

Practical Results

200 400 600 800 1,000
0

1

2

3

4

5

Dimension, n

Ti
m

e(
s)

Manual
Verifying

• Eigendecomposition on randomly
chosen n× n matrices

• Field size = 231 − 1, ε = 0.01

• Exact computation scales as n3, while
verification time is linear in matrix
size

• Memory cost for verifier is negligible
(few bytes)

• Bottleneck for Verifier is receiving the
eigenvectors (linear in matrix size), a
few megabytes in this example

References
References
[1] Amit Chakrabarti, Graham Cormode, and Andrew

Mcgregor. Annotations in data streams. Automata,
Languages and Programming, pages 222–234, 2009.

[2] Samira Daruki, Justin Thaler, and Suresh Venkatasub-
ramanian. Streaming verification in data analysis. In
International Symposium on Algorithms and Compu-
tation, pages 715–726. Springer, 2015.

[3] Michael O Rabin et al. Fingerprinting by random
polynomials. Center for Research in Computing
Techn., Aiken Computation Laboratory, Univ., 1981.

