Differentially Private Hierarchical Heavy Hitters

Ari Biswas*

Graham Cormode*

Yaron Kanza[^]

Divesh Srivastava[^]

Zhengyi Zhou^

* University of Warwick ^ AT&T Chief Data Office

Private Data Analysis

- Private data analytics seeks to perform analysis on sensitive data
 - The result of the analysis must provide some useful results
 - While ensuring that they protect the privacy of the data subjects
- Much prior work has addressed core data analysis tasks
 - E.g., Histograms, clustering, classification, statistical distribution
- In this work, we study the task of hierarchical heavy hitters under the model of differential privacy
 - Variations arise for the offline and online (streaming) cases

Hierarchical Heavy Hitters (HHH)

- The hierarchical heavy hitters (HHH) identify important points in data drawn from hierarchical domains (CKMS, VLDB 2003)
- ◆ E.g., locations over street address, postal code, village, city...
- The heavy hitters are those points with frequency > τ
- The HHHs are defined as nodes in the hierarchy that are heavy, after removing heavy contributions from lower levels

Differential Privacy (DP)

- Differential privacy is a constraint on the output distribution of a randomized algorithm A on neighboring inputs X, X'
 - Formally, ensure that $Pr[A(X) \in O] \le exp(\varepsilon) Pr[A(X') \in O] + \delta$
- Differential privacy is achieved for numeric functions by adding appropriately scaled Laplace or Gaussian noise
- (Basic) Composition: running algorithm A_1 with (ϵ_1, δ_1) -DP then A_2 with (ϵ_2, δ_2) -DP yields $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -DP
- Post-processing: any post-processing of DP output remains DP
- ◆ Sparse Vector Technique (SVT): an algorithm that outputs elements whose (noisy) count is above a threshold
 - Only pay a privacy "cost" proportional to the number of outputs

Offline DP Hierarchical Heavy Hitters

- Prior approaches can be applied to find DP-HHHs offline
 - These have costs with (explicit or implicit) dependence on h
- ◆ Laplace Histograms: materialize counts of each hierarchy level
 - Add noise proportional to h/ϵ to each count then find HHHs
 - The error per node scales linear to the hierarchy height, h
- ◆ DP Counting on Trees (GKKMW, ICALP 2023)
 - Proceed bottom-up, materialize node counts level-by-level
 - Only pay based on the number of heavy hitter nodes
 - We can find approximate HHHs from the noisy node counts
 - In realistic settings, the cost will still grow proportional to h

Offline DP Hierarchical Heavy Hitters

- Observation: each leaf influences at most one HHH ancestor
- Our algorithm proceeds level-by-level, bottom-up
 - Find node counts at current level without HHH descendants
 - If node count of v + Laplace noise exceeds threshold τ , output it
- Privacy proof follows by using structural properties of HHH:
 - Only leaf-to-root path matters, other nodes don't affect node v
 - Only nodes up to the first HHH ancestor of node v matter
 - Privacy proof is similar to sparse vector technique

Offline DP Hierarchical Heavy Hitters

- Our DP-HHH algorithm bounds the relative error of node counts:
 - Relative error: The relative error of all HHH node counts is bounded by Δ/τ for $\Delta = O(1/\epsilon (\log (1/\delta) + \log h))$
 - Coverage: For all nodes **not** reported by our algorithm, their HHH count is below $\tau \Delta$
 - These bounds hold with fixed (adjustable) probability
 - Only logarithmic dependence on hierarchy height h!
- Coverage: by applying bounds on the sums of Laplace noise
- ◆ Relative error: bounds follow by summing the estimation errors in the HHHs that contribute to that node's count

Streaming DP Hierarchical Heavy Hitters

- The memory-bounded streaming HHH problem is harder
 - We see a sequence of element arrivals and must keep a sketch
 - Since the fixed-size summary is approximate, errors can amplify
- Our approach is to use a compact sketch of node frequencies
 - We use a Misra-Gries (MG) sketch for each level of the hierarchy
 - We add privacy noise to each sketch to get a noisy histogram
 - We output HHHs level-by-level based on the noisy histograms

Streaming DP Hierarchical Heavy Hitters

- Our result builds on the privacy analysis of MG (LT, PODS 2023)
 - A naïve analysis of the MG sketch suggests it has high privacy cost
 - A small change in the input can lead to a large change in the sketch
 - However, the change is correlated:
 all stored items are affected by the same amount
 - The analysis treats such changes as a single event,
 and applies the sparse vector technique
- Using the noisy MG node counts, we can extract HHH estimates
 - Conservatively reduce the count of all ancestors of an HHH node

Streaming DP Hierarchical Heavy Hitters

- Privacy by analyzing the privacy properties of each MG sketch
 - Privacy of HHH output follows by composition and post-processing
- The absolute error is a function of ε , h, δ , n, and sketch size k
 - The error of each reported HHH is $O(n/k + h/\epsilon (\log (kh) + \log (h/\delta)))$
 - n/k is the error from (non-private) sketching
 - h/ε log (kh) is a union bound on the error from Laplace noise
 - $h/\epsilon \log (h/\delta)$ is error from elements whose count is treated as zero

Concluding Remarks

- We can achieve accurate recovery of HHHs under DP guarantees
- Ignoring logarithmic factors in h and k, we showed:
 - In offline setting, the DP error is independent of hierarchy height h
 - In streaming setting, the DP error is independent of sketch size k
- The full paper has detailed proofs and further discussion
- Future work in this direction:
 - Handle multi-dimensional inputs without exponential blow-up
 - Use structure of problems to control the privacy noise needed