
Finding Interesting Correlations
with Conditional Heavy Hitters

Katsiaryna Mirylenka (University of Trento)

Themis Palpanas (University of Trento)

Graham Cormode (AT&T Labs)

Divesh Srivastava (AT&T Labs)

Streaming Data Processing

 Much big data arrives in the form of streams of updates

– Each item in the stream gives more information

– Stream is too large to store or forward

 Much prior work on streaming algorithms using small space

– For “heavy hitters” (frequent items, frequent itemsets)

– For quantiles, entropy and other statistical quantities

– For data mining and machine learning (clustering, classifiers)

 Common application domains:

– Network health monitoring (anomaly detection)

– Intrusion detection over streams of events

2

Limitations of current approaches

Existing streaming primitives not always suited to these cases:

 Tracking heavy hitters in network monitoring is too crude

– Some sources or destinations are always popular

– These may drown out the informative cases

– Want to study data at a finer level of detail

 Frequent itemset mining in intrusion detection is not scalable

– Enormous search space of possible combinations

– Existing algorithms need a lot of space

– Do not offer ‘real-time’ performance

 Want mining primitive between these two extremes

– Finer than heavy hitters, simpler than frequent itemsets

3

Conditional Heavy Hitters

 Observation: much data can be abstracted as pairs of items

– (Source, destination) in network data

– (Current, next) states in Markov chain models

– Pairs of attributes in database systems

 First item is primary, other is secondary

– Abstract as (parent, child) pairs

 Introduce the notion of conditional heavy hitters:

– (parent, child) pairs where the child is frequent given the parent

– We formalize this definition, and give algorithms to find them

4

parent

….

child1

child2

childn

child3

Conditional Heavy Hitters Definitions

 Given parents p, and children c, define

– fp as the frequency (count) of parent p in the stream

– fp,c as the frequency (count) of pair (p,c) in the stream

– Pr[p] as the probability of p, fp/n

– Pr[c|p] as the conditional probability of c given p, fp,c/fp

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] >

– Needs refinement: if fp = fp,c = 1, then Pr[c|p]=1

– Restrict attention to those with the top- largest fp,c values

 Still a technically difficult problem

– Lower bound shows a lot of space needed to give guarantees

5

Outline

 Introduce a sequence of four algorithms to find
Conditional Heavy Hitters (CHH)

 Initial two algorithms store information on all parents

 Subsequent two algs track approximate information on parents

 Experimental study identifies where each algorithm performs
best

6

parent

….

child1

child2

childn

child3

Space Saving Algorithm for HH

 Basic building block is an algorithm for heavy hitters (HH)

 SpaceSaving is an efficient HH algorithm [Metwally et al ‘05]

 Keeps information about k different items and their counts

– If next item in stream is stored, update its count

– If not, overwrite least frequent item and update count

 Guarantees error at most (n/k) on any count

 SpaceSaving (SS) often performs very well in practice

7

7

1

4

6

1. GlobalHH Algorithm

 Natural first approach to CHH problem:

– Keep exact statistics on parent frequencies

– Keep approximate counts of (parent, child) pairs via SS

– Use approximate and exact information to estimate Pr[c|p]

– Output CHHs based on these estimates

 Provides guarantees on estimated values:

– Error in estimate of Pr[c|p] is at most n/(k fp)

– Error improves if distribution is skewed

8

child parent

Exact count SS

2. CondHH Algorithm

 Previous algorithm is not tuned to the CHH definition

– SS algorithm prunes based on raw frequency

– Instead, CondHH algorithm prunes based on (estimated) Pr[c|p]

 Introduce ConditionalSpaceSaving (CSS) algorithm:

– Keeps information about k different items and their counts

– If next item in stream is stored, update its count

– If not, overwrite item with lowest Pr[c|p] estimate, update count

– Use some implementation tricks to make fast to update

 CondHH: use CSS for (parent, child) pairs to estimate Pr[c|p]

9

child parent

Exact count CSS

3. FamilyHH Algorithm

 Previous algorithms assumed we could store all parents

– Not realistic as the domain of parents increases

 FamilyHH: natural generalization of GlobalHH

– Keep SS for parents, and another SS for (parent,child) pairs

– Use both approximate counts to estimate Pr[c|p]

 Similar worst case guarantees to GlobalHH

– Given O(k) space, error in Pr[c|p] is at most n/(k fp)

10

child parent

SS SS

4. SparseHH Algorithm

 Last algorithm is the most involved

– Keep SS on parents, CSS on parent, child pairs

 Given new (parent, child) pair, need to initialize its fp,c estimate

– Can use additional data structures to track this information

– Use hashing/Bloom filter techniques to minimize space

– Experimentally determine how to divide available memory

 No worst-case guarantees on performance,

– So we compare all algorithms empirically

11

child parent

SS CSS

Algorithm Summary

Algorithm Parent Parent,Child

1. GlobalHH Exact SS

2. CondHH Exact CSS

3. FamilyHH SS SS

4. SparseHH SS CSS

12

 Other algorithms proposed, performed less well

 For more details, see paper

Experimental Study

 Implemented and evaluated on variety of data

– WorldCup data of (ClientID, ObjectID) request pairs

– Taxicab GPS data: 54K trajectories in a 2nd order Markov model

 Distinguish between data that is sparse and dense

– Sparse data has few distinct children per parent (on average)

– Dense data has many distinct children per parent (on average)

 Measure precision and recall of CHH recovery

13

Sparse Data Results

 World Cup data is sparse: 1/10 parents have a CHH child

 CondHH and SparseHH do well, both based on CSS

– Keep very similar information internally

– Other methods not competitive

14

0

0.2

0.4

0.6

0.8

1

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH
FamilyHH
CondHH
SparseHH

0

0.2

0.4

0.6

0.8

1
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

R
e

ca
ll

Total memory (Mbytes)

Dense Data Results

 Taxicab data is relatively dense, many parents have CHH child

 CondHH can take more advantage of available memory

 SparseHH converges on CondHH as more memory is used

 Other algorithms are not competitive

15

0

0.2

0.4

0.6

0.8

1

1 2 3 4

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH

CondHH

SparseHH

0

0.2

0.4

0.6

0.8

1

1 2 3 4

R
e

ca
ll

Total memory (Mbytes)

Throughput and Performance

 Not much variation as memory increases

 CondHH and SparseHH are slightly more expensive, due to
more complex processing

 Throughput is still 5 x 105 items / second per core
16

Concluding Remarks

 High precision and recall of CHHs is possible on data streams

– SparseHH algorithm works well over a variety of data types

– CondHH is preferred when the data is more dense

 Future work:

– Evaluate for Markov Chain parameter estimation

– Compare to other recently proposed definitions

17

18

ParentHH Algorithm

 Keep small amount of information for each parent about its
child distribution

– Run an instance of SS for each parent

– Track child distribution accurately

– Use stored information to estimate Pr[c|p] and output CHHs

 Also provides guarantees on accuracy

– Given total space k, error in estimate of Pr[c|p] is |P|/s

– P denotes total number of parents

19

