
Cluster and Data
Stream Analysis

Graham Cormode
cormode@bell-labs.com

2

Outline
� Cluster Analysis

– Clustering Issues

– Clustering algorithms:
Hierarchical Agglomerative Clustering, K-means, Expectation
Maximization, Gonzalez approximation for K-center

� Data Stream Analysis

– Massive Data Scenarios

– Distance Estimates for High Dimensional Data:
Count-Min Sketch for L

∞
, AMS sketch for L2, Stable sketches

for Lp, Experiments on tabular data

– Too many data points to store:
Doubling Algorithm for k-center clustering, Hierarchical
Algorithm for k-median, Grid algorithms for k-median

� Conclusion and Summary

3

1. Cluster
Analysis

4

An Early Application of Clustering

John Snow plotted the location of cholera cases on a
map during an outbreak in the summer of 1854.

His hypothesis was that the disease was carried in
water, so he plotted location of cases and water
pumps, identifying the source.

Clusters easy to
identify visually
in 2 dimensions…
more points and
higher
dimension?

5

Clustering Overview
Clustering has an intuitive appeal

We often talk informally about “clusters”: ‘cancer
clusters’, ‘disease clusters’ or ‘crime clusters’

Will try to define what is meant by clustering, formalize
the goals of clustering, and give algorithms for
clustering data

My background: algorithms and theory, so will have
algorithmic bias, less statistical

6

What is clustering?
We have a bunch of items... we want to discover the
clusters...

7

Unsupervised Learning
Supervised Learning: training data has labels
(positive/negative, severity score), and we try to
learn the function mapping data to labels

Clustering is a case of unsupervised learning: there are
no labeled examples

We try to learn the “classes” of similar data, grouping
together items we believe should have the same label

Harder to evaluate “correctness” of clustering, since no
explicit function is being learned to check against.

Will introduce objective functions so that we can
compare two different clusterings of same data

8

Why Cluster?
What are some reasons to use clustering?

� It has intuitive appeal to identify patterns

� To identify common groups of individuals (identifying
customer habits; finding disease patterns)

� For data reduction, visualization, understanding: pick
a representative point from each cluster

� To help generate and test hypotheses: what are the
common factors shared by points in a cluster?

� A first step in understanding large data with no

expert labeling.

9

Before we start…
Before we jump into clustering, pause to consider:

� Data Collection – need to collect data to start with

� Data Cleaning – need to deal with imperfections,
missing data, impossible values (age > 120?)

� How many clusters - Often need to specify k, desired
number of clusters to be output by algorithm

� Data Interpretation – what to do with clusters when
found? Cholera example required hypothesis on
water for conclusion to be drawn

� Hypothesis testing – are the results significant? Can
there be other explanations?

10

Distance Measurement
How do we measure distance between points?

In 2D plots it is obvious – or is it?

What happens when data is not numeric, but contains
mix of time, text, boolean values etc.?

How to weight different attributes?

Application dependent, somewhat independent of
algorithm used (but some require Euclidean distance)

11

Metric Spaces
We assume that the distances form a metric space

Metric space: a set of points and a distance measure d
on pairs of points satisfying

� Identity: d(x,y) =0 ⇒ x=y

� Symmetry: d(x,y) = d(y,x)

� Triangle inequality: d(x,z) ≤ d(x,y) + d(y,z)

Most distance measurements of interest are metric
spaces: Euclidean distance, L1 distance, L∞ distance,
edit distance, weighted combinations...

12

Types of clustering
What is the quantity we are trying to optimize?

13

Two objective functions
K-centers

Pick k points in the space, call these centers

Assign each data point to its closest center

Minimize the diameter of each cluster: maximum
distance between two points in the same cluster

K-medians

Pick k points in the space, call these medians

Assign each data point to its closest center

Minimize the average distance from each point to its
closest center (or sum of distances)

14

Clustering is hard
For both k-centers and k-medians on distances like 2D
Euclidean, it is NP-Complete to find best clustering.

(We only know exponential algorithms to find them
exactly)

Two approaches:

� Look for approximate answers with guaranteed
approximation ratios.

� Look for heuristic methods that give good results in
practice but limited or no guarantees

15

Hierarchical Clustering
Hierarchical Agglomerative Clustering (HAC) has been
reinvented many times. Intuitive:

Make each input point into an input cluster.

Repeat: merge closest pair of clusters, until

a single cluster remains.

To find k clusters:
output last k clusters.

View result as binary
tree structure: leaves
are input points,
internal nodes
correspond to clusters,

merging up to root.

16

Types of HAC
Big question: how to measure distance between
clusters to find the closest pair?

� Single-link: d(C1, C2) = min d(c1 ∈∈∈∈ C1, c2 ∈∈∈∈ C2)
Can lead to “snakes”: long thin clusters, since each
point is close to the next. May not be desirable

� Complete-link: d(C1, C2) = max d(c1 ∈∈∈∈ C1, c2 ∈∈∈∈ C2)
Favors circular clusters… also may not be desirable

� Average-link: d(C1, C2) = avg d(c1 ∈∈∈∈ C1, c2 ∈∈∈∈ C2)
Often thought to be better, but more expensive to
compute…

17

HAC Example

Popular way to study
gene expression
data from
microarrays.

Use the cluster tree
to create a linear
order of (high
dimensional) gene
data.

18

Cost of HAC
Hierarchical Clustering can be costly to implement:

Initially, there are Θ(n2) inter-cluster distances to
compute.

Each merge requires a new computation of distances
involving the merged clusters.

Gives a cost of O(n3) for single-link and complete-link

Average link can cost as much as O(n4) time

This limits scalability: with only few hundred thousand
points, the clustering could take days or months.

Need clustering methods that take time closer to O(n)
to allow processing of large data sets. �

19

K-means
K-means is a simple and popular method for clustering
data in Euclidean space.

It finds a local minimum of the objective function that
is average sum of squared distance of points from the
cluster center.

Begin by picking k points randomly from the data

Repeatedly alternate two phases:

Assign each input point to its closest center

Compute centroid of each cluster (average point)

Replace cluster centers with centroids

Until converges / constant number of iterations

20

K-means example

Example due to Han and Kanber:

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

21

K-means issues
� Results not always ideal:

– if two centroids are close to each other, one can
“swallow” the other, wasting a cluster

–Outliers can also use up clusters

–Depends on initial choice of centers: repetition can
improve the results

� (Like many other algorithms) Requires k to be known
or specified up front, hard to tell what is best value of
k to use

� But, is fast – each iteration takes time at most O(kn),
typically requires only a few iterations to converge. �

22

Expectation Maximization
Think of a more general and formal version of k-means

Assume that the data is generated by some particular
distribution, eg, by k Gaussian dbns with unknown mean
and variance.

Expectation Maximization (EM) looks for parameters of the
distribution that agree best with the data.

Also proceeds by repeating an alternating procedure:
Given current estimated dbn, compute likelihood for

each data point being in each cluster.

From likelihoods, data and clusters, recompute

parameters of dbn

Until result stabilizes or after sufficient iterations

23

Expectation Maximization
� Cost and details depend a lot on what model of the
probability distribution is being used:
mixture of Gaussians, log-normal, Poisson, discrete,
combination of all of these…

� Gaussians often easiest to work with, but is this a
good fit for the data?

� Can more easily include categorical data, by fitting a
discrete probability distribution to categorical
attributes

� Result is a probability distribution assigning
probability of membership to different clusters
From this, can fix clustering based on maximum
likelihood. �

24

Approximation for k-centers
Want to minimize diameter (max dist) of each cluster.

Pick some point from the data as the first center.

Repeat:

– For each data point, compute its distance dmin
from its closest center

– Find the data point that maximizes dmin

– Add this point to the set of centers

Until k centers are picked

If we store the current best center for each point, then
each pass requires O(1) time to update this for the
new center, else O(k) to compare to k centers.

So time cost is O(kn) [Gonzalez, 1985].

25

c3

c2

c1

ALG:

Select an arbitrary center c1
Repeat until have k centers

Select the next center ci+1 to

be the one farthest from its

closest center

Gonzalez Clustering k=4

Slide due to Nina Mishra HP labs

26

c4

c3

c2

c1

Gonzalez Clustering k=4

Slide due to Nina Mishra HP labs

27

p

Let d = maxi and p in ci dist(ci,p)

d

c4

c3

c2

c1

Gonzalez Clustering k=4

Note: Any k-clustering must
put at least two of these
k+1 points in the same
cluster.
- by pigeonhole

Thus: d ≤ 2OPT

Claim: There exists a (k+1)
clique where each pair of
points is distance ≥d.
- dist(ci,p) ≥ d for all i
- dist(ci,cj) ≥ d for all i,j

Slide due to Nina Mishra HP labs

28

Gonzalez is 2-approximation
After picking k points to be centers, find next point that
would be chosen. Let distance from closest center = dopt

We have k+1 points, every pair is separated by at least
dopt. Any clustering into k sets must put some pair in
same set, so any k-clustering must have diameter dopt

For any two points allocated to the same center, they are
both at distance at most dopt from their closest center

Their distance is at most 2dopt, using triangle inequality.

Diameter of any clustering must be at least dopt, and is at
most 2dopt – so we have a 2 approximation.

Lower bound: NP-hard to guarantee better than 2

29

Available Clustering Software
� SPSS implements k-means, hierarchical and “two-step”
clustering (groups items into pre-clusters, then
clusters these)

� XLMiner (Excel plug-in) does k-means and hierarchical

� Clustan ClustanGraphics offers 11 methods of
hierarchical cluster analysis, plus k-means analysis,
FocalPoint clustering. Up to 120K items for average
linkage, 10K items for other hierarchical methods.

� Mathematica – hierarchical clustering

� Matlab – plug-ins for k-means, hierarchical and EM
based on mixture of Gaussians, fuzzy c-means

(Surprisingly?) not much variety…

30

Clustering Summary
There are a zillion other clustering algorithms:

� Lots of variations of EM, k-means, hierarchical

� Many “theoretical” algorithms which focus on getting
good approximations to objective functions

� “Database” algorithms: BIRCH, CLARANS, DB-SCAN,
CURE focus on good results and optimizing resources

� Plenty of other ad-hoc methods out there

All focus on the clustering part of the problem (clean
input, model specified, clear objective)

Don’t forget the data (collection, cleaning, modeling,
choosing distance, interpretation…)

31

2. Streaming
Analysis

32

Outline
� Cluster Analysis

– Clustering Issues

– Clustering algorithms:
Hierarchical Agglomerative Clustering, K-means, Expectation
Maximization, Gonzalez approximation for K-center

� Data Stream Analysis

– Massive Data Scenarios

– Distance Estimates for High Dimensional Data:
Count-Min Sketch for L

∞
, AMS sketch for L2, Stable sketches

for Lp, Experiments on tabular data

– Too many data points to store:
Doubling Algorithm for k-center clustering, Hierarchical
Algorithm for k-median, Gridding algorithm for k-median

� Conclusion and Summary

33

Data is growing faster than our ability to store or
process it

� There are 3 Billion Telephone Calls in US each day,
30 Billion emails daily, 1 Billion SMS, IMs.

� Scientific data: NASA's observation satellites
generate billions of readings each per day.

� IP Network Traffic: up to 1 Billion packets per hour
per router. Each ISP has many (hundreds) routers!

� Whole genome sequences for many species now
available: each megabytes to gigabytes in size

Data is Massive

34

Massive Data Analysis
Must analyze this massive data:

� Scientific research (compare viruses, species ancestry)

� System management (spot faults, drops, failures)

� Customer research (association rules, new offers)

� For revenue protection (phone fraud, service abuse)

Else, why even measure this data?

35

Example: Network Data
Networks are sources of massive data: the metadata
per hour per router is gigabytes

Fundamental problem of data stream analysis:
Too much information to store or transmit

So process data as it arrives: one pass, small space:
the data stream approach.

Approximate answers to many questions are OK, if
there are guarantees of result quality

36

Streaming Data Questions

Network managers ask questions that often map
onto “simple” functions of the data.

� Find hosts with similar usage patterns (cluster)?

� Destinations using most bandwidth?

� Address with biggest change in traffic overnight?

The complexity comes from limited space and time.

Here, we will focus on clustering questions, which
will demonstrate many techniques from streaming

37

Streaming And Clustering
Relate back to clustering: how to scale when data is
massive?

� Have already seen O(n4), O(n3), even O(n2)
algorithms don’t scale with large data

� Need algorithms that are fast, look at data only once,
cope smoothly with massive data

Two (almost) orthogonal problems:

� How to cope when number of points is large?

� How to cope when each point is large?

Focusing on these shows more general streaming ideas.

38

When each point is large…

For clustering, need to compare the points. What
happens when the points are very high dimensional?

� Eg. trying to compare whole genome sequences

� comparing yesterday’s network traffic with today’s

� clustering huge texts based on similarity

If each point is size m, m very large ⇒⇒⇒⇒ cost is very high
(at least O(m). O(m2) or worse for some metrics)

Can we do better? Intuition says no… randomization
says yes!

39

Trivial Example

Simple example. Consider “equality distance”:
d= (x,y) = 0 iff x=y, 1 otherwise

To compute equality distance perfectly, must take linear
effort: check every bit of x = every bit of y.

Can speed up with pre-computation and randomization:
use a hash function h on x and y, test h(x)=h(y)

Small chance of false positive, no chance of false negative.

When x and y are seen in streaming fashion, compute
h(x), h(y) incrementally as new bits arrive (Karp-Rabin)

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …

40

Other distances
Distances we care about:

� Euclidean (Lp) distance— || x- y ||2 = (∑i (xi – yi)
2)1/2

� Manhattan (L1) distance— || x- y ||1 = ∑i |xi – yi|

� Minkowski (Lp) distances— || x- y ||p = (∑i |xi – yi|
p)1/p

� Maximum (L
∞
) distance— || x–y ||

∞
= maxi |xi – yi|

� Edit distances: d(x,y) = smallest number of insert/delete
operations taking string x to string y

� Block edit distances: d(x,y) = smallest number of indels
& block moves taking string x to string y

For each distance, can we have functions h and f so that
f(h(x),h(y)) ≈≈≈≈ d(x,y), and |h(x)| ���� |x| ?

41

L
∞∞∞∞
distance

We will consider L
∞
distance.

Example: || [2,3,5,1] – [4,1,6,2] ||
∞

= || [2,2,1,1] ||
∞

= 2

Provably hard to approximate with relative error,
so will show an approximation with error ±±±± ε|| x- y ||1

First, consider subproblem: estimate a value in a vector

Stream defines a vector a[1..U], initially all 0
Each update change one entry, a[i] ←←←← a[i] + count.
In networks U =232 or 264, too big to store

Can we use less space but estimate each a[i]
reasonably accurately?

42

Update Algorithm

+count

+count

+count

+count

h1(i)

hlog 1/δ(i)

i,count

Count-Min Sketch

2/ε

log 1/δ

Ingredients:

– Universal hash fns h1..hlog 1/δ {1..U}� {1..2/ε}

– Array of counters CM[1..2/ε, 1..log2 1/δ]

43

Approximation
Approximate â[i] = minj CM[hj(i),j]

Analysis: In j'th row, CM[hj(i),j] = a[i] + Xi,j

Xi,j = Σ a[k] | hj(i) = hj(k)

E(Xi,j) = Σ a[k]*Pr[hj(i)=hj(k)]
≤ Pr[hj(i)=hj(k)] * Σ a[k]
= εN/2 by pairwise independence of h

Pr[Xi,j ≥ εN] = Pr[Xi,j ≥ 2E(Xi,j)] ≤ 1/2 by Markov inequality

So, Pr[â[i]≥ a[i] + ε ||a||1] = Pr[∀ j. Xi,j>ε ||a||1] ≤1/2
log 1/δ = δ

Final result:
with certainty a[i] ≤ â[i] and
with probability at least 1-δ, â[i]< a[i] + ε ||a||1

44

Applying to L
∞∞∞∞

By linearity of sketches, we have
CM(x – y) = CM(x) – CM(y)

Subtract corresponding entries of
the sketch to get a new sketch.

Can now estimate (x – y)[i] using sketch

Simple algorithm for L
∞
: estimate (x-y)[i] for each i,

take max. But too slow!

Better: can use a group testing approach to find all i’s
with (x-y)[i] > ε || x –y ||1, take max to find L∞ �

Note: group testing algorithm originally proposed
to find large changes in network traffic patterns.

-

=

45

L2 distance
Describe a variation of the Alon-Matias-Szegedy
algorithm for estimating L2 by generalizing CM sketch.

Use extra hash functions g1..glog 1/δ {1..U}� {+1,-1}

Now, given update (i,u), set CM[h(i),j] += u*gj(i)

Estimate ||a||22 = medianj ∑i CM[i,j]
2

� Result is ∑i g(i)
2ai

2 + ∑h(i)=h(j) 2 g(i) g(j) ai aj

� g(i)2 = -12 = +12 = 1, and ∑i ai
2 = ||a||22

� g(i)g(j) has 50/50 chance of being
+1 or –1 : in expectation is 0 … linear

projection

AMS sketch

46

L2 accuracy
Formally, one can show that the expectation of each
estimate is exactly ||a||2

2 and variance is bounded by
ε2 times expectation squared.

Using Chebyshev’s inequality, show that probability
that each estimate is within ±±±± ε ||a||2

2 is constant

Take median of log (1/δ) estimates reduces probability
of failure to δ (using Chernoff bounds)

Result: given sketches of size O(1/ε2 log 1/δ) can
estimate ||a||2

2 so that result is in (1±±±±ε)||a||2
2with

probability at least 1-δ �

[Note: same Chebyshev-Chernoff argument used many
time in data stream analysis]

47

Sketches for Lp distance

Let X be a random variable distributed with a stable
distribution. Stable distributions have the property that

a1X1 + a2X2 + a3X3 + … anXn ~ ||(a1, a2, a3, … , an)||pX

if X1 … Xn are stable with stability parameter p

The Gaussian distribution is stable with parameter 2

Stable distributions exist and can be simulated for all
parameters 0 < p < 2.

So, let x = x1,1… xm,n be a matrix of values drawn from
a stable distribution with parameter p...

α−stable distribution

48

Creating Sketches

Compute si = xi ···· a, ti = xi ···· b

median(|s1 - t1|,|s2 - t2|, … , |sm - tm|)/median(X)
is an estimator for || a - b ||p

Can guarantee the accuracy of this process: will be
within a factor of 1+ε with probability δ if
m = O(1/ε2 log 1/δ)

Streaming computation: when update (i,u)
arrives, compute resulting change on s.

Don’t store x -- compute entries on
demand (pseudo-random generators). linear

projection

Stable sketch

49

Experiments with tabular data

Adding extra rows or
columns increases the size
by thousands or millions of
readings

The objects of interest are
subtables of the data

eg Compare cellphone traffic
of SF with LA

These subtables are also
massive!

50

L1 Tests
We took 20,000 pair of subtables, and compared them
using L1 sketches. The sketch size was less than 1Kb.

� Sketches are very fast and accurate
(can be improved further by increasing sketch size)

� For large enough subtables (>64KB) the time saving
“buys back” pre-processing cost of sketch computation

51

Clustering with k-means
Run k-means algorithm,
replacing all distance
computations with
sketch computations

Sketches are much faster
than exact methods, and
creating sketches when
needed is always faster
than exact computation.

As k increases, the time
saving becomes more
significant.

For 8 or more clusters,
creating sketches when
needed is much faster.

52

Case study: US Call Data

00:00

04:00

08:00

12:00

16:00

20:00

00:00

04:00

08:00

12:00

16:00

20:00

00:00

04:00

08:00

12:00

16:00

20:00

00:00

One day's data clustered under p=2.0, p=1.0, p=0.25

p=2.0

p=1.0

p=0.25

53

Case study: US Call Data

We looked at the call data for the whole US for a
single day

� p = 2 shows peak activity across the country
from 8am - 5pm local time, and activity continues
in similar patterns till midnight

� p = 1 shows key areas have similar call patterns
throughout the day

� p = 0.25 brings out a very few locations that
have highly similar calling patterns

54

Streaming Distance Summary
When each input data item is huge, can approximate
distances using small sketches of the data

Sketches can be computed as the data streams in…

Higher level algorithms (eg, nearest neighbors,
clustering) can run, replacing exact distances with
approximate (sketch) distances.

Different distances require different sketches
– have covered d=, L∞∞∞∞, L2 and Lp (0<p<2)

Partial results known for other distances, eg.
edit distance/block edit distance,
earth movers distance etc.

55

Outline
� Cluster Analysis

– Clustering Issues

– Clustering algorithms:
Hierarchical Agglomerative Clustering, K-means, Expectation
Maximization, Gonzalez approximation for K-center

� Data Stream Analysis

– Massive Data Scenarios

– Distance Estimates for High Dimensional Data:
Count-Min Sketch for L

∞
, AMS sketch for L2, Stable sketches

for Lp, Experiments on tabular data

– Too many data points to store:
Doubling Algorithm for k-center clustering, Hierarchical
Algorithm for k-median, Gridding algorithm for k-median

� Conclusion and Summary

56

Stream Clustering Many Points
What does it mean to cluster on the stream when there
are too many points to store?

We see a sequence of points one after the other, and
we want to output a clustering for this observed data.

Moreover, since this clustering changes with time, for
each update we maintain some summary information,
and at any time can output a clustering.

Data stream restriction: data is
assumed too large to store,
so we do not keep all the input,
or any constant fraction of it.

57

Clustering for the stream
What should output of a stream clustering algorithm be?

Classification of every input point? Too large to be useful?
Might this change as more input points arrive?

– Two points which are initially put in different clusters
might end up in the same one

An alternative is to output k cluster centers at end
- any point can be classified using these centers.

Input: Output:

58

Gonzalez Restated
Suppose we knew dopt (from Gonzalez algorithm for k-
centers) at the start

Do the following procedure:

Select the first point as the first center

For each point that arrives:

– Compute dmin, the distance to the closest center

– If dmin > dopt then set the new point to be a new

center dopt

59

Analysis Restated
dopt is given, so we know that there are k+1 points
separated by ≥ dopt and dopt is as large as possible

So there are ≤ k points separated by > dopt

New algorithm outputs at most k centers: only include
a center when its distance is > dopt from all others.
If > k centers output, then > k points separated by
> dopt, contradicting optimality of dopt.

Every point not chosen as a center is < dopt from some
center and so at most 2dopt from any point allocated
to the same center (triangle inequality)

So: given dopt we find a clustering where every point is
at most twice this distance from its closest center

60

Guessing the optimal solution
Hence, a 2-approximation -- but, we aren’t given dopt

Suppose we knew dopt was between d and 2d, then we
could run the algorithm. If we find more than k centers,
then we guessed dopt too low

So, in parallel, guess dopt = 1, 2, 4, 8...

We reject everything less than dopt, so best guess is
< 2dopt: our output will be < 2*2dopt/dopt = 4 approx

Need log2 (dmax/dsmallest) guesses, dsmallest is minimum
distance between any pair of points, as dsmallest < dopt

O(k log(dmax / dsmallest) may be high, can we reduce more?

61

Doubling Algorithm
Doubling alg [Charikar et al 97] uses only O(k) space.
Each ‘phase’ begins with k+1 centers, these are
merged to get fewer centers.

Initially set first k+1 points in stream as centers.

Merging: Given k+1 centers each at distance at least
di, pick one arbitrarily, discard all centers within 2di
of this center; repeat until all centers separated by
at least 2di

Set di+1 = 2di and go to phase i+1

Updating: While < k+1 centers, for each new point
compute dmin. If dmin > di, then set the new point to
be a new center

62

Analyzing merging centers
After merging, every pair of centers is separated by at
least di+1

Claim: Every point that has been processed is at most
2di+1 from its closest center

Proof by induction

Base case:
The first k+1 (distinct) points are chosen as centers
Set d0 = minimum distance between any pair
Every point is distance 0 from its closest center
And trivially, 0 ≤ 2d0

63

Finishing the Induction

Every point is at most 2di+1 from its closest center

Inductive case: before merging, every point that has
been seen is at most 2di from its closest center

We merge centers that are closer than 2di

So distance between any point and its new closest
center is at most distance to old center + distance
between centers = 2di + 2di = 4di = 2di+1

≤ 2di

≤ 2di

64

Optimality Ratio
Before each merge, we know that there are k+1 points
separated by di, so dopt ≥ di

At any point after a merge, we know that every point is
at most 2di+1 from its closest center

So we have a clustering where every pair of points in a
cluster is within 4di+1 = 8di of each other

8di / dopt ≤ 8dopt/dopt = 8

So a factor 8 approximation

Total time is (amortized) O(n k log k) using heaps �

65

K-medians
k-medians measures the quality based on the average
distance between points and their closest median.
So: Σp1 d(p1,median(p1))/n

We can forget about the /n, and focus on minimizing
the sum of all point-median distances

Note here, outlier points do not help us lower bound
the minimum cluster size

We will assume that we have an exact method for k-
medians which we will run on small instances.

Results from Guha, Misra, Motwani & O’Callaghan ‘00

66

Divide and conquer
Suppose we are given n points to cluster.

Split them into n1/2 groups of n1/2 points.

Cluster each group in turn to get k-medians.

Then cluster the group of k-medians to get a final set.

The space required is n1/2 for each group of points, and
kn1/2 for all the intermediate medians.

Need to analyze the quality of the resultant clustering
in terms of the optimal clustering for the whole set of
points.

67

Analysis
Firstly, analyze the effect of picking points from the
input as the medians, instead of arbitrary points

Consider optimal solution. Point p is allocated to
median m.

Let q be the point closest to m from the input

d(p,q) ≤ d(p,m) + d(q,m) ≤ 2d(p,m)

(since q is closest, d(q,m) ≤ d(p,m))

So using points from the input at most doubles the
distance.

68

Analysis
Next, what is cost of dividing points into separate
groups, and clustering each?

Consider the total cost (=sum of distances) of the
optimum for the groups C, & the overall optimum C*

Suppose we choose the medians from the points in
each group.

The “optimum” medians are not present in each group,
but we can use the closest point in each group to the
optimum median.

Then C ≤ 2C* using the previous result.

69

How to recluster
After processing all groups, n1/2 sets of k-medians.

For each median, use “weight”: number of points were
allocated to it. Recluster using the weighted medians.

Each point p is allocated to some median mp, which is
then reclustered to some new median op.

Let the optimal k-median for point p be qp

p

mp op

qp

Cost of the reclustering is Σp d(mp,op)

70

Cost of reclustering

Because op is the optimal median for mp, then the sum of
distances to the qps must be more.

Σp d(mp, qp) ≤ Σp d(mp, p) + d(p,qp)

= cost(1st clustering) + cost(optimal clustering)
= C + C*

If we restrict to using points from the original dataset,
then we at most double this to 2(C + C*).

Total cost = 2(C+C*)+C ≤ 8C* using previous result

p

mp op

qp

Cost of reclustering Σp d(mp,op) ≤ Σp d(mp,qp)

71

Approximate version
Previous analysis assumes optimal k-median clustering.
Too expensive; in practice, find c-approximation.

So C ≤ 2cC* and Σp d(mp,op) ≤ cΣp d(mp,qp)

Putting this together gives a bound of

[2c(2C+C*)+C]/C*= 2c(2c+1)+2c= 4c(c+1)

This uses O(kn1/2) space, which is still a lot. Use this
procedure to repeatedly merge clusterings.

Approximation factor gets worse with more levels
(one level: O(c), two: O(c2), i: O(ci))

72

Clustering with small Memory

k

k

k

k

k
• A factor is lost in the
approximation with each level
of divide and conquer

…

k

k

k

k

k

k

In general, if |Memory|=nε, need
1/ε levels, approx factor 2O(1/ε)

• If n=1012 and M=106, then
regular 2-level algorithm
• If n=1012 and M=103 then need 4
levels, approximation factor 24 �

Slide due to Nina Mishra

73

Gridding Approach
Other recent approaches use “Gridding”:

Divide space into a grid, keep count of
number of points in each cell.

Repeat for successively coarser grids.

Show that by tracking information on
grids can approximate clustering: (1+ε)
approx for k-median in low dimensions
[Indyk 04, Frahling Sohler 05]

Don’t store grids exactly, but use
sketches to represent them (allows
deletion of points as well as insertions).

2 1

1

1

3

1

1

5

74

Using a grid
Given a grid, can estimate the cost of a given
clustering:

Cost of clustering
≈≈≈≈ ∑r number of points not covered by circle of radius r
≈≈≈≈ ∑r points not covered in grid by coarse circle

Now can search for best clustering (still quite costly) �

75

Summary of results
Have seen many of the key ideas from data streaming:

� Create small summaries that are linear projections of
the input: ease of composability [all sketches]

� Use hash functions and randomized analysis (with
limited independence properties) [L2 sketches]

� Use probabilistic random generators to compute same
“random” number many times [Lp sketches]

� Combinatorial or geometric arguments to show that
easily maintained data is good approx [Doubling alg]

� Hierarchical or tree structure approach: compose
summaries, summarize summaries [k-median algs]

Approximates expensive computations more cheaply

76

Related topics in Data Streams
Related data mining questions from Data Streams:

� Heavy hitters, frequent items, wavelet,
histograms – related to L

∞
.

� Median, quantile computation – connects to L
∞

� Change detection, trend analysis – sketches

� Distinct items, F0 – can use Lp sketches

� Decision trees, other mining primitives – need
approx representations of the input to test

Have tried to show some of the key ideas from
streaming, as they apply to clustering.

v1

v2

v3

g1 g2
g3 g4

∆1

∆2

∆3

∆4
v4

77

Streaming Conclusions
A lot of important data mining and database questions
can be solved on the data stream

Exact answers are unlikely: instead we apply
approximation and randomization to keep memory
requirements low

Need tools from algorithms, statistics & database to
design and analyze these methods.

Problem to ponder: what happens when each point is
too high dimensional and too many points to store?

78

Closing Thoughts

Clustering a hugely popular topic, but needs care.

Doesn’t always scale well, need careful choice of
algorithms or approximation methods to deal with
huge data sets.

Sanity check: does the resultant clustering make sense?

What will you do with the clustering when you have it?
Use as a tool for hypothesis generation, leading into
more questions?

From to…

79

(A few) (biased) References
N. Alon, Y. Matias, M. Szegedy, “The Space Complexity of Approximating the

Frequency Moments”, STOC 1996

N. Alon, P. Gibbons, Y. Matias, M. Szegedy, “Tracking Join and Self-Join Sizes in
Limited Space”, PODS 1999

M. Charikar, C. Chekuri, T. Feder, R.Motwani, “Incremental clustering and dynamic
information retrieval”, STOC 1997

G. Cormode “Some key concepts in Data Mining: Clustering” in Discrete Methods in
Epidemiology, AMS, 2006

G. Cormode and S. Muthukrishnan, “An Improved Data Stream Summary: The count-
min sketch and its applications” J. Algorithms, 2005;

G. Cormode and S. Muthukrishnan, “What’s new: finding significant differences in
Network Data Streams” Transactions on Networking, 2005

G. Cormode, P. Indyk, N. Koudas, S. Muthukrishnan “Fast Mining of Tabular Data via
Approximate Distance Computations”, ICDE 2002.

G. Frahling and C. Sohler, “Coresets in Dynamic Geometric Streams”, STOC 2005

T. Gonzalez, “Clustering to minimize the maximum intercluster distance”, Theoretical
Computer Science, 1985

S. Guha, N. Mishra, R. Motwani, O’Callaghan, “Clustering Data Streams” FOCS 2000

P. Indyk “Algorithms for dynamic geometric problems over data streams”, STOC 2004

S. Muthukrishnan, “Data Streams: Algorithms and Applications”, SODA 2002

