
Matching and Covering in

Streaming Graphs
Graham Cormode

g.cormode@warwick.ac.uk

Joint work with

Rajesh Chitnis, Hossein Esfandiari, MohammadTaghi Hajiaghayi (UMD)

S. Muthukrishnan, Morteza Monemizadeh (Rutgers)

Hossein Jowhari (Warwick)

G G’

2

A tale of three graphs

 The telephone call-graph

– Each edge denotes a call between two phones

– 2-3 109 calls made each day in US, maybe 0.5 109 phones

– Can store this information (for billing etc.)

 The social graph

– Each edge denotes a link from one person to another

– > 109 people, > 1011 links

– Store people (nodes) in memory, but maybe not all links

 The IP graph

– Each edge denotes communication between IP addresses

– 109 packets/hour/router in a large ISP, 232 possible addresses

– Not feasible to store nodes or edges

Big Graphs

 Increasingly many “big” graphs:

– Internet/web graph (264 possible edges)

– Online social networks (1011 edges)

 Many natural problems on big graphs:

– Connectivity/reachability/distance between nodes

– Summarization/sparsification

– Traditional optimization goals: vertex cover, maximal matching

 Various models for handling big graphs:

– Parallel (BSP/MapReduce): store and process the whole graph

– Sampling: try to capture a subset of nodes/edges

– Streaming (this talk): seek a compact summary of the graph

 Ideally, computable by distributed observers
3

Streaming graph model

 The “you get one chance” model:

– See each edge only once

– Space used must be sublinear in the size of the input

– Analyze costs (time to process each edge, accuracy of answer)

 Variations within the model:

– See each edge exactly once or at least once?

 Assume exactly once, this assumption can be removed

– Insertions only, or edges added and deleted?

– How sublinear is the space?

 Semi-streaming: linear in n (nodes) but sublinear in m (edges)

 “Strictly streaming”: sublinear in n, polynomial or logarithmic

4

Streaming is hard!

 With sublinear in n (nodes) space, life is difficult

– Cannot remember whether or not a given edge was seen

– Therefore, cannot determine (e.g.) whether graph is connected

– Standard relaxations, specifically randomization, do not help

– Formal hardness proved via communication complexity

 Different relaxations are needed to make any progress

– Relax space: allow linear in n space – semi-streaming model

– Make assumptions about input

 Solution is not too large: parameterized streaming model

 Graph has some additional structure: e.g. sparsity assumptions

5

Parameterized Streaming

 For many “real life” graphs we can make such assumptions

– About edge density (few real massive graphs are dense)

– About cost/size of the solution

 Draw inspiration from fixed parameter-tractability (FPT)

– For (NP) Hard problems: assume solution has size k

– Naïve solutions have cost exp(n)

– Seek solutions with cost poly(n)exp(k) – OK for small k

– Report “no” if solution size is greater than k

6

Kernelization

 A key technique is kernelization

– Reduce input (graph) G to a smaller (graph) instance G’

– Such that solution on G’ corresponds to solution on G

– Size of G’ is poly(k)

– So naïve (exponential) algorithm on G’ is FPT

 Kernelization is a powerful technique

– Any problem that is FPT has a kernelization solution

7

G G’

Kernelization for Vertex Cover

 Set k'=k, desired size of vertex cover

 Repeat till neither of the following rules can be applied

1. There is a vertex v in G with degree > k'. v must be in any cover.
Remove v and all edges incident on v from G, decrease k' by one.

2. There is an isolated vertex v in G. Remove v from G.

 If neither rule can be applied, but m>k'2 then G does not have a
vertex cover of size at most k’.

 Else, G’ is a kernel with at most 2k’2 nodes and k’2 edges

– Can run exponential time algorithm on G’ to test for vertex cover

8

J. F. Buss and J. Goldsmith. Nondeterminism within P, 1993

Vertex cover: find a set of vertices S so
every edge has at least one vertex in S

k’=3 k’=2 k’=1

Kernelization on Graph Streams

 A simple algorithm for insertions only

– Maintain a matching M (greedily) on the graph seen so far

– For any v in the matching, keep up to k edges incident on v as GM

– If |M|>k, quit: any vertex cover must have more than k nodes

– At any time, run kernelization algorithm on the stored edges GM

 Key insight: size of M is a lower bound on size of vertex cover

 Proof outline: argue that kernelization on GM mimics that on G

– Every step on GM can be applied to G correspondingly

– We keep “enough” edges on a node to test if it is high-degree

 Guarantees O(k2) space: at most k edges on 2k nodes

– Lower bound of W(k2) in the streaming model for Vertex Cover

– Can run with distributed observers, then merge and prune
9

Kernelization on Dynamic Graph Streams

 More challenging case: dynamic graph streams

– Edges are inserted and deleted, over distributed observers

 Previous algorithm breaks: deleting a matched edge means we no
longer have a maximal matching

 Study promise problem that max matching always at most size k

 Need some additional technology: L0 sampling

– Allows us to deal with high degree nodes

– A sketch algorithm: maintains linear transform of input

 Allows inserts and deletes to be analyzed easily

 Mergeable: sketches can be “added” to sketch union of inputs

10

L0 Sampling

 Goal: sample (near) uniformly from items with non-zero frequency

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]

– Consider input to define a vector of frequencies

– Sub-sample all items (present or not) with probability p

– Generate a sub-sampled vector of frequencies fp

– Feed fp to a k-sparse recovery data structure

 Allows reconstruction of fp if number of non-zero entries < k

– If vector fp is k-sparse, sample from reconstructed vector

– Repeat in parallel for exponentially shrinking values of p

11

Sampling Process

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U

– Let N = F0 = |{ i : fi 0}|

– Want there to be a level where k-sparse recovery will succeed

– At level p, expected number of items selected S is Np

– Pick level p so that k/3 < Np 2k/3

 Chernoff bound: with probability exponential in k, 1 S k

– Pick k = O(log 1/) to get 1- probability

p=1

p=1/U

k-sparse recovery

12

k-Sparse Recovery

 Given vector x with at most k non-zeros, recover x via sketching

– A core problem in compressed sensing/compressive sampling

 Randomized construction: hash elements to O(k) buckets

– Elements are probably isolated in each bucket

– Keep count of items and sum of item identifiers in each cell

– Sum/count will reveal item id

– Avoid false positives: keep fingerprint of items in each cell

 Can keep a sketch of size O(k log U) to recover up to k items

Sum, i : h(i)=j i

Count, i : h(i)=j xi

Fingerprint, i : h(i)=j xi r
i

13

Neighborhood sampling

 Back to maximal matchings and vertex cover

– Algorithm outline: keep information about the graph in L and H

– H: set of high degree nodes (degree > 2k)

 Keep an L0 sketch of the neighbourhood of each node in H

– L: set of edges neither of whose endpoints is in H

 Given L and H, we can find a maximal matching

– Recover edges from sketches of H (at most k+1 from each node)

– Combine with L and greedily find a matching on this set

 Proof outline. We need to argue:

1. We can maintain L and H correctly

2. The matching found is good

14

Maintaining L and H

 Invariant: Every edge is stored in exactly one place

– Use timestamps on nodes becoming heavy to break ties

– If a light node becomes heavy, put all its edges into a sketch

– If a heavy node becomes light, can recover all its edges

 And put these into L

– Edge deletions delete the edge from the one place it was stored

 Space Analysis:

– Cannot be more than 2k+1 high degree nodes in H

 Else, could find a matching larger than k between them

– Cannot be more than 4k2 edges in L

 Else could find a larger matching as nodes in L are low-degree

– Consequently, space used is O(k2 polylog(k))
15

t1

t4

t3

t2

Correctness of the algorithm

 Key point: for high degree nodes, we have a ‘surfeit of riches’

– Doesn’t matter which edges we remember, there are enough to
match this node somehow

– So can match all nodes in H using the recovered edges

– L consists of all edges not incident on H, so have these exactly

– Hence can greedily find a maximal matching for the graph

 Summary: can find a maximal matching in O~(k2) space

– Under the promise that the matching is always at most k in size

– Centralized: need to track membership of L and H

– Use the maximal matching in an FPT vertex cover algorithm

 Can remove the limitations with a hash/sampling based approach

– See SODA’16 paper with McGregor and Vorotnikova
16

Matching under sparsity

 Many graphs (phone, web, social) are ‘sparse’

– Asymptotically fewer than O(n2) edges

 Characterize sparsity by bounded arboricity c

– Edges can be partitioned into at most c forests

– Equivalent to the largest local density, |E(U)|/(|U|-1) for U V

 E(U) is the number of edges in the subgraph induced by U

– E.g. planarity corresponds to 3-bounded arboricity

 Use structural properties of sparse graphs to give results

17

α -Goodness

 Define an edge in a stream to be α-good if neither of its
endpoints appears more than α times in the suffix of the input

– Intuition: This definition sparsifies the graph but approximately
preserves the matching

– Estimating the number of α-good edges is easier than finding the
matching itself

18

Edge is 1-good if at
most 1 edge on each
endpoint arrives later

Easy case: trees (c=1)

 Consider a tree T with maximum matching size M*

 |E1| ≤ 2M* : The subgraph E1 has degree at most 2, no cycles

– So can make a matching for T from E1 using at least half the edges

 |E1| ≥ M*: Proof by induction on number of nodes n

– Base case: n=2 is trivial

– Inductive case: add an edge (somewhere in the stream) that
connects a leaf to an internal node

 Either M* and |E1| stay the same, or |E1| increases by 1 and M*
increases by at most 1

 At most 1 edge is ejected from E1, but the new edge replaces it

19

General case

 Upper bound: |E6c| ≤ (22.5c + 6)/3 M*

– Eα has degree at most α+1, and invoke a bound on M* [Han 08]

 Lower bound: M* ≤ 3|E6c|

– Break nodes into low L and high degree H classes (as before)

– Relate the size of a maximum matching to number of high
degree nodes plus edges with both ends low degree

– Define HH: the nodes in H that only link to others in H

 There must still be plenty of these by a counting argument

– Use bounded arboricity to argue that half the nodes in HH have
degree less than 6c (averaging argument)

– These must all have a 6c-good edge (not too many neighbors)

 Combine these to conclude M* ≤ 3|E6c| ≤ (22.5c + 6)M*

 20

Testing edges for α-Goodness

 To estimate matching size, count number of α-good edges

 Follow a sampling strategy similar to L0 sampling

– Uniformly sample an edge (u, v) from the stream (easy to do)

– Count number of subsequent edges incident on u and v

– Terminate procedure if more than α incident edges

 Need to sample many times in parallel to get result

– Sample rate too low: no edges found are α-good

– Sample rate too high: space too high

 But we can drop the instances that fail

 Goldilocks effect: We can find a sample rate that is just right

– And bound the space of the over-sampling instances
21

Parallel guessing

 Make parallel guesses of sampling rates pi

– Run 1/ε log n guesses with sampling rates pi = (1+ε)-i

– Terminate level i if more than O(α2 log n/ε2) guesses are active

 Estimate: Use lowest non-terminated level to make estimate

 Correctness: there is a ‘good’ level that will not be terminated

– Eα might go up and down as we see more edges

– But the matching size only increases as the stream goes on

– Use the previous analysis relating Eα to matching size to bound

– Also argue that using other levels to estimate is OK

 Result: use O(c/ε2 log n) space to O(c) approximate M*

22

p=1

p=1/U

Open Problems

 More consideration to the distributed case

– Many of the pieces can be easily distributed (e.g. sketches)

– But some pieces (e.g. a-good definition) are inherently centralized

 Other notions of structure/sparsity beyond arboricity?

 Extend to the weighted matching case: some recent results here

 Connections between the streaming and online models?

 Other problems for which kernelization/FPT makes sense?

– Hypergraph problems, optimization problems…

23

G G’

Concluding Remarks

 Use of l0 sketches has arisen in several recent graph algorithms

– Streaming graph connectivity in O(n polylog) space
 [Ahn, Guha, McGregor 12]

– Dynamic graph connectivity in polylogarithmic worst-case time
[Kapron, King, Mountjoy 13]

 Prompts several natural questions:

– Can other streaming ideas inspire new (distributed) graph algorithms?

– Can streaming (bounded space) lead to dynamic (fast updates)?

– Can the primitives (l0 sampling) be engineered for practical use?

– Can assumptions (promises on input) be removed or weakened?

24

Thank you!

