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Motivation
Cloud computing is now an effective way
to outsource data analysis.

The issue of trust arises, can the user check
a result is optimal without repeating the
computation?

How can we verify outsourced computa-
tion with limited resources?

Our work focuses dimensionality reduction
methods: OLS, PCA and LDA.

Annotated Data Streams

The annotated streaming model [1] works
as follows;

• The (weak) Verifier streams the data
and performs some preliminary com-
putation

• The (powerful) Helper computes an
answer, which is provided along
with some additional ‘annotation’ pre-
scribed by the protocol

• The verifier uses the annotation to help
check the result, and either accepts or
rejects.

We are looking for protocols that ensure in-
correct answers are rejected with high prob-
ability, whilst keeping the following costs
low

• V - the verifier’s memory

• H - the size of the annotation

Fingerprints
Our protocols rely on fingerprints of matri-
ces [3]. These have the property that if two
matrix fingerprints agree, then with high
probability the matrices are the same.

For A ∈ Fn×m
q , the matrix fingerprint

of A is a linear function with x ∈R Fq

fx(A) =
∑n−1

i=0

∑m−1
j=0 Aijx

in+j

We can easily form the fingerprint of a ma-
trix (or vector) as we stream it.

Primitive 1: Matrix Product
Given A,B ∈ Fn×n

q , we give a protocol
where

• V = O(log(q))

• H = O(n2 log(q))

This protocol follows from fingerprinting
the outer product of vectors u, v ∈ Fn

fx(u⊗ v) = fxn(u)fx(v)

And so

fx(AB) =
n−1∑
i=0

fx(A
↓
i ⊗B→i )

=
n−1∑
i=0

fxn(A↓i )fx(B
→
i )

where A↓i and B→i are the columns of A
and rows of B respectively.

The protocol has the helper replay the
input, allowing us to form fx(AB), and use
fingerprints to ensure they match the result.

Our protocol is an improvement by a
factor of n over [2].

Primitive 2: Eigenpairs
When verifying eigenpairs of a symmetric
matrix A ∈ Fn×n

q , we must round our
solution into a finite field, consequently the
solution (ṽi, λ̃i)

n
i=1 for A ∈ Fn×n

q may only
approximately satisfy Av − λv = 0.

We define a protocol to tolerate ap-
proximate solutions λ̃ so that |λ − λ̃| ≤ ε,
for a parameter ε > 0 that can be set
arbitrarily small. To reach this precision,
we must scale up the field size by a factor T .

Consider ṽi and λ̃i, which are (Tvi, Tλi)
rounded into the field FTq.

||TAṽi − λ̃iṽi||max ≤ O(n||A||F )

This tells us that

|Tλi − λ̃i| ≤ O(n
3
2 ||A||F )

Therefore, to achieve error ε we choose
T = O(n

3
2 ||A||F/ε), and receive matri-

ces Ṽ , D̃ ∈ FTq from the helper, verifying
bounds on

||TAV − D̃Ṽ ||max and ||Ṽ T Ṽ − T 2I||max

Our costs are therefore

• V = O(log(qT ))

• H = O(n2 log(qT ))

Application: PCA
Given a large normalized data matrix
S ∈ Fn×d

q , to find the principal components
we must find the eigenvectors of the covari-
ance matrix of the data, STS.

We can fingerprint STS whilst stream-
ing, and then, invoking our previous
primatives, we get a protocol for PCA with
precision ε > 0 and

• V = O(log(qT ))

• H = O(d2 log(qT ))

Using T = O(n
3
2 ||S||2F/ε).

Practical Results
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• Eigendecomposition on randomly
chosen n× n matrices

• Field size = 231 − 1, ε = 0.01

• Exact computation scales as n3, while
verification time is linear in matrix
size

• Memory cost for verifier is negligible
(few bytes)

• Bottleneck for Verifier is receiving the
eigenvectors (linear in matrix size), a
few megabytes in this example

References
References
[1] Amit Chakrabarti, Graham Cormode, and Andrew

Mcgregor. Annotations in data streams. Automata,
Languages and Programming, pages 222–234, 2009.

[2] Samira Daruki, Justin Thaler, and Suresh Venkatasub-
ramanian. Streaming verification in data analysis. In
International Symposium on Algorithms and Compu-
tation, pages 715–726. Springer, 2015.

[3] Michael O Rabin et al. Fingerprinting by random
polynomials. Center for Research in Computing
Techn., Aiken Computation Laboratory, Univ., 1981.


