
Space-optimal Heavy Hitters
with Strong Error Bounds

Graham Cormode

graham@research.att.com

Radu Berinde (MIT)

Piotr Indyk (MIT)

Martin Strauss (U. Michigan)

Space-optimal Heavy Hitters with Strong Error Bounds
2

The Frequent Items Problem

♦ The Frequent Items Problem (aka Heavy Hitters):

given stream of N items, find those that occur most frequently

♦ E.g. Find all items occurring more than 1% of the time

♦ Formally “hard” in small space, so allow approximation

♦ Find all items with count ≥ φN, none with count < (φ−ε)N
– Error 0 < ε < 1, e.g. ε = 1/1000

– Core subproblem: estimate each frequency accurately

Space-optimal Heavy Hitters with Strong Error Bounds
3

Why Frequent Items?

♦ A natural question on streaming data

– Track bandwidth hogs, popular destinations etc.

♦ The subject of much streaming research

– Scores of papers on the subject

♦ A core streaming problem

– Many streaming problems connected to frequent items

(itemset mining, entropy estimation, compressed sensing)

♦ Many practical applications

– Search log mining, network data analysis, DBMS optimization

Space-optimal Heavy Hitters with Strong Error Bounds
4

Prior Work

♦ Counter-based algorithms accept a stream of arrivals

– Frequent (1982/2002), Lossy Counting (2002), SpaceSaving (2005)

– Described in more detail

♦ Sketch-based algorithms allow arrivals and departures

– Count Sketch (2002), Count-Min Sketch (2003)

♦ See survey and experimental study in VLDB 2008

♦ So why are we still talking about frequent items?

Space-optimal Heavy Hitters with Strong Error Bounds
5

Better than advertised

♦ Experimentally counter algorithms seem better than expected

– Accuracy much higher than the bounds would suggest

♦ We can analyze them to show data-dependent bounds

– For skewed data (common case) much improved guarantees

♦ Implications for a variety of applications:

– K-sparse recovery (find best sparse representation)

– Top-k frequency estimation

– Estimating confidence of functional dependencies (SIGMOD ’09)

Space-optimal Heavy Hitters with Strong Error Bounds
6

“Frequent” algorithm

♦ FREQUENT finds up to k items that occur more than 1/k

fraction of the time

♦ Keep k different candidates in hand. For each item in stream:

– If item is monitored, increase its counter

– Else, if < k items monitored, add new item with count 1

– Else, decrease all counts by 1

7

5

121

4

6

Space-optimal Heavy Hitters with Strong Error Bounds
7

Frequent Analysis

♦ Analysis: each decrease can be charged against k arrivals of

different items, so no item with frequency N/k is missed

♦ Moreover, k=1/ε counters estimate frequency with error εN

– Not explicitly stated until later [Bose et al., 2003]

♦ Some history: First proposed in 1982 by Misra and Gries,

rediscovered twice in 2002

– Later papers showed how to make fast implementations

Space-optimal Heavy Hitters with Strong Error Bounds
8

SpaceSaving Algorithm

♦ “SpaceSaving” algorithm [Metwally, Agrawal, El Abaddi 05]

has the same space/accuracy bounds

♦ Keep k = 1/ε item names and counts, initially zero

Count first k distinct items exactly

♦ On seeing new item:

– If it has a counter, increment counter

– If not, replace item with least count, increment count

7

5

123

Space-optimal Heavy Hitters with Strong Error Bounds
9

SpaceSaving Analysis

♦ Smallest counter value, min, is at most εN

– Counters sum to N by induction

– 1/ε counters, so average is εN: smallest cannot be bigger

♦ True count of an uncounted item is between 0 and min

– Proof by induction, true initially, min increases monotonically

– Hence, the count of any item stored is off by at most εN

♦ Any item x whose true count > εN is stored

– By contradiction: x was evicted in past, with count ≤ mint

– Every count is an overestimate, using above observation

– So est. count of x > εN ≥ min ≥ mint, and would not be evicted

So: Find all items with count > εN, error in counts ≤ εN

Space-optimal Heavy Hitters with Strong Error Bounds
10

Improving the Bounds

♦ Define a class of “heavy tolerant” counter algorithms

– An algorithm which stores m items and counts

– Extra occurrences of an item do not increase estimation error

– A relatively intuitive and natural property

♦ Prove that both Frequent and SpaceSaving are heavy tolerant

– A little intricate, requires careful case analysis

♦ Show that heavy tolerance implies a k-tail guarantee

– Define f1 = highest frequency, f2 = second highest, etc.

– Then define F1
res(k) = N – (f1 + f2 + … fk), ≪ N for skewed dbns

– Accuracy of estimates is F1
res(k)/(m – Bk) for some B

Space-optimal Heavy Hitters with Strong Error Bounds
11

Results on Tail Bounds

♦ General result: for all counter-based algorithms, B ≤ 2

♦ Specific results: B = 1 for SpaceSaving and Frequent

♦ With m counters, get accuracy F1
res(k)/(m – Bk) for any k< m

– So with m = O(k) counters, get accuracy F1
res(k)/k

– Much better than prior F1/k accuracy for skewed distributions

– Only need O(ε-1/z) counters for εN accuracy on Zipfian (z) data

♦ k-tail bounds are optimal: can force F1
res(k)/2m error

Space-optimal Heavy Hitters with Strong Error Bounds
12

Frequent Tail Bound Analysis

♦ Conceptually, each arrival increments a counter for that item

♦ Over the stream, d times an element decrements d counters

♦ Sum of counters C = N – d(m+1)

♦ Error in estimated count of an item is at most d

♦ Consider sum of estimated counts of k most frequent items:

– N – d(m+1) ≥ ∑i=1
k (fi – d) = -dk + (N – F1

res(k))

– Rearranging and simplifying, d(m+1-k) ≤ F1
res(k)

♦ So d, error in count, is at most F1
res(k)/(m+1-k) : k tail with B=1

Space-optimal Heavy Hitters with Strong Error Bounds
13

Implications

♦ k-Sparse recovery: recover a vector f’ that approximates f for p≥1

– With m = k(B + 3/ε) counters, top-k counter values define f’

– Show that ||f – f’||p ≤ ε F1
res(k)k1/p – 1 + (Fp

res(k))1/p

– Smallest possible error is (Fp
res(k))1/p

♦ m-Sparse recovery: recover a vector f’ that approximates f

– With m = k(B + 1/ε) counters, all m counter values define f’

– Show that ||f – f’||p ≤ (1+ε) F1
res(k) (kε-1

)1/p – 1

– Converges with previous result for p=1

♦ Estimate F1
res(k)

– With m = k(B + 1/ε) counters, top-k counter values define f’

– Show that N - ||f’||1 ∈ (1± ε) F1
res(k)

Space-optimal Heavy Hitters with Strong Error Bounds
14

Weighted Updates

♦ Weighted case: find items whose total weight is high

– Sketch algorithms adapt easily, counter algs with effort

♦ Simple solution: all weights are integer multiples of small δ
♦ Full solution: define appropriate generalizations of counter algs

to handle real valued weights

– Straightforward to extend SpaceSaving analysis to weighted case

– Frequent more complex, action depends on smallest counter value

♦ Result: both algorithms still provide B=1 tail guarantees

– Even on real valued non-negative update streams

Space-optimal Heavy Hitters with Strong Error Bounds
15

Mergability of Summaries

♦ Want to merge summaries, to summarize the union of streams

♦ Sketches with shared hash fns are easy to merge together

♦ Counter-based algorithms need new analysis:

– Merging two summaries preserves accuracy, but space may grow

– With pruning of the summary, can merge indefinitely

– Space remains bounded, accuracy degrades by at most a constant

♦ Result: Given m counters, algorithms provide similar guarantees

– Accuracy behaves like 3/(m – (B+1)k) F1
res(k) on merged summaries

– Grow summaries by a constant factor to get same accuracy

Space-optimal Heavy Hitters with Strong Error Bounds
16

Conclusions

♦ Finding the frequent items is one of the most studied problems

in data streams

♦ We analyzed a broad class of counter-based algorithms, and

showed improved (optimal) worst-case bounds

– Can replace sketches with deterministic summaries in many cases

– Results much more compact, accurate, reliable

♦ For gory details of analysis, see the paper

