Matching and Covering in Streaming Graphs

Graham Cormode

g.cormode@warwick.ac.uk

Joint work with

Rajesh Chitnis, Hossein Esfandiari, MohammadTaghi Hajiaghayi (UMD)

S. Muthukrishnan, Morteza Monemizadeh (Rutgers)

Hossein Jowhari (Warwick)

A tale of three graphs

The telephone call-graph

- Each edge denotes a call between two phones
- $2-3 \times 10^9$ calls made each day in US, maybe 0.5×10^9 phones
- Can store this information (for billing etc.)

The social graph

- Each edge denotes a link from one person to another
- > 10⁹ people, > 10¹¹ links
- Store people (nodes) in memory, but maybe not all links

The IP graph

- Each edge denotes communication between IP addresses
- 10⁹ packets/hour/router in a large ISP, 2³² possible addresses
- Not feasible to store nodes or edges

facebook.

Big Graphs

- Increasingly many "big" graphs:
 - Internet/web graph (2⁶⁴ possible edges)
 - Online social networks (10¹¹ edges)
- Many natural problems on big graphs:
 - Connectivity/reachability/distance between nodes
 - Summarization/sparsification
 - Traditional optimization goals: vertex cover, maximal matching
- Various models for handling big graphs:
 - Parallel (BSP/MapReduce): store and process the whole graph
 - Sampling: try to capture a subset of nodes/edges
 - Streaming (this talk): seek a compact summary of the graph
 - Ideally, computable by distributed observers

Streaming graph model

- The "you get one chance" model:
 - See each edge only once
 - Space used must be sublinear in the size of the input
 - Analyze costs (time to process each edge, accuracy of answer)
- Variations within the model:
 - See each edge exactly once or at least once?
 - Assume exactly once, this assumption can be removed
 - Insertions only, or edges added and deleted?
 - How sublinear is the space?
 - Semi-streaming: linear in n (nodes) but sublinear in m (edges)
 - "Strictly streaming": sublinear in n, polynomial or logarithmic

Streaming is hard!

- With sublinear in n (nodes) space, life is difficult
 - Cannot remember whether or not a given edge was seen
 - Therefore, cannot determine (e.g.) whether graph is connected
 - Standard relaxations, specifically randomization, do not help
 - Formal hardness proved via communication complexity
- Different relaxations are needed to make any progress
 - Relax space: allow linear in n space semi-streaming model
 - Make assumptions about input
 - Solution is not too large: parameterized streaming model
 - Graph has some additional structure: e.g. sparsity assumptions

Parameterized Streaming

For many "real life" graphs we can make such assumptions

- About edge density (few real massive graphs are dense)
- About cost/size of the solution
- Draw inspiration from fixed parameter-tractability (FPT)
 - For (NP) Hard problems: assume solution has size k
 - Naïve solutions have cost exp(n)
 - Seek solutions with cost poly(n)exp(k) OK for small k
 - Report "no" if solution size is greater than k

- A key technique is kernelization
 - Reduce input (graph) G to a smaller (graph) instance G'
 - Such that solution on G' corresponds to solution on G
 - Size of G' is poly(k)
 - So naïve (exponential) algorithm on G' is FPT
- Kernelization is a powerful technique
 - Any problem that is FPT has a kernelization solution

Kernelization for Vertex Cover

Vertex cover: find a set of vertices S so every edge has at least one vertex in S

Set k'=k, desired size of vertex cover

- Repeat till neither of the following rules can be applied
 - There is a vertex v in G with degree > k'. v must be in any cover. Remove v and all edges incident on v from G, decrease k' by one.
 - 2. There is an isolated vertex v in G. Remove v from G.
- If neither rule can be applied, but m>k² then G does not have a vertex cover of size at most k'.
- Else, G' is a kernel with at most 2k'² nodes and k'² edges
 - Can run exponential time algorithm on G' to test for vertex cover

J. F. Buss and J. Goldsmith. Nondeterminism within P, 1993

Kernelization on Graph Streams

- A simple algorithm for insertions only
 - Maintain a matching M (greedily) on the graph seen so far
 - For any v in the matching, keep up to k edges incident on v as G_M
 - If |M|>k, quit: any vertex cover must have more than k nodes
 - At any time, run kernelization algorithm on the stored edges G_M
- Key insight: size of M is a lower bound on size of vertex cover
- Proof outline: argue that kernelization on G_M mimics that on G
 - Every step on G_M can be applied to G correspondingly
 - We keep "enough" edges on a node to test if it is high-degree
- Guarantees O(k²) space: at most k edges on 2k nodes
 - Lower bound of $\Omega(k^2)$ in the streaming model for Vertex Cover
 - Can run with distributed observers, then merge and prune

Kernelization on Dynamic Graph Streams

- More challenging case: dynamic graph streams
 - Edges are inserted and deleted, over distributed observers
- Previous algorithm breaks: deleting a matched edge means we no longer have a maximal matching
- Study promise problem that max matching always at most size k
- Need some additional technology: L₀ sampling
 - Allows us to deal with high degree nodes
 - A sketch algorithm: maintains linear transform of input
 - Allows inserts and deletes to be analyzed easily
 - Mergeable: sketches can be "added" to sketch union of inputs

L₀ Sampling

- Goal: sample (near) uniformly from items with non-zero frequency
- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Consider input to define a vector of frequencies
 - Sub-sample all items (present or not) with probability p
 - Generate a sub-sampled vector of frequencies f_p
 - Feed f_p to a k-sparse recovery data structure
 - Allows reconstruction of f_p if number of non-zero entries < k</p>
 - If vector f_p is k-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of p

Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16... 1/U

- Let N = $F_0 = |\{ i : f_i \neq 0\}|$
- Want there to be a level where k-sparse recovery will succeed
- At level p, expected number of items selected S is Np
- Pick level p so that $k/3 < Np \le 2k/3$
- Chernoff bound: with probability exponential in k, $1 \le S \le k$
 - Pick k = O(log $1/\delta$) to get $1-\delta$ probability

k-Sparse Recovery

Given vector x with at most k non-zeros, recover x via sketching

- A core problem in compressed sensing/compressive sampling
- Randomized construction: hash elements to O(k) buckets
 - Elements are probably isolated in each bucket
 - Keep count of items and sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size O(k log U) to recover up to k items

Sum, $\sum_{i:h(i)=j} i$ **Count**, $\sum_{i:h(i)=i} x_i$ Fingerprint, $\sum_{i:h(i)=i} x_i r^i$

Neighborhood sampling

- Back to maximal matchings and vertex cover
 - Algorithm outline: keep information about the graph in L and H
 - H: set of high degree nodes (degree > 2k)
 - Keep an L₀ sketch of the neighbourhood of each node in H
 - L: set of edges *meither of whose endpoints is in H*
- Given L and H, we can find a maximal matching
 - Recover edges from sketches of H (at most k+1 from each node)
 - Combine with L and greedily find a matching on this set
- Proof outline. We need to argue:
 - 1. We can maintain L and H correctly
 - 2. The matching found is good

Maintaining L and H

Invariant: Every edge is stored in exactly one place

- Use timestamps on nodes becoming heavy to break ties
- If a light node becomes heavy, put all its edges into a sketch

t₁

ta

t₄

t,

- If a heavy node becomes light, can recover all its edges
 - And put these into L
- Edge deletions delete the edge from the one place it was stored
- Space Analysis:
 - Cannot be more than 2k+1 high degree nodes in H
 - Else, could find a matching larger than k between them
 - Cannot be more than 4k² edges in L
 - Else could find a larger matching as nodes in L are low-degree
 - Consequently, space used is O(k² polylog(k))

Correctness of the algorithm

- Key point: for high degree nodes, we have a 'surfeit of riches'
 - Doesn't matter which edges we remember, there are enough to match this node somehow
 - So can match all nodes in H using the recovered edges
 - L consists of all edges not incident on H, so have these exactly
 - Hence can greedily find a maximal matching for the graph
- Summary: can find a maximal matching in O[~](k²) space
 - Under the promise that the matching is always at most k in size
 - Centralized: need to track membership of L and H
 - Use the maximal matching in an FPT vertex cover algorithm
- Can remove the limitations with a hash/sampling based approach
 - See SODA'16 paper with McGregor and Vorotnikova

Matching under sparsity

- Many graphs (phone, web, social) are 'sparse'
 - Asymptotically fewer than O(n²) edges
- Characterize sparsity by bounded arboricity c
 - Edges can be partitioned into at most c forests
 - Equivalent to the largest local density, |E(U)|/(|U|-1) for $U \subseteq V$
 - E(U) is the number of edges in the subgraph induced by U
 - E.g. planarity corresponds to 3-bounded arboricity
- Use structural properties of sparse graphs to give results

α -Goodness

- Define an edge in a stream to be α-good if neither of its endpoints appears more than α times in the suffix of the input
 - Intuition: This definition sparsifies the graph but approximately preserves the matching
 - Estimating the number of α -good edges is easier than finding the matching itself

Edge is 1-good if at most 1 edge on each endpoint arrives later

Easy case: trees (c=I)

- Consider a tree T with maximum matching size M*
- $|E_1| \le 2M^*$: The subgraph E_1 has degree at most 2, no cycles
 - So can make a matching for T from E_1 using at least half the edges
- $|E_1| \ge M^*$: Proof by induction on number of nodes n
 - Base case: n=2 is trivial
 - Inductive case: add an edge (somewhere in the stream) that connects a leaf to an internal node
 - Either M* and |E₁| stay the same, or |E₁| increases by 1 and M* increases by at most 1
 - At most 1 edge is ejected from E₁, but the new edge replaces it

General case

- Upper bound: $|E_{6c}| \le (22.5c + 6)/3 \text{ M}^*$
 - E_{α} has degree at most α +1, and invoke a bound on M* [Han 08]
- Lower bound: $M^* \leq 3|E_{6c}|$
 - Break nodes into low L and high degree H classes (as before)
 - Relate the size of a maximum matching to number of high degree nodes plus edges with both ends low degree
 - Define HH: the nodes in H that only link to others in H
 - There must still be plenty of these by a counting argument
 - Use bounded arboricity to argue that half the nodes in HH have degree less than 6c (averaging argument)
 - These must all have a 6c-good edge (not too many neighbors)
- Combine these to conclude $M^* \le 3|E_{6c}| \le (22.5c + 6)M^*$

Testing edges for α -Goodness

- To estimate matching size, count number of α-good edges
- Follow a sampling strategy similar to L₀ sampling
 - Uniformly sample an edge (u, v) from the stream (easy to do)
 - Count number of subsequent edges incident on u and v
 - Terminate procedure if more than α incident edges
- Need to sample many times in parallel to get result
 - Sample rate too low: no edges found are α -good
 - Sample rate too high: space too high
 - But we can drop the instances that fail
- Goldilocks effect: We can find a sample rate that is just right
 - And bound the space of the over-sampling instances

Parallel guessing

- Make parallel guesses of sampling rates p_i
 - Run $1/\epsilon \log n$ guesses with sampling rates $p_i = (1+\epsilon)^{-i}$
 - Terminate level i if more than $O(\alpha^2 \log n/\epsilon^2)$ guesses are active
- Estimate: Use lowest non-terminated level to make estimate
- Correctness: there is a 'good' level that will not be terminated
 - E_{α} might go up and down as we see more edges
 - But the matching size only increases as the stream goes on
 - Use the previous analysis relating E_{α} to matching size to bound
 - Also argue that using other levels to estimate is OK
- Result: use $O(c/\epsilon^2 \log n)$ space to O(c) approximate M*

Open Problems

- More consideration to the distributed case
 - Many of the pieces can be easily distributed (e.g. sketches)
 - But some pieces (e.g. a-good definition) are inherently centralized
- Other notions of structure/sparsity beyond arboricity?
- Extend to the weighted matching case: some recent results here
- Connections between the streaming and online models?
- Other problems for which kernelization/FPT makes sense?
 - Hypergraph problems, optimization problems...

Concluding Remarks

• Use of I₀ sketches has arisen in several recent graph algorithms

- Streaming graph connectivity in O(n polylog) space
 [Ahn, Guha, McGregor 12]
- Dynamic graph connectivity in polylogarithmic worst-case time [Kapron, King, Mountjoy 13]
- Prompts several natural questions:
 - Can other streaming ideas inspire new (distributed) graph algorithms
 - Can streaming (bounded space) lead to dynamic (fast updates)?
 - Can the primitives (I₀ sampling) be engineered for practical use?
 - Can assumptions (promises on input) be removed or weakened?

Thank you!