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Streaming Data Processing 

 Much big data arrives in the form of streams of updates 

– Each item in the stream gives more information 

– Stream is too large to store or forward 

 Much prior work on streaming algorithms using small space 

– For “heavy hitters” (frequent items, frequent itemsets) 

– For quantiles, entropy and other statistical quantities 

– For data mining and machine learning  (clustering, classifiers) 

 Common application domains: 

– Network health monitoring (anomaly detection) 

– Intrusion detection over streams of events 
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Limitations of current approaches 

Existing streaming primitives not always suited to these cases: 

 Tracking heavy hitters in network monitoring is too crude 

– Some sources or destinations are always popular 

– These may drown out the informative cases 

– Want to study data at a finer level of detail 

 Frequent itemset mining in intrusion detection is not scalable 

– Enormous search space of possible combinations 

– Existing algorithms need a lot of space 

– Do not offer ‘real-time’ performance 

 Want mining primitive between these two extremes 

– Finer than heavy hitters, simpler than frequent itemsets 
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Conditional Heavy Hitters 

 Observation:  much data can be abstracted as pairs of items 

– (Source, destination) in network data 

– (Current, next) states in Markov chain models 

– Pairs of attributes in database systems 

 First item is primary, other is secondary 

– Abstract as (parent, child) pairs 

 Introduce the notion of conditional heavy hitters: 

– (parent, child) pairs where the child is frequent given the parent 

– We formalize this definition, and give algorithms to find them 
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Conditional Heavy Hitters Definitions 

 Given parents p, and children c, define 

– fp as the frequency (count) of parent p in the stream 

– fp,c  as the frequency (count) of pair (p,c) in the stream 

– Pr[p] as the probability of p, fp/n 

– Pr[c|p] as the conditional probability of c given p, fp,c/fp 

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] >  

– Needs refinement: if fp = fp,c = 1, then Pr[c|p]=1 

– Restrict attention to those with the top- largest fp,c values 

 Still a technically difficult problem 

– Lower bound shows a lot of space needed to give guarantees 
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Outline 

 Introduce a sequence of four algorithms to find  
Conditional Heavy Hitters (CHH) 

 Initial two algorithms store information on all parents 

 Subsequent two algs track approximate information on parents 

 Experimental study identifies where each algorithm performs 
best 

6 

parent 

…. 

child1 

child2 

childn 

child3 



Space Saving Algorithm for HH 

 Basic building block is an algorithm for heavy hitters (HH) 

 SpaceSaving is an efficient HH algorithm [Metwally et al ‘05] 

 Keeps information about k different items and their counts 

– If next item in stream is stored, update its count 

– If not, overwrite least frequent item and update count 

 Guarantees error at most (n/k) on any count 

 SpaceSaving (SS) often performs very well in practice 
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1. GlobalHH Algorithm 

 Natural first approach to CHH problem: 

– Keep exact statistics on parent frequencies 

– Keep approximate counts of (parent, child) pairs via SS 

– Use approximate and exact information to estimate Pr[c|p] 

– Output CHHs based on these estimates 

 Provides guarantees on estimated values: 

– Error in estimate of Pr[c|p] is at most  n/(k fp) 

– Error improves if distribution is skewed 

 

8 

child parent 

Exact count SS 



2. CondHH Algorithm 

 Previous algorithm is not tuned to the CHH definition 

– SS algorithm prunes based on raw frequency 

– Instead, CondHH algorithm prunes based on (estimated) Pr[c|p] 

 Introduce ConditionalSpaceSaving (CSS) algorithm: 

– Keeps information about k different items and their counts 

– If next item in stream is stored, update its count 

– If not, overwrite item with lowest Pr[c|p] estimate, update count 

– Use some implementation tricks to make fast to update 

 CondHH: use CSS for (parent, child) pairs to estimate Pr[c|p] 
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3. FamilyHH Algorithm 

 Previous algorithms assumed we could store all parents 

– Not realistic as the domain of parents increases 

 FamilyHH: natural generalization of  GlobalHH 

– Keep SS for parents, and another SS for (parent,child) pairs 

– Use both approximate counts to estimate Pr[c|p] 

 Similar worst case guarantees to GlobalHH 

– Given O(k) space, error in Pr[c|p] is at most n/(k fp) 
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4. SparseHH Algorithm 

 Last algorithm is the most involved 

– Keep SS on parents, CSS on parent, child pairs 

 Given new (parent, child) pair, need to initialize its fp,c estimate 

– Can use additional data structures to track this information 

– Use hashing/Bloom filter techniques to minimize space 

– Experimentally determine how to divide available memory 

 No worst-case guarantees on performance,  

– So we compare all algorithms empirically 
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Algorithm Summary 

Algorithm Parent Parent,Child 

1. GlobalHH Exact SS 

2. CondHH Exact CSS 

3. FamilyHH SS SS 

4. SparseHH SS CSS 
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 Other algorithms proposed, performed less well 

 For more details, see paper 



Experimental Study 

 Implemented and evaluated on variety of data 

– WorldCup data of  (ClientID, ObjectID) request pairs 

– Taxicab GPS data: 54K trajectories in a 2nd order Markov model 

 Distinguish between data that is sparse and dense 

– Sparse data has few distinct children per parent (on average) 

– Dense data has many distinct children per parent (on average) 

 Measure precision and recall of CHH recovery 

13 



Sparse Data Results 

 World Cup data is sparse: 1/10 parents have a CHH child 

 CondHH and SparseHH do well, both based on CSS 

– Keep very similar information internally 

– Other methods not competitive 
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Dense Data Results 

 Taxicab data is relatively dense, many parents have CHH child 

 CondHH can take more advantage of available memory 

 SparseHH converges on CondHH as more memory is used 

 Other algorithms are not competitive 
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Throughput and Performance 

 Not much variation as memory increases 

 CondHH and SparseHH are slightly more expensive, due to 
more complex processing 

 Throughput is still 5 x 105 items / second per core 
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Concluding Remarks 

 High precision and recall of CHHs is possible on data streams 

– SparseHH algorithm works well over a variety of data types 

– CondHH is preferred when the data is more dense 

 Future work:  

– Evaluate for Markov Chain parameter estimation 

– Compare to other recently proposed definitions 
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ParentHH Algorithm 

 Keep small amount of information for each parent about its 
child distribution 

– Run an instance of SS for each parent 

– Track child distribution accurately 

– Use stored information to estimate Pr[c|p] and output CHHs 

 Also provides guarantees on accuracy 

– Given total space k, error in estimate of Pr[c|p] is |P|/s 

– P denotes total number of parents 
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