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A tale of three graphs 

 The telephone call-graph 

– Each edge denotes a call between two phones 

– 2-3  109 calls made each day in US, maybe 0.5  109 phones 

– Can store this information (for billing etc.) 

 The social graph 

– Each edge denotes a link from one person to another 

– > 109 people, > 1011 links 

– Store people (nodes) in memory, but maybe not all links 

 The IP graph  

– Each edge denotes communication between IP addresses 

– 109 packets/hour/router in a large ISP, 232 possible addresses 

– Not feasible to store nodes or edges 



Big Graphs 

 Increasingly many “big” graphs: 

– Internet/web graph (264 possible edges) 

– Online social networks (1011 edges) 

 Many natural problems on big graphs: 

– Connectivity/reachability/distance between nodes 

– Summarization/sparsification 

– Traditional optimization goals: vertex cover, maximal matching 

 Various models for handling big graphs: 

– Parallel (BSP/MapReduce): store and process the whole graph 

– Sampling: try to capture a subset of nodes/edges 

– Streaming (this talk): seek a compact summary of the graph 

 Ideally, computable by distributed observers 
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Streaming graph model 

 The “you get one chance” model: 

– See each edge only once 

– Space used must be sublinear in the size of the input 

– Analyze costs (time to process each edge, accuracy of answer) 

 Variations within the model: 

– See each edge exactly once or at least once? 

 Assume exactly once, this assumption can be removed 

– Insertions only, or edges added and deleted? 

– How sublinear is the space? 

 Semi-streaming: linear in n (nodes) but sublinear in m (edges) 

 “Strictly streaming”: sublinear in n, polynomial or logarithmic 
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Streaming is hard! 

 With sublinear in n (nodes) space, life is difficult 

– Cannot remember whether or not a given edge was seen 

– Therefore, cannot determine (e.g.) whether graph is connected 

– Standard relaxations, specifically randomization, do not help 

– Formal hardness proved via communication complexity 

 Different relaxations are needed to make any progress 

– Relax space: allow linear in n space – semi-streaming model 

– Make assumptions about input  

 Solution is not too large: parameterized streaming model 

 Graph has some additional structure: e.g. sparsity assumptions 
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Parameterized Streaming 

 For many “real life” graphs we can make such assumptions 

– About edge density (few real massive graphs are dense) 

– About cost/size of the solution 

 Draw inspiration from fixed parameter-tractability (FPT) 

– For (NP) Hard problems: assume solution has size k 

– Naïve solutions have cost exp(n) 

– Seek solutions with cost poly(n)exp(k) – OK for small k 

– Report “no” if solution size is greater than k 
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Kernelization 

 A key technique is kernelization 

– Reduce input (graph) G to a smaller (graph) instance G’ 

– Such that solution on G’ corresponds to solution on G 

– Size of G’ is poly(k) 

– So naïve (exponential) algorithm on G’ is FPT 

 Kernelization is a powerful technique 

– Any problem that is FPT has a kernelization solution 
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Kernelization for Vertex Cover 

 Set k'=k, desired size of vertex cover 

 Repeat till neither of the following rules can be applied   

1. There is a vertex v in G with degree > k'. v must be in any cover. 
Remove v and all edges incident on v from G, decrease k' by one. 

2. There is an isolated vertex v in G. Remove v from G.  

 If neither rule can be applied, but m>k'2 then G does not have a 
vertex cover of size at most k’.  

 Else, G’ is a kernel with at most 2k’2 nodes and k’2 edges 

– Can run exponential time algorithm on G’ to test for vertex cover 
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J. F. Buss and J. Goldsmith. Nondeterminism within P, 1993 

Vertex cover: find a set of vertices S so 
every edge has at least one vertex in S 

k’=3 k’=2 k’=1 



Kernelization on Graph Streams 

 A simple algorithm for insertions only 

– Maintain a matching M (greedily) on the graph seen so far 

– For any v in the matching, keep up to k edges incident on v as GM 

– If |M|>k, quit: any vertex cover must have more than k nodes 

– At any time, run kernelization algorithm on the stored edges GM 

 Key insight: size of M is a lower bound on size of vertex cover 

 Proof outline: argue that kernelization on GM mimics that on G 

– Every step on GM can be applied to G correspondingly 

– We keep “enough” edges on a node to test if it is high-degree 

 Guarantees O(k2) space: at most k edges on 2k nodes 

– Lower bound of W(k2) in the streaming model for Vertex Cover 

– Can run with distributed observers, then merge and prune 
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Kernelization on Dynamic Graph Streams 

 More challenging case: dynamic graph streams 

– Edges are inserted and deleted, over distributed observers 

 Previous algorithm breaks: deleting a matched edge means we no 
longer have a maximal matching 

 Study promise problem that max matching always at most size k 

 Need some additional technology: L0 sampling 

– Allows us to deal with high degree nodes 

– A sketch algorithm: maintains linear transform of input 

 Allows inserts and deletes to be analyzed easily 

 Mergeable: sketches can be “added” to sketch union of inputs 
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L0 Sampling 

 Goal: sample (near) uniformly from items with non-zero frequency 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Consider input to define a vector of frequencies 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure 

 Allows reconstruction of fp if number of non-zero entries < k  

– If vector fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 
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Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Let N = F0 = |{ i : fi  0}| 

– Want there to be a level where k-sparse recovery will succeed 

– At level p, expected number of items selected S is Np 

– Pick level p so that k/3 < Np  2k/3 

 Chernoff bound: with probability exponential in k, 1  S  k 

– Pick k = O(log 1/) to get 1- probability 

 

p=1 

p=1/U 

k-sparse recovery  

12 



k-Sparse Recovery 

 Given vector x with at most k non-zeros, recover x via sketching 

– A core problem in compressed sensing/compressive sampling 

 Randomized construction: hash elements to O(k) buckets 

– Elements are probably isolated in each bucket 

– Keep count of items and sum of item identifiers in each cell 

– Sum/count will reveal item id 

– Avoid false positives: keep fingerprint of items in each cell 

 Can keep a sketch of size O(k log U) to recover up to k items 

Sum, i : h(i)=j i 

Count, i : h(i)=j xi 

Fingerprint, i : h(i)=j xi r
i 
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Neighborhood sampling 

 Back to maximal matchings and vertex cover 

– Algorithm outline: keep information about the graph in L and H 

– H: set of high degree nodes      (degree > 2k) 

 Keep an L0 sketch of the neighbourhood of each node in H 

– L: set of edges               neither of whose endpoints is in H 

 Given L and H, we can find a maximal matching 

– Recover edges from sketches of H (at most k+1 from each node) 

– Combine with L and greedily find a matching on this set 

 Proof outline.  We need to argue:  

1. We can maintain L and H correctly 

2. The matching found is good 
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Maintaining L and H 

 Invariant: Every edge is stored in exactly one place 

– Use timestamps on nodes becoming heavy to break ties  

– If a light node becomes heavy, put all its edges into a sketch 

– If a heavy node becomes light, can recover all its edges 

 And put these into L 

– Edge deletions delete the edge from the one place it was stored 

 Space Analysis:  

– Cannot be more than 2k+1 high degree nodes in H 

 Else, could find a matching larger than k between them 

– Cannot be more than 4k2 edges in L 

 Else could find a larger matching as nodes in L are low-degree 

– Consequently, space used is O(k2 polylog(k)) 
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Correctness of the algorithm 

 Key point: for high degree nodes, we have a ‘surfeit of riches’ 

– Doesn’t matter which edges we remember, there are enough to 
match this node somehow 

– So can match all nodes in H using the recovered edges 

– L consists of all edges not incident on H, so have these exactly 

– Hence can greedily find a maximal matching for the graph 

 Summary: can find a maximal matching in O~(k2) space 

– Under the promise that the matching is always at most k in size 

– Centralized: need to track membership of L and H 

– Use the maximal matching in an FPT vertex cover algorithm 

 Can remove the limitations with a hash/sampling based approach 

– See SODA’16 paper with McGregor and Vorotnikova 
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Matching under sparsity 

 Many graphs (phone, web, social) are ‘sparse’ 

– Asymptotically fewer than O(n2) edges 

 Characterize sparsity by bounded arboricity c 

– Edges can be partitioned into at most c forests 

– Equivalent to the largest local density, |E(U)|/(|U|-1) for U  V 

 E(U) is the number of edges in the subgraph induced by U 

– E.g. planarity corresponds to 3-bounded arboricity 

 Use structural properties of sparse graphs to give results 
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α -Goodness 

 Define an edge in a stream to be α-good if neither of its 
endpoints appears more than α times in the suffix of the input 

– Intuition: This definition sparsifies the graph but approximately 
preserves the  matching 

– Estimating the number of α-good edges is easier than finding the 
matching itself 
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Edge is 1-good if at 
most 1 edge on each 
endpoint arrives later 



Easy case: trees (c=1) 

 Consider a tree T with maximum matching size M* 

 |E1| ≤ 2M* : The subgraph E1 has degree at most 2, no cycles 

– So can make a matching for T from E1 using at least half the edges 

 |E1| ≥ M*: Proof by induction on number of nodes n 

– Base case: n=2 is trivial 

– Inductive case: add an edge (somewhere in the stream) that 
connects a leaf to an internal node 

 Either M* and |E1| stay the same, or |E1| increases by 1 and M* 
increases by at most 1 

 At most 1 edge is ejected from E1, but the new edge replaces it 
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General case 

 Upper bound: |E6c| ≤ (22.5c + 6)/3 M* 

– Eα has degree at most α+1, and invoke a bound on M* [Han 08] 

 Lower bound: M* ≤  3|E6c| 

– Break nodes into low L and high degree H classes (as before) 

– Relate the size of a maximum matching to number of high 
degree nodes plus edges with both ends low degree 

– Define HH: the nodes in H that only link to others in H 

 There must still be plenty of these by a counting argument 

– Use bounded arboricity to argue that half the nodes in HH have 
degree less than 6c (averaging argument) 

– These must all have a 6c-good edge (not too many neighbors) 

 Combine these to conclude M* ≤  3|E6c| ≤  (22.5c + 6)M* 
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Testing edges for α-Goodness 

 To estimate matching size, count number of α-good edges 

 Follow a sampling strategy similar to L0 sampling 

– Uniformly sample an edge (u, v) from the stream (easy to do) 

– Count number of subsequent edges incident on u and v 

– Terminate procedure if more than α incident edges 

 Need to sample many times in parallel to get result 

– Sample rate too low: no edges found are α-good 

– Sample rate too high: space too high  

 But we can drop the instances that fail 

 Goldilocks effect: We can find a sample rate that is just right 

– And bound the space of the over-sampling instances 
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Parallel guessing 

 Make parallel guesses of sampling rates pi 

– Run 1/ε log n guesses with sampling rates pi = (1+ε)-i  

– Terminate level i if more than O(α2 log n/ε2) guesses are active 

 Estimate: Use lowest non-terminated level to make estimate 

 Correctness: there is a ‘good’ level that will not be terminated 

– Eα might go up and down as we see more edges 

– But the matching size only increases as the stream goes on 

– Use the previous analysis relating Eα to matching size to bound 

– Also argue that using other levels to estimate is OK 

 Result: use O(c/ε2 log n) space to O(c) approximate M* 
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Open Problems 

 More consideration to the distributed case 

– Many of the pieces can be easily distributed (e.g. sketches) 

– But some pieces (e.g. a-good definition) are inherently centralized 

 Other notions of structure/sparsity beyond arboricity? 

 Extend to the weighted matching case: some recent results here 

 Connections between the streaming and online models? 

 Other problems for which kernelization/FPT makes sense?  

– Hypergraph problems, optimization problems… 
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Concluding Remarks 

 Use of l0 sketches has arisen in several recent graph algorithms 

– Streaming graph connectivity in O(n polylog) space  
 [Ahn, Guha, McGregor 12]  

– Dynamic graph connectivity in polylogarithmic worst-case time 
[Kapron, King, Mountjoy 13] 

 Prompts several natural questions: 

– Can other streaming ideas inspire new (distributed) graph algorithms? 

– Can streaming (bounded space) lead to dynamic (fast updates)? 

– Can the primitives (l0 sampling) be engineered for practical use? 

– Can assumptions (promises on input) be removed or weakened? 
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Thank you! 


