
1

Algorithms for Processing
Massive Data at Network

Line Speeds
Graham Cormode, DIMACS
graham@dimacs.rutgers.edu

Joint work with S. Muthukrishnan

2

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

3

Data is Massive

Data is growing faster than our ability to store or process it

• There are 3 Billion Telephone Calls in US each day

• 30 Billion emails daily, 1 Billion SMS, IMs.

• Scientific data: NASA's observation satellites generate
billions of readings each per day.

• IP Network Traffic: up to 1 Billion packets per hour per
router. Each ISP has many (hundreds) of routers!

4

Massive Data Analysis

Must analyze this massive data:

• System management (spot faults, drops, failures)

• Customer research (association rules, new offers)

• For revenue protection (phone fraud, service abuse)

• Scientific research (Climate Change, SETI etc.)

Else, why even measure this data?

5

Focus: Network Data

• Networks are sources of massive data: the
metadata per hour per router is gigabytes

• Too much information to store or transmit

• So process data as it arrives: one pass, small space:
the data stream approach.

• Approximate answers to many questions are OK, if
there are guarantees of result quality

6

Network Data Questions

Network managers ask questions that often map onto
“simple” functions of the data.

• How many distinct host addresses?

• Destinations using most bandwidth?

• Address with biggest change in traffic overnight?

The complexity comes from space and time restrictions.

7

Data Stream Algorithms

• Recent interest in "data stream algorithms“ from
theory: small space, one pass approximations

• Alon, Matias, Szegedy 96: frequency moments
Henzinger, Raghavan, Rajagopalan 98 graph streams

• In last few years:
Counting distinct items, finding frequent items,
quantiles, wavelet and Fourier representations,
histograms...

8

The Gap

A big gap between theory and practice: many good
theory results aren't yet ready for primetime.

Approximate within 1±ε with probability > 1-δ. Eg:
AMS sketches for F2 estimation, set ε=1%, δ=1%

• Space O(1/ε2 log 1/δ) is approx 106 words = 4Mb
Network device may have 100k-4Mb space total

• Each data item requires pass over whole space
At network line speeds can afford a few dozen
memory accesses, perhaps more with parallelization

9

Bridging the Gap

My work sets out to bridge the gap: the Count-Min
sketch and change detection data structures.

• Simple, small, fast data stream summaries which
have been implemented to solve several problems

• Some subtlety: to beat 1/ε2 lower bounds, must
explicitly avoid estimating frequency moments

• Here: Application to fundamental problems in
networks and beyond, finding heavy hitters and
large changes

10

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

11

1. Heavy Hitters

• Focus on the Heavy Hitters problem: Find users (IP
addresses) consuming more than 1% of bandwidth

• In algorithms, "Frequent Items": Find items and their
counts when count more than φN

• Two versions:
a) arrivals only : models most network scenarios
b) arrivals and departures : applicable to databases

12

Prior Work
Heavily studied problem (for arrivals only):

• Sampling, keep counts of certain items:
Gibbons, Matias 1998
Manku, Motwani 2002
Demaine, Lopez-Ortiz, Munro 2002
Karp, Papadimitriou, Shenker 2003

• Filter or sketch based:
Fang, Shivakumar, Garcia-Molina, Motwani, Ullman 1998
Charikar, Chen, Farach-Colton 2002
Estan, Varghese 2002

No prior solutions for arrivals and departures before this.

13

Stream of Packets

• Packets arrive in a stream. Extract from header:
Identifier, i: Source or destination IP address
Count: connections / packets / bytes

• Stream defines a vector a[1..U], initially all 0
Each packet increases one entry, a[i].
In networks U =232 or 264, too big to store

• Heavy Hitters are those i's where a[i]>φN
Maintain N = sum of counts

14

Arrivals Only Solution

Naive solution: keep the array a and for every item in
stream, test if a[i]>φN. Keep heap of items that pass
since item can only become a HH following insertion.

Solution here: replace a[i] with a small data structure
which approximates all a[i] upto εN with prob 1-δ

Ingredients:

–Universal hash fns h1..hlog 1/δ {1..U}� {1..2/ε}

–Array of counters CM[1..2/ε, 1..log2 1/δ]

15

Update Algorithm

+count

+count

+count

+count

h1(i)

hlog 1/δ(i)

i,count

Count-Min Sketch
2/ε

log 1/δ

16

Approximation

Approximate â[i] = minj CM[hj(i),j]

Analysis: In j'th row, CM[hj(i),j] = a[i] + Xi,j

Xi,j = Σ a[k] | hj(i) = hj(k)

E(Xi,j) = Σ a[k]*Pr[hj(i)=hj(k)]
≤ Pr[hj(i)=hj(k)] * Σ a[k]
= εN/2 by pairwise independence of h

17

Analysis

Pr[Xi,j ≥ εN] = Pr[Xi,j ≥ 2E(Xi,j)]
≤ 1/2 by Markov inequality

Hence, Pr[â[i] ≥ a[i] + εN] = Pr[∀ j. Xi,j > εN]
≤ 1/2log 1/δ = δ

Final result:
with certainty a[i] ≤ â[i] and
with probability at least 1-δ, â[i]< a[i]+εN

18

Results for Heavy Hitters

• Solve the arrivals only problem by remembering the
largest estimated counts (in a heap).

• Every item with count > φN is output and with
prob 1-δ, each item in output has count > (φ-ε)N

• Space = 2/ε log2 1/δ counters + log2 1/δ hash fns
Time per update = log2 1/δ hashes
(Universal hash functions are fast and simple)

• Fast enough and lightweight enough for use in
network implementations

19

Implementation Details

Implementations work pretty well, better than theory
suggests: 3 or so hash functions suffice in practice

Running in AT&T's Gigascope, on live 2.4Gbs streams

– Each query may fire many instantiations of CM
sketch, how do they scale?

– Should sketching be done at low level (close to
NIC) or at high level (after aggregation)?

– Always allocate space for a sketch, or run exact
algorithm until count of distinct IPs is large?

20

Solutions with Departures

• When items depart (eg deletions in a database
relation), finding heavy hitters is more difficult.

• Items from the past may become heavy, following a
deletion, so need to be able to recover item labels.

• Impose a (binary) tree structure on the universe,
nodes correspond to sum of counts of leaves.

• Keep a sketch for nodes in each level and search
the tree for frequent items with divide and conquer.

21

Search Structure

Find all items with count > φN by divide and conquer
(play off update and search time by changing degree)

Sketch structure is an oracle for adaptive group testing

22

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

23

2. Change Detection

• Find items with big change between streams x and y
Find IP addresses with big change in traffic overnight

• "Change" could be absolute difference in counts, or large
ratio, or large variance...

• Absolute difference: find large values in |a(x) - a(y)|
Relative difference: find large values a(x)[i]/a(y)[i]

• CM sketch can approximate the differences, but how to
find the items without testing everything?
Divide and conquer (adaptive testing) won’t work here!

24

Change Detection

• Use Non-Adaptive Group Testing: will pick groups
of items in a randomized fashion

• Within each group, test for "deltoids": items that
have shown a large change in behavior

• Must keep more information than just counts to
recover identity of deltoids.

• We separate the structure of the groups from the
tests, and consider each in turn.

25

Groups: Simple Case

• Suppose there is just one large item, i, whose
“weight” is more than half the weight of all items.

• Use a pan-balance metaphor:
this item will always be on
the heavier side

• Assume we have a test which tells us which group
is heavy. The large item is always in that group.

• Arrange these tests to let us identify the deltoid.

26

Solving the simple case

• Keep a test of items whose identifier is odd, and for
even: result of test tells whether i is odd or even

• Similarly, keep tests for every bit position.

• Then can just read off the index of the heavy item

• Now, turn original problem into this simple case…

27

Spread into Buckets

Allocate items into buckets:

• With enough buckets, we expect to achieve the simple
case: each deltoid lands in a bucket where the rest of
weight is small

• Repeat enough times independently to guarantee
finding all deltoids

28

Group Structure

Formalize the scheme to find deltoids with weight at
least φ – ε of total amount of change:

• Use a universal hash function to divide the universe
into 2/ε groups, repeat log 1/δ times.

• Keep a test for each group to determine if there is a
deltoid within it. Keep 2log U subgroups in each
group based on the bit positions to identify deltoids.

Update procedure: for each update, find the groups the
items belongs to and update the corresponding tests.

29

Group Testing

• Searching: For each group whose test is positive,
read results of tests of subgroups:
if test j is positive, bit j = 1, test j' positive, bit j=0

• Avoid false positives: If test j and j' both positive,
there are two deltoids in same group, so reject the
group (also if j and j' both negative).

• Avoid false positives: Check the recovered item
belongs to that group. If so, output it as a deltoid.

• Result: Find all deltoids, if tests gave correct results.

30

Tests

• How to construct a test for the presence of a
deltoid?

• Naively, could keep sketch for each group, but
space blows up (1/ε2 or worse)

• For absolute change deltoids, keeping counts of
items suffices, proof similar to CM sketch

• For relative change, appropriate counts also suffice,
new proof needed.

31

Relative Change Test

Keep different information for each stream.

• For stream x, keep T(x)[j] = Σ h(i) = j a(x)[i]
sum counts of items in the group

• For stream y, keep T(y)[j] = Σ h(i) = j (1/a(y)[i])
sum reciprocal of counts of items in the group

• Test: if T(x)[j]*T(y)[j] > φ Σ (a(x)[i]/a(y)[i])
test if product of counts exceeds threshold

• Must be able to find (1/a(y)[i]) – open problem to
remove this restriction

32

Relative Change Test

• Test has one-sided error, will always say yes if
(a(x)[i]/a(y)[i])> φ Σ (a(x)[i]/a(y)[i])

• To bound false positives, and ensure true positives
are not obscured by noise, need to argue that each
test gives good enough estimate of (a(x)[i]/a(y)[i])

• In full paper, show that expected error is
½ ε ||a(x)||1 ||1/a(y)||1. So with constant probability
this is good estimate of the change.

• The group structure amplifies this probability to 1-δ

33

Results

• With probability 1-δ, all deltoids are found, no
items which are far from being deltoids

• Space is O(1/ε log U log 1/δ)
Update time is O(log U log 1/δ) per item
Time to search is linear in the space used

• The same group structure works for different
objective functions, if there is an efficient test.

34

Experiments
Precision of Relative Deltoids on phone data,

phi=0.1%, delta=0.25

0
0.2
0.4
0.6
0.8

1

0.1
00

%
0.0

79
%

0.0
63

%
0.0

50
%

0.0
40

%
0.0

32
%

0.0
25

%
0.0

20
%

0.0
16

%
0.0

13
%

0.0
10

%

Epsilon

Pr
ec

is
io

n

Group Testing

Sampling

Recall of Relative Deltoids on phone data,
phi=0.1%, delta=0.25

0
0.2
0.4
0.6
0.8

1

0.1
00

%
0.0

79
%

0.0
63

%
0.0

50
%

0.0
40

%
0.0

32
%

0.0
25

%
0.0

20
%

0.0
16

%
0.0

13
%

0.0
10

%

Epsilon

R
ec

al
l

Group Testing

Sampling

Recall = fraction of deltoids
found

Precision = fraction of returned
items that are deltoids

Timing Comparison for Detecting Different
Changes with Group Testing

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000

0.5
00

0.2
50

0.1
25

0.0
63

0.0
31

0.0
16

0.0
08

0.0
04

0.0
02

0.0
01

Delta

Items /
Second

Relative Change

Absolute Change

Variance

35

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

36

Other Applications

These techniques can be applied to several other
fundamental data analysis problems:
– Range Sum and Inner Product Estimation
– Finding Approximate Quantiles
– Wavelets and Histograms…

Limited (pairwise) independence suffices for all

Group testing approach is fundamental

37

Ongoing Work

Agenda: Move other data mining methods from the
theoretical to the practical for massive data, in similar
and new domains:

• Burst detection on many (large) texts

• Items in hierarchies, eg IP addresses, geographic data

• Massive geometric data — many points from mobile
clients.

• Massive Graphs — eg call graphs, web graph

38

References

• “What’s Hot and What’s Not: Tracking Most Frequent Items
Dynamically” Principles of Database Systems (PODS) 2003

• “An improved data stream summary: the Count-Min sketch
and its applications” Journal of Algorithms, 2004

• “What's New: Finding Significant Differences in Network
Data Streams” INFOCOM 2004

(all joint work with S. Muthukrishnan)

Code for these algorithms and others is publicly available
http://www.dimacs.rutgers.edu/~graham/code/

http://www.dimacs.rutgers.edu/~graham/
Or web search for “Graham Cormode”

