
Applications of Sketching:
Pathways to Impact

Graham Cormode

University of Warwick & Meta

G.Cormode@Warwick.ac.uk

Outline

An overview and thumbnail history of sketching

Research impacts of sketching

Practical impacts of sketching

Strategies and tactics for impact

Formal results, algorithms and proofs

2

Sketches

◼ Data summary algorithms (“sketches”):

– Compact data structures that capture certain properties of data

– May be updated incrementally (streaming) or merged together

◼ They answer queries with approximation guarantees

– How many distinct items seen (count distinct, F0 sketches)

– Track frequency distributions (heavy hitters, quantiles)

– Approximate Euclidean or other norms (dimensionality reduction)

– Summarize more complex data types (graphs, matrices etc.)

◼ Sketch algorithms have been studied in CS for > 50 years

– A brief history lesson now follows

3

Early History of Sketching

◼ A random sample gives a basic sketch (late 19th/early 20th C)

– Reservoir sampling algorithms (1960s/70s: Fan et al., Waterman)

◼ Bloom filters for set summarization (1970)

◼ Morris counter for counting in O(log log n) bits (1977)

◼ Munro & Paterson median finding in few passes (1978)

◼ Flajolet & Martin distinct counting (1983)

◼ Johnson-Lindenstrauss lemma for dimensionality reduction (1984)

4

Initial results, with powerful, simple algorithms showing
the first sublinear results for the constraints of the time

The Streaming Years

◼ AMS sketching for the frequency moments (1996)

◼ LSH (Indyk-Motwani, Broder) for approximate similarity (1998)

◼ MRL and GK algorithms for quantiles (1998, 2001)

◼ CCFC and CM sketches for frequency estimation (2002, 2003)

◼ Loglog and HLL sketches for count distinct (2003, 2007)

◼ Q-Digest for quantiles (2004)

◼ SpaceSaving for frequency estimation (2005)

5

Techniques motivated by ‘streaming’ computing models,
with focus on the space complexity and time cost

From streaming to mergeable

◼ HLL++ from Google (2013-): optimizing accuracy and space for
small distinct counts when running many counters in parallel

◼ Sparser Johnson-Lindenstrauss (2010): very sparse
transformations preserve Euclidean norm

◼ Mergeable Summaries (2012): placing emphasis on merging
summaries together, for quantiles and approximations

◼ KLL (2016): optimal approximate quantile sketch via sampling

◼ & Subspace embeddings (2010s), compressed sensing (2004-)

◼ … and too many more to list, right up to the present day

6

Refinements and enhancements of previous techniques,
targeting greater scalability (computation and memory cost)

and/or theoretical optimality

Sketches at PODS

◼ An Optimal Algorithm for the Distinct Elements Problem, Kane,
Nelson, Woodruff (2010 best paper)

◼ Tight bounds for Lp samplers, Jowhari, Saglam, Tardos,
(2011, Test-of-time award in 2021)

◼ Mergeable summaries, Agarwal, C, Huang, Phillips, Wei, Yi,
(2012, Test-of-time award in 2022)

◼ A Framework for Adversarially Robust Streaming Algorithms,
Ben-Eliezer, Jayaram, Woodruff, Yogev (2020 best paper award)

◼ Relative Error Streaming Quantiles, C, Karnin, Liberty, Thaler,
Vesely (2021 best paper award)

◼ Better DP Approximate Histograms and Heavy Hitters Using the
Misra-Gries Sketch, Lebeda, Tetek (2023 distinguished paper)

7

Many works on sketching have appeared at PODS, and
several have been honoured with awards

Further reading…

◼ Sketch algorithms are now presented in several textbooks

◼ But how have they been used in practice – and why?

8

Shifting Motivations for Sketching (1)

• Morris counting, Bloom filters assumed memory was tiny

• Munro-Paterson: taking multiple passes over tapes

• Ratio of data size : storage capability shifted, so the need diminished

Memory constrained systems (1970s – 1980s)Memory constrained systems (1970s – 1980s)

• Network/ISP data motivated the streaming paradigm for data analysis

• Systems: Gigascope (AT&T), CMon (Sprint), Aurora/Borealis (academic)…

“Massive Data” (late 1990s – early 2000s)“Massive Data” (late 1990s – early 2000s)

• Locality Sensitivity hashing was a key component of fast search

• Still relevant: vector embeddings etc. still benefit from LSH

Multimedia search (2000s onwards)Multimedia search (2000s onwards)

9

Shifting Motivations for Sketching (2)

10

• Track distinct impressions across many clients

• Still some concern about approximate counting

• Need for sketching reduced: warehouses could count exactly!

Online advertising (2010s)Online advertising (2010s)

• Twitter counting embedded tweets (CM sketch)

• Quantile algorithms for tracking distributions (t-digest, KLL)

• Built into tools including Splunk, Presto, Salesforce, …

• Apache Data Sketches library supports Spark, Java

• Mostly invisible to outsiders

“Big Data” (2010s onwards) – analytics“Big Data” (2010s onwards) – analytics

Shifting Motivations for Sketching (3)

11

• Google’s RAPPOR: Bloom filters + randomized response

• Apple DP deployment: Count/Count Min sketches + RR

• Federated analytics ≈ sketches + (differential) privacy

Private data analysis (late 2010s-)Private data analysis (late 2010s-)

• Send a sketch of model updates e.g., SketchSGD

• Other tools: kernels, epsilon-approximations

• Still emerging – unclear if this will be mainstream

Communication efficient ML (mid 2010s-)Communication efficient ML (mid 2010s-)

Lessons learned from applying sketches

• A company needs a business plan, not a scientific idea

• No business has emerged based solely on sketching (yet)

You don’t have
to launch a

startup based
on your paper

• Bad prototype code is better than no code

• A reference implementation shows the feasibility & basic ideas

• Code lives on github: hundreds of sketch implementations there

The language
of CS is (open
source) code

• Find ways to incorporate research ideas into core topics

• E.g., sketches fit well into algorithms or database classes

• Students forced to study something may eventually deploy it!

Put research
ideas into

(undergrad)
teaching

12

Lessons learned from applying sketches

• Writing non-academic texts to reach working coders

• Medium/substack/arxiv may be better than articles/books

Write accessible
notes where
people read

them

• Need to reach beyond academia to software engineers

• Make material freely available (YouTube, social media)

Give talks and
present tutorials
online/meetups

• Ideally, fully embedding yourself with a company

• “Real world” problems are both simpler and more complex
than research problems

• Helps identify where research effort is really needed

Work directly
with companies

13

◼ The biggest contributor towards impact can be time

– With encouragement, good ideas will find applications eventually

– Corollary: many ideas sink without trace (too early or too late)

◼ Sketches are a good example of theory to applications

– Many sketching ideas had compelling real motivations

– This led to some deep theory and clever algorithms

– The ultimate applications were not the original motivations!

– Motivations and applications can change a lot over time

Closing remarks

14

	Slide 1: Applications of Sketching: Pathways to Impact
	Slide 2: Outline
	Slide 3: Sketches
	Slide 4: Early History of Sketching
	Slide 5: The Streaming Years
	Slide 6: From streaming to mergeable
	Slide 7: Sketches at PODS
	Slide 8: Further reading…
	Slide 9: Shifting Motivations for Sketching (1)
	Slide 10: Shifting Motivations for Sketching (2)
	Slide 11: Shifting Motivations for Sketching (3)
	Slide 12: Lessons learned from applying sketches
	Slide 13: Lessons learned from applying sketches
	Slide 14: Closing remarks

