Sub-quadratic search for significant correlations

Graham Cormode

Jacques Dark

University of Warwick G.Cormode@Warwick.ac.uk

Computational scalability and "big" data

- Most work on massive data tries to scale up the computation
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move data to code, not vice-versa
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Add layers of abstraction to build massive DBMSs and warehouses
 - Decide which constraints to drop: noSQL, BASE systems
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast
- This talk is not about this approach!

Downsizing data

A second approach to computational scalability: scale down the data!

- A compact representation of a large data set
- Capable of being analyzed on a single machine
- What we finally want is small: human readable analysis / decisions
- Necessarily gives up some accuracy: approximate answers
- Often randomized (small constant probability of error)
- Much relevant work: samples, histograms, wavelet transforms
- Complementary to the first approach: not a case of either-or
- Some drawbacks:
 - Not a general purpose approach: need to fit the problem
 - Some computations don't allow any useful summary

Outline for the talk

- An introduction to sketches (high level, no proofs)
- An application: Finding correlations among many observations
- There are many other (randomized) compact summaries:
 - Sketches: Bloom filter, Count-Min, AMS, Hyperloglog
 - Sample-based: simple samples, count distinct
 - Locality Sensitive hashing: fast nearest neighbor search
 - Summaries for more complex objects: graphs and matrices
- Not in this talk ask me afterwards for more details!

What are "Sketch" Data Structures?

Sketch is a class of summary that is a linear transform of input

- Sketch(x) = Sx for some matrix S
- Hence, Sketch($\alpha x + \beta y$) = α Sketch(x) + β Sketch(y)
- Trivial to update and merge
- Often describe S in terms of hash functions
 - S must have compact description to be worthwhile
 - If hash functions are simple, sketch is fast
- Analysis relies on properties of the hash functions
 - Seek "limited independence" to limit space usage
 - Proofs usually study the expectation and variance of the estimates

Sketches

- Count Min sketch [C, Muthukrishnan 04] encodes item counts
 - Allows estimation of frequencies (e.g. for selectivity estimation)
 - Some similarities to Bloom filters
- Model input data as a vector x of dimension U
 - Create a small summary as an array of $w \times d$ in size
 - Use d hash function to map vector entries to [1..w]

Count-Min Sketch Structure

- Update: each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Query: estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than $\varepsilon ||x||_1$ in size $O(1/\varepsilon)$
 - Probability of more error reduced by adding more rows

Sketching for Euclidean norm

- AMS sketch presented in [Alon Matias Szegedy 96]
 - Allows estimation of Euclidean norm of a sketched vector
 - Leads to estimation of (self) join sizes, inner products
 - Data-independent dimensionality reduction ('Sparse Johnson-Lindenstrauss lemma')
- Here, describe (fast) AMS sketch by generalizing CM sketch
 - − Use extra hash functions $g_1...g_d \{1...U\} \rightarrow \{+1,-1\}$
 - Now, given update (j,+c), set $CM[k,h_k(j)] += c^*g_k(j)$
- Estimate squared Euclidean norm = median_k \sum_{i} CM[k,i]²
 - Intuition: g_k hash values cause 'cross-terms' to <u>cancel out</u>, on average

C_Q¹

≁c*<u>g₃(j</u>

+c*g₂()

₄+c<mark>*g₄(j)</mark>

h₁(J

 $h_d(j)$

j,+c

- The analysis formalizes this intuition
- median reduces chance of large error

Sketches in practice: Packet stream analysis

- AT&T Gigascope / GS tool: stream data analysis
 - Developed since early 2000s

- Based on commodity hardware + Endace packet capture cards
- High-level (SQL like) language to express continuous queries
 - Allows "User Defined Aggregate Functions" (UDAFs) plugins
 - Sketches in gigascope since 2003 at network line speeds (Gbps)
 - Flexible use of sketches to summarize behaviour in groups
 - Rolled into standard query set for network monitoring
 - Software-based approach to attack, anomaly detection
- Current status: latest generation of GS in production use at AT&T Also in Twitter analytics, Yahoo, other query log analysis tools

Looking for Correlations

Given many (time) series, find the highly correlated pairs

- And hope that there aren't too many spurious correlations...
- Input model: we have m observations of n time series
 - One new observation of all series at each time step

Computing the Correlation

Stats refresher: time series modeled as random variables X, Y

- The covariance Cov(X,Y) = E[XY] E[X] E[Y] = E[(X-E[X])(Y E[Y])]
- The correlation is covariance normalized by standard deviations Cor(X,Y) = Cov(X,Y)/σ(X)σ(Y)
- If we had all the time (and space) in the world:
 - Compute a vector x = $1/\sigma(X) [X_1 \mu_x, X_2 \mu_x ... X_m \mu_x]$
 - For all x, y pairs, compute $Cor(X,Y) = x \cdot y$ (vector inner product)
 - Time taken: O(nm) preprocessing + $O(n^2m)$ for pair computations
 - Can write as a matrix product MM^T, where M is normalized data
- O(nm) not so bad: linear in the size of the input data
- O(n²m) is bad: grows quadratically as number of series increases
 - Can't do better if many pairs are correlated
- ¹¹ But in general, most pairs are uncorrelated so there is hope

Sketching version 1

- Can apply sketching to the data
 - Replace each series with a sketch of the series
 - Can use linear properties of sketches to update and zero mean even as new observations are made

- Obtain approximate correlations (with error ε)
 - Time cost reduced to $O(mn + n^2b)$, with $b = O(1/\epsilon^2)$
- Better, but still quadratic in n!

Sketching version 2

Need a smarter data structure to find large correlations quickly

- If most pairs are uncorrelated, no use testing them all
- Simple idea: bunch series into groups, add them up in groups
 - If no correlations in two groups, their sum should be uncorrelated
 - If there is a correlation, the sum should remain correlated
- Challenge:
 - 1. Turn the "should be"s into more precise statements!
 - 2. How to find the correlated pair(s) from correlated groups?

Solution outline: a combination of sketching + group testing

- 1. Use some standard statistical techniques to analyze probabilities
- 2. Use some nifty coding theory to "decode" results

Bucketing the sketches

Create a smaller correlation matrix

- Randomly permute the indexing of the series
- Sum together the series placed in the same bucket
- ¹⁴ Subtract the effect of diagonal elements (self-correlations)

Coding up the buckets

- For each pair of buckets, do additional coding to find which entries were heavy (group testing within buckets)
 - Repeat the sketching with different subsets of series

Intuition: use a Hamming code to mask out some entries

See which combinations are "heavy" to identify the heavy index

Rather vulnerable to noise from sketching, collisions

More sketching! Sketch all the things!

Improvement 1: use sketching ideas within the buckets!

- Randomly multiply each series in the bucket by +1 or -1
- Decreases the chance of errors (in a provable way)

More coding! Code all the things!

Improvement 2: Error correcting codes to recover (noisy) pairs

- Care needed in code choice: each extra bit = more sketches
 - Only need to code the low-order bits of the permuted (i, j)
 - The high order bits are given by the bucket id
 - Can just store the random permutation of ids explicitly
 - Use Low Density Parity-Check codes: simple & work with sketches

Putting it all together

Mistakes still happen: from sketches, collisions etc.

- Repeat the process a few times in parallel
- Only report pairs found at least half the time
- Makes false positives vanishingly small, recall is high
- Proof needed: Formal analysis of correctness to show:
 - Good chance that each heavy pair is isolated in a bucket
 - Noise from colliding pairs is small
 - Sketches for the bucket are (mostly) correct
- Assumptions: if small correlations are polynomially small, not too many large correlations, the space is subquadratic
 - And fast: sketch computations done via fast matrix multiply

Proof-of-concept experiments

- Tests on synthetic data
 - 50 vectors of length 1000
 - Sketches size 120
 - 10 buckets, 10 repetitions
- A few "planted" correlations
 - Test threshold 0.35
- Can recover significant correlations, miss some close to the boundary
 - Experiments ongoing!

Caveats and Cautions

Randomized sketches can be powerful and effective, but they:

- Don't give the exact answer (so not widely implemented or used)
- Tend to be special purpose (so used for specific important problems)
- Require some new ways of thinking (so take some getting used to)

- Some resistance to the randomness– can be argued against:
 - Want the exact answer? Most large data is highly noisy
 - Hard to debug? Randomized algorithms are simple(ish), repeatable
 - Want determinism? Hash tables are everywhere, caching, solar rays

Summary

- There are two approaches in response to growing data sizes
 - Scale the computation up; scale the data down
- Sketches are a useful general technique for data reduction
 - Developed for streaming algorithms (in computer science)
 - Related to compressed sensing, dimensionality reduction (math/stat)

Microsoft[®]

- Continuing interest in applying and developing new theory
 - Always looking for new collaborators/students/postdocs

EPSRC Engineering and Physical Sciences Research Council

Research

European Research Council

Established by the European Commission

Ad: The Alan Turing Institute in London

