
Combinatorial 
Algorithms for 
Compressed Sensing

Graham Cormode
cormode@bell-labs.com

S. Muthukrishnan
muthu@cs.rutgers.edu



2

Background
–Dictionary Ψ is orthonormal basis for Rn, ie n

vectors ψi so  <ψi, ψj> = 1 iff i=j, 0 otherwise

–Representation of dimension n vector A under Ψ is
θ = ΨA, and A = ΨTθ

–Rk is representation of A with k coefficients under Ψ

–Define “error” of representation Rk as sum squared 
difference between Rk and A: NNNNRk - ANNNN2

2

–By Parseval’s, NNNNRk - ANNNN2
2 = NNNNθk - θNNNN2

2 = ∑j ∈ ∈ ∈ ∈ {[n] –k} θj
2

so picking k largest coefficients minimizes error

–Denote this by Rk
opt and aim for error NNNNRk

opt – ANNNN2
2
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Sparse signals
How to model signals well-represented by k terms? 

–k-support: signals that have k non-zero coefficients 
under Ψ. Hence NNNNRk

opt – ANNNN2
2 = 0

–p-compressible: coefficients (sorted by magnitude) 
display a power-law like decay:
|θi| = Ο(i-1/p).  So NNNNRk

opt–ANNNN2
2 = O(k1-2/p) = NNNNCkoptNNNN2

2

– α-exponentially decaying: even faster decay 
|θi| = Ο(2-αi). 

–general: no assumptions on NNNNRk
opt – ANNNN2

2.

Under an appropriate basis, many real signals are 
p-compressible or exponentially decaying.  
k-support is a simplification of this model.
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Compressed Sensing

Compressed Sensing approach: take m ���� n (ie
sublinear) measurements to build representation R

Build Ψ’ of m vectors from Ψ, compute Ψ’A and be able 
to recover good representation of A

Developed by several groups: Donoho; Candes and Tao; 
Rudelson and Vershynin, and others, in frenetic burst of 
activity over last year or two. 

Results for p-compressible signals: randomly construct  
O(k log n) measurements, get error O(k1-2/p) on any A
(constant factor approx to best k term repn. of class)

Ψ A θ=
Ψ’

A υ=
Full transform

Compressed 
Sensing
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Our Results
Can deterministically construct O((kεp)4/(1-p)²log4 n)

measurements in time polynomial in k and n.

For every p-compressible signal A, from these 
measurements of A, we can return a representation R 
for A of at most k coefficients θ’ under Ψ such that 

NNNNRk – ANNNN2
2 < NNNNRk

opt – ANNNN2
2 + ε NNNNCkoptNNNN2

2

The time required to produce the coefficients from the 
measurements is O((kεp)6/(1-p)² log6 n).

For α-exponentially decaying and k-sparse signals, 
fewer measurements are needed: O(k2 log4 n).  
Time to reconstruct is also O(k2 polylog n)
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Recapping CS
Formally define the Compressed Sensing problem:

1. Dictionary transform.  From basis Ψ, build dictionary 
Ψ’ (m vectors of dimension n)

2. Measurement.  Vector A is measured by Ψ’ to get 
υ = <ψi’, A>

3. Reconstruction.  Given υ, recover representation Rk of 
A under Ψ.  

Study: cost of creating Ψ’, size of Ψ’, cost of decoding υ, 
etc.

Ψ A θ=
Ψ’

A υ=
Full transform

Compressed 
Sensing
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Explicit Constructions
Build explicit constructions of sets of measurements 

with guaranteed error. 

Constructions work for all possible signals in the class. 

Size of constructions is poly(k,log n) measurements

Using a group testing approach, based on two parallel 
tests.

Fast to reconstruct the approximate representation R: 
also poly in k and sublinear in n
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Building the transformation
Set Ψ’ = TΨ for transformation matrix T

So Ψ’A = TΨA = Tθ.  Hence we get a linear combination 
of coefficients θ.

Design T to let us recover k large coefficients θi
approximately.  Argue this gives good representation.

Our constructions of T are composed of two parts:

–separation: allow identification of i

–estimation: recover high quality estimate of θi
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Combinatorial tools
We use following definitions: 

� K-separating sets S = {S1, … Sl}. l=O(k log2 n)
For X ⊂⊂⊂⊂ [n], |X| yyyy k, ∃∃∃∃ Si ∈∈∈∈ S. |Si ∩∩∩∩ X| = 1

� K-strongly separating sets S={S1…Sm} m=O(k2log2n)
For X ⊂⊂⊂⊂ [n], |X| yyyy k, ∀∀∀∀ x ∈∈∈∈ X. ∃∃∃∃ Si ∈∈∈∈ S. Si ∩∩∩∩ X = {x}

� For set S, χS is characteristic vector, χS[i] = 1 ⇔⇔⇔⇔ i ∈∈∈∈ S

� Hamming matrix H, is 1+log n ×××× n
(H represents 2-separating sets)

� Combining: if V is v××××n, W is w××××n. 
Define V⊗⊗⊗⊗W as vw××××n matrix:

(V⊗⊗⊗⊗W)iv+l,j=Vi,jWl,j

1 1 1 1 1 1 1 1 
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
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p-compressible signals
Approach: use two parallel rounds of group testing to 

find k’ > k large coefficients, and separate these to 
allow accurate estimation. 

First, identify a superset containing the k’ largest 
coefficients by ensuring that the total “weight” of the 
remaining coefficients is so small that we can identify 
the k’ largest.

Then use more strongly separating sets to separate out 
this superset, and get a good estimate for each 
coefficient. 

Argue that taking the k largest approximate coefficients 
is a good approximation to the true k largest. 
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p-compressible
Over whole class, worst case error is Cpk1-2/p = NNNNCkoptNNNN2

2

The tail sum after removing the top k’ obeys

∑i=k’+1
n |θi| yyyy O(k1-1/p)

Picking k’ > (kε-p)1/(1-p)² ensures that even if every 
coefficient after the k’ largest is placed in the same 
set as θi, for i in top k, we will recover i. 

Build a k’ strongly separating set S, and measure χS⊗ ⊗ ⊗ ⊗ H
to identify a superset of the top-k.  

Build a k’’ = (k’ log n)2 strongly separating set R, and 
measure χR to allow estimates to be made

Can show we estimate θi with θ’i so

(θ’i - θi)2 yyyy ε2/(25k) NNNNCkoptNNNN2
2
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Picking k largest
Argue that the coefficients we do pick are good enough 

even if they are not the k largest.

Write estimates as φi so |φ’1| ≥≥≥≥ |φ’2| ≥≥≥≥ … ≥≥≥≥ |φ’n| =0

We also label coefficients so |θ1| ≥≥≥≥ |θ2| ≥≥≥≥ … ≥≥≥≥ |θn|

Let π be the mapping so that φi = θπ(i)

Our representation has error

NNNNRk – ANNNN22 = Σi=1
k (φi - φ’i)2 + Σi=k+1

n φi
2

= Σi<k ε/25k NNNNCkoptNNNN2
2 + ∑i>k, π(i)yyyyk φi

2+ ∑i>k, π(i)>k φi
2

Optimal would also miss 
these coefficients
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Bounding error
Set up a bijection σ between the coefficients in top k 

that we missed (i>k but π(i)yyyyk) and the coefficients 
outside the top k that we selected (iyyyyk but π(i)>k).

Because of the accuracy in estimation, can show that 
these mistakes have bounded error: 

φi
2 - φσ(i)

2yyyy(2|φσ(i)|+ε/(5√√√√k) NNNNCkoptNNNN2
2)(2ε/(5√√√√k)NNNNCkoptNNNN2

2)

Substituting in, can show 

Σi>k, π(i)yyyy k φi
2 yyyy 22ε/25 NNNNCkoptNNNN2

2 + ∑iyyyy k, π(i)>k φi
2

And so  NNNNRk – ANNNN2
2 < NNNNRk

opt – ANNNN2
2 + εNNNNCkoptNNNN2

2

Thus, explicit construction using O((kεp)4/(1-p)²log4 n)
(poly(k,log n) for constant 0 < p < 1) measurements.
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Other signal models
For α-exponentially decaying and k-sparse signals, can 

use fewer measurements

Separation: Build a k-strongly separating collection of 
sets S, encode as a matrix χS

Combine with H as (H ⊕⊕⊕⊕ χS)

Estimation: build a (k2 log2 n)-separating collection of 
sets R, encode as a matrix χR

Stronger guarantee on decay of coefficient values 
means we can estimate and subtract them one by 
one, and total error will not accumulate.

Total number of measurements in T is O(k2 polylog n)
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Instance Optimal Results
We also give a randomized construction of Ψ’ that 

guarantees instance optimal representation recovery 
with high probability:

� With probability at least 1 - n-c, and in time 
O(c2 k/ε2 log3 n) we can find a representation Rk of A
under Ψ such that NNNNRk – ANNNN2

2 yyyy (1+ε) NNNNRk
opt – ANNNN2

2

(instance optimal) and R has support k.

� Dictionary Ψ' = TΨ has O(ck log3 n /ε2) vectors,  
constructed in time O(cn2 log n); T is represented with 
O(c2 log n) bits.

� If A has support k under Ψ then with probability 
at least 1 – n-c we find the exact representation R.

� Some resilience to error in measurements
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Concluding Remarks
� Alternate approach to compressed sensing by using 

combinatorial tools and techniques. 

� Core of problem is to build a sublinear set of 
measurements to estimate of k largest coefficients.

� Still open to show better bounds on the size of Ψ’, 
reconstruction cost, error guarantee etc.

� Many variations of the problem to consider: eg, what 
if basis Ψ is specified after measurements are made?  
Can there be deterministic constructions under 
conditions on Ψ (coherence to measurement basis?)



17



18

References and Thanks
CT04: Candes & Tao Near optimal signal recovery from random 

projections and universal encoding strategies, 2004

CRT04: Candes, Romberg & Tao Robust uncertainty principles and 
optimally sparse decompositions 2004

Don04: Donoho Compressed Sensing, 2004

GGIKMS02: Gilbert, Guha, Indyk, Kotidis, Muthukrishnan & Strauss 
Fast, small-space algorithms for approximate histogram 
maintenance, 2002

GT05: Gilbert & Tropp Signal recovery from partial information via 
orthogonal matching pursuit, 2005

RV05: Rudelson and Vershynin Geometric approach to error 
correcting codes and reconstruction of signals, 2005

Thanks to: Ron Devore, Ingrid Daubechies, Anna Gilbert and Martin 
Strauss for explaining compressed sensing.



19

Extension - Error Resilience
Prior work has considered resilience to errors, where 

random measurements are replaced with noise.

If a fraction ρ = O(log-1 n) of measurements are 
corrupted in this way, we can still recover Rk with
NNNNRk – ANNNN22 yyyy (1+ε) NNNNRk

opt – ANNNN22

Basic intuition is that provided error avoids some set of 
measurements of θi we can recover it as before.

Estimation is also resilient to errors, due to taking 
median of several estimates.  

Can improve error tolerance to ρ = O(1) [can be as 
much as 1/10]  by a modified algorithm with higher 
decoding cost (Ω(n)).


